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ABSTRACT

Clean (and specifically renewable) energy is steadily improving its global share.

However, finite availability of fossil fuels and the growing effects of climate change

make it an urgent priority to convince the industry and governments to incen-

tivize investment in the renewable energy field and to make it more attractive by

decreasing the capital cost. Until recently, uncertainties in funding limited renew-

able energy development, especially in the US. That limitation has been one of

the barriers to progress. Another limitation of many renewable energy systems is

the variability in their output, which makes them unsuitable for baseline power

production. Therefore, fossil fuels are still the dominant source of energy globally.

The estimated US energy consumption in 2015 relied heavily on fossil fuels which

generated about 82% of US primary energy. The share of solar energy in 2015 US

energy consumption was just 0.43%. This is a disappointingly small share for a

zero carbon source of energy. Nuclear energy as another clean energy source has a

small share as 8% of the total US energy consumption. Although it is one of the

most reliable/stable and low carbon sources of energy, the nuclear power industry

is currently facing several challenges. First, nuclear generated electricity is not

cost-competitive with other types of generation. Second, there is a diminished

availability of cooling water to reject heat from large power plants. Third, the

penetration of solar and wind generation systems into the electrical power market

is producing significant fluctuations in the demand for nuclear generation. Open

Air-Brayton systems are one of the solutions here since the ultimate heat sink for



nuclear supplied power is the atmosphere, so a more direct method of dumping

this heat would be useful. An open Air-Brayton system can also provide a great

deal of flexibility in adjusting power plant electrical output without significantly

ramping reactor power output. This dissertation develops a common framework

for understating and improving the solar and nuclear clean energy system com-

ponents which are based on Brayton cycles. For this purpose, experimental and

numerical studies of solar and nuclear systems are conducted.

The open air Brayton cycle of a solar chimney power plant is studied in this

investigation in different cases as a solar power cycle. Additionally, the air Brayton

cycle of a nuclear power plant is considered for several different cases, including

a combined nuclear-solar cycle. Air flow is driven by buoyancy in the open air

Brayton cycle of a solar chimney power plant system (SCCPS). In SCPPS, the

energy of buoyant hot air is converted to electrical energy. SCPPS includes a

collector at ground level, covered with a transparent roof that collects the solar

radiation, which heats the air inside and the ground underneath. This dissertation

proposes and studies new modifications and optimizations to increase the thermal

efficiency of the SCCPS, as well as combining SCCPS cycles with other clean

sustainable cycles. The nuclear-combined air Brayton cycles are studied with the

focus on producing low-carbon energy and combining pressurized water reactor

and small modular reactor cycles with another thermal cycle, leading to increased

combined efficiency.

In this manuscript, chapters are organized with respect to the type of their ther-

mal cycle. Part I, includes three chapters focusing on simple/single Brayton cycle.

Part II contains two chapters regarding combined Brayton cycles. Each chapter

in this investigation is based on at least one published or accepted/ready to pub-

lish article, and which have undergone peer review. The citation for each original

source manuscript is included as a footnote on the bottom of the first page of each

chapter. Therefore, each chapter is in the format of a journal article, including: an

introduction, motivation and background, theory, numerical approach, experimen-

tal approach, results and dissections, future work and conclusion. The references

and acknowledgments associated with each article are provided at the end of each

chapter. All achievements of this work are listed in Appendix A.

Part I, chapter one describes non-deterministic computational fluid dynamics (CFD)

and conjugate heat transfer (CHT) study of a solar chimney power plant. The



initial CFD analyses were validated against the data from the only available large-

scale prototype (Manzanares solar tower). To evaluate our CFD analysis beside

code verification, an analytical model was developed based on Navier-Stokes equa-

tions coupled with the equation of state and using the Boussinesq approximation.

The second chapter of this research focuses on evaluating the patented idea of hav-

ing a double-inlet collector in SCPPS. In this chapter, efforts are made to achieve

quantitative accuracy assessment of the modeling and simulation of SCPPS for

a conventional collector. The experimental exploration is based on particle im-

age velocimetry (PIV) to provide experimental values for our finite volume based

CFD/CHT results. The results of verification and validation of the CFD/CHT

analysis are reported. The third chapter of this research addresses the second

patented idea regarding applying inflatable towers on solar collectors. Mathemati-

cal and computational analyses were conducted. Also, an experimental apparatus

was designed and fabricated in 2014 at the University of New Mexico for different

testing and evaluation approaches. The results of this validation and the prototype

are available in Appendix B.

As mentioned before, Part II focuses on combined air Brayton cycles. Chapter 4

reports the study and modeling of our third patented idea, applying surplus heat

from a nuclear power plant to the SCPPS. In the proposed combined cycle, we

replaced the power plant cooling tower with SCPPS. Therefore, SCCPS serves the

function of a dry cooling tower, and also produces additional electrical power in

this novel combined nuclear-solar cycle. By applying this idea, it is possible to

increase the thermal efficiency of a typical 1000 MW nuclear power plant (35.5%)

to 41.4%. The last chapter is focused on a combined nuclear air Brayton cycle

to increase the output power of a 50 MW small modular liquid metal/molten salt

reactor. Since the major cost of nuclear electricity is the capital cost of plant

construction, the concept of small modular reactors has won favor as a method of

improving cash flow and minimizing the time required to bring new generation on

line, reducing interest expenses. Considerable power increases are predicted for

nuclear air-Brayton systems by Co-Firing with hydrogen before the power turbine.
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Simple Power Cycles
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Chapter 1

Numerical-Analytical Analysis on

Manzanares Solar Power Plant

Prototype1

In this study an appropriate expression to estimate the output power of solar chim-

ney power plant systems (SCPPS) was considered. Recently several mathematical

models of SCPPS were derived, studied for a variety of boundary conditions, and

compared against CFD calculations. An important concern for modeling SCPPS is

the accuracy of the derived pressure drop and output power equation. To elucidate

the matter, axisymmetric CFD analysis was performed to model the solar chimney

power plant and calculate the output power for different available solar radiation.

1Originally published as: Fathi, Nima, Seyed Sobhan Aleyasin, and Peter Vorobieff. ”Numer-
ical–analytical assessment on Manzanares prototype.” Applied Thermal Engineering 102 (2016):
243-250.

2
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Both analytical and numerical results were compared against the available exper-

imental data from the historical Manzanares power plant. We also evaluated the

fidelity of the assumptions underlying the derivation and present the output power

characteristics of Manzanares prototype under a range of solar irradiation, mass

flow rate and collector efficiency. This research provides an approach to estimate

the output power with respect to available radiation to the collector .

Collector Chimney Pressure drop Modeling and simulation Analytical solution

Computational fluid dynamics

Nomenclature

V ariables

A cross-sectional area, m2

Ar cross-sectional area of the collector ground, m2

g acceleration due to gravity, m/s2

h height, m

ṁ air mass flow rate, kg/s

p pressure, N/m2

Ẇ flow power, W

q heat transfer per unit mass, J/kg

q′′ heat flux, W/m2

R air specific gas constant, J/kg.K

T temperature,K
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ρ density, kg/m3

u velocity, m/s

cp specific heat capacity, J/kg.K

Subscripts

i inlet

o outlet

c collector

t tower

m mean

∞ ambient air

turb turbine

atm atmospheric

Abbreviations

CFD computional Fluid Dynamics

EOS equation of state

SCPPS solar chimney power plant system

RHS right hand side

M&S modeling and simulation
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1.1 Introduction

Although the idea of the SCPPS can be traced to the early 20th century, practical

investigations of solar power plant systems started in the late 1970s, around the

time of conception and construction of the first prototype in Manzanares, Spain.

This solar power plant operated between 1982 and 1989 and the generated electric

power was used in the local electric network [1–3].

The basic SCPPS concept (Fig. 1.1) demonstrated in that facility is fairly striaght-

forward. Sunshine heats the air beneath a transparent roofed collector structure

surrounding the central base of a tall chimney. The hot air produces an updraft

flow in the chimney. The energy of this updraft flow is harvested with a turbine

in the chimney, producing electricity. Experiments with the prototype proved the

concept to be viable, and provided data used by a variety of later researchers.

A major motivation for subsequent studies lays in the need for reliable modeling

of the operation of a large-scale power plant. The Manzanares prototype had a

200 m tall chimney and a 40,000 m2 collector area. With respect to the distin-

guished rise of R&D budget on renewable energy [5], study and evaluation the

different aspects of SCPPS seem beneficial and vital. Proposals for economically

competitive SCPPS facilities usually feature chimneys on the scale of 1 km and

collectors with multiple square kilometer areas.

Padki and Sherif [6] used the results from the Manzanares prototype to extrapo-

late the data to large scale models for SCPPS. In 1991, Yan et al. [7] developed
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Figure 1.1: Schematic of SCPPS with the applied variables and subscripts in
the present analysis

an SCPPS model using a practical correlation. They introduced equations in-

cluding air velocity, air flow rate, output power, and thermofluid efficiency. Von

Backström and Fluri conducted a numerical study to determine the optimum ratio

of pressure drop of the turbine as a fraction of the available pressure difference

required to achieve the maximum power [8]. They noted that this ratio might

lead to overestimating the flow passage in the plant and also designing a turbine

without a sufficient stall margin. In other recent works, the SCPPS concept involv-

ing an inflatable tower was examined, with all parts of the power plant modeled

numerically [9–11].

To find the maximum power, different atmospheric pressure and temperature

boundary conditions were applied for various tower heights and atmospheric lapse

rates [12, 13]. Theoretical analysis to study the effect of pressure drop in the
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SCPPS turbine was performed by Koonsrisuk et al. [14]. The optimal pressure

drop ratio was found numerically and analytically by Xu et al., around 0.9 for the

Manzanares prototype. This inverstigation can be applied as an initial estimation

for various SCPPS turbines [15].

Earlier modeling efforts [9] showed a keen sensitivity of the predictions of SCPPS

output to boundary conditions, in particular, pressure. Numerical simulations re-

quire careful validation and verification, and for that, analytical models are indis-

pensable. A theoretical model was recently developed [16] to model the combined

performance of the solar collector, chimney, and turbine. Here we will examine

some of the assumptions and derivations in this model and present an alternative

formulation for the energy equation. We will perform M&S of the Manzanares

prototype and compare the computional results against the available experimen-

tal values and our analytical analysis data. This comparative study is carried out

for different solar radiation based on available experimental data.

1.2 Analytical Study

1.2.1 Collector

Solar Chimney Power Plants provide a reliable and conceptually straightforward

way of energy generation from the solar irradiation[14, 17]. A solar collector is the

main and only component of this power plant to accumulate the available solar

energy to heat up air in a greenhouse. The air escapes the collector through a
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tall chimney which connects the warm air flow of the collector with the cooler air

above the ground. The temperature difference induces the natural convection, and

turbine at the outlet of collector harvests the energy of the air flow. To model the

collector, the simplified one dimensional mathematical analysis was performed to

clarify the details. The analytical correlation will be applied later to compare the

CFD results against it. To derive the equations, we start from the collector. It is

assumed that the flow through the collector is one-dimensional, steady-state, and

compressible. Let us disregard the friction and assume the total heat from the solar

irradiation is absorbed within the air filling the collector. For this thermal-fluid

analysis, the mass conservation satisfies:

dA

A
+
dρ

ρ
+
du

u
= 0 (Continuity) (1.1)

Here A is the cross-sectional area of the collector that air goes through – A = 2πrhc

and dA = 2πrdhc.

Momentum equation is as follows:

dp+ ρudu = 0 (Momentum) (1.2)

Consider the energy balance equation and the equation of state as follows:

cpdT − dq + udu = 0 (Energy) (1.3)
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dp = d(ρRT ) (State) (1.4)

To find dp we can apply Eq. (1.2) and substitute du/u from the continuity equation,

Eq. (1.1).

dp = ρu2
(
dρ

ρ
+
dA

A

)
(1.5)

From the equation of state we can find dρ/ρ and substitute in Eq. (1.5),

dρ

ρ
=
dp

p
− dT

T
(1.6)

dp = ρu2
(
dp

p
− dT

T
+
dA

A

)
(1.7)

We can rewrite Eq. (1.7) as a function of T,A, u, p, ρ and ṁ, where ṁ = ρAu.

Also by substitution dT from the energy equation on the base of dq, cp and u, we

obtain

dp =
ṁ2

ρ

(
dA

A3
− dq − udu

A2Tcp
+

dp

A2p

)
(1.8)

For consistency with previous analyses, let us rewrite dq on the basis of heat flux,

available solar insolation to the air, per mass flow rate—dq = q′′dAr/ṁ where q

has the units of J/kg. Here Ar = πr2, therefore dAr = 2πrdr [14, 18]. Note that
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A = 2πrhc, where hc is the collector height (roof height) that was assumed to be

constant. By substituting Ar, dq and A in the second term on the RHS, we obtain

dp =
ṁ2

ρ

(
dA

A3
− q′′(2πr)dr

ṁ(2πrhc)2Tcp
+

udu

A2cpT
+

dp

A2p

)
(1.9)

We can rewrite equation (1.9) and substitute udu of the third term on the RHS

by applying momentum equation (1.2), udu = −dp/ρ and p = ρRT .

dp =
ṁ2

ρ

[
dA

A3
− q′′dr

2πṁrh2ccpT

] [
1− u2

T

(
1

R
− 1

cp

)]−1
(1.10)

Equation (1.10) is the exact solutions for dp for the one-dimensional frictionless

analysis of the collector. Since our fluid is air we can estimate cp and rewrite

Eq. (1.10).

dp ' ṁ2

ρ

(
dA

A3
− q′′dr

2πṁrh2ccpT

)(
1− 2.494u2

T

)−1
(1.11)

cp, q
′′ and T are considered approximately constant as well. The last term on the

RHS of (1.11) is close to unity within the range of velocities and temperatures

under consideration. Therefore by integrating between the inlet and outlet of the

collector without the last term of the RHS, pressure difference can be derived.

∫ c,o

c,i

dp '
∫ c,o

c,i

(
ṁ2dA

ρA3
− ṁq′′dr

2πrh2cρcpT

)
(1.12)
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pc,o − pc,i '
[
ṁ2

2ρm,c

(
1

A2
c,i

− 1

A2
c,o

)
+

q
′′
ṁ

2πh2ccpρm,cTm,c
ln
rc,i
rc,o

]
(1.13)

Equation (1.13) represents the pressure difference along the collector due to change

in the flow area (first term) and as a result of the solar radiation (second term).

Tm,c and ρm,c are considered as the average values of the inlet and outlet of the col-

lector. To consider the change of density due to temperature change, we consider

the Boussinesq approximation as follows,

ρc,i − ρc,o =
ρc,i(Tc,o − Tc,i)

Tc,i
(1.14)

In the collector, air temperarture rises due to the available radiation and ther-

fore density decreases proportionally with respect to the temperature that can be

calculated by (1.14). The nominal value of the temperature rise in Manzanares

SCPPS was 20K. Note that q
′′

is the avialable solar insolation to the air, means

due to the ground radiative facotrs and also heat losses from the collector q
′′

is less

than the ideal iradiance. We present our performance study due to the collector

efficiency to cover all these factors in the result and disscussion section.

1.2.2 Tower

The air flow in the chimney is considered as an adiabatic frictionless flow. The

conservation equations for the one-dimensional steady state flow in variable-area
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tower are similar to collector except having the gravity term in momentum and

energy equtions.

By following the same trend to find dp we get

dp =

[
−ρgdz +

ṁ2dA

ρA3
+ ρu2

(
dp

p
− dT

T

)]
(1.15)

By applying the energy equation, substitution dT = (−gdz − udu)/cp and dp =

−ρ(udu+ gdz), we can rewrite the above equation as

dp =

[
−ρgdz +

ṁ2dA

ρA3
+ ρu2

(
dp

p
− dp

ρcpT

)]
(1.16)

Also by considering the material properties of air the same way we did for the

collector part,

dp '
[
−ρgdz +

ṁ2dA

ρA3

] [
1− 2.494u2

T

]−1
(1.17)

The above equation is the exact closed form solution for dp at any point as the

function of variables ρ, T . The last term on the RHS can be assumed to equal

unity as we mentioned in the collector part. Let integrate between the inlet and

outlet tower area to find the pressure difference of the chimney as,

∫ t,o

t,i

dp '
∫ t,o

t,i

(
−ρgdz +

ṁ2dA

ρA3

)
(1.18)
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pt,o − pt,i ' −ρm,tght −
ṁ2

2ρm,t

(
1

A2
t,o

− 1

A2
t,i

)
(1.19)

Where ρm,t = (ρt,i + ρt,o)/2 and we can correlate the outlet tower pressure to the

atmospheric density and the inlet collector pressure for an adiabatic tower, pc,i =

pt,o + ρ∞ght.The air density change can be calculated by lapse rate temperature

change due to the height change–Tt,o = T∞ − ght/cp. Therefore by applying

equation (1.14) in the polytropic EOS we obtain,

pt,o = p∞(1− ght
cpT∞

)(
cp
R
) (1.20)

We calculate the denisty at the tower outlet by having the tower outlet pressure

from EOS. For an adibatic tower-collector connection, if we do not consider a

turbine (pressure change) in our model, we can assume ρt,i = ρc,o.

Also T∞ = Tc,i and we can rewrite equaiton (1.14) as follwos,

ρt,i = ρc,o = ρ∞(1 +
T∞ − Tc,o

T∞
) (1.21)

In Manzanares protoype the circular cross sectional area of the tower does not

change, therefore for the pressure difference at the tower we obtain,

pt,o − pt,i ' −ρm,tght (1.22)
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1.2.3 Turbine

The Manzanares SCPPS turbine was mounted freely from the collector on a steel

framework 9 m above ground level (see Fig 1.2). Four turbine blades are adjustable

according to the face velocity of the air in order to achieve an optimal pressure

drop across the turbine blades [1]. To calculate the output power, we can define the

power on the basis of the pressure difference at the turbine – where it is normally

utilized at the outlet of the collector and inlet of the tower. Change of the static

pressure converts into rotational mechanical work. The ideal available power from

the pressure difference is propotional to the mass flow rate and the pressure drop

at the turbine location.

Figure 1.2: Manzanares prototype turbine [4].

Ẇ ' ṁ(pc,o − pt,i)
ρturb

(1.23)
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For area the following equations is used, where b is an arbitrary positive real

constant.

A2
c,i = bA2

c,o, (1.24)

Let ρturb = (ρc,o + ρt,i)/2 and substitute equations pc,o and pt,i from (1.13) and

(1.22). Hence for the flow power by assuming pc,i = pt,o + ρ∞ght, we have

Ẇ ' ṁ

(ρc,o + ρt,i)/2

[
−ṁ2

2ρm,c

(
b− 1

bA2
c,o

)
+

q
′′
ṁ

2πh2ccpρm,cTm,c
ln
rc,i
rc,o

+

(ρ∞ − ρm,t)ght

] (1.25)

The first term on RHS of equation (1.25) presents the effect of the flow area change

and it reduces the available pressure difference with respect to the typical shape of

SCCPS. The second term represents the effect of the available solar radiation to the

collector and the third term calculates the stack effect with respect to the available

mean density difference along the tower and before the turbine. To calculate the

output power from the available pressure difference in a realistic form, we consider,

Pt = ηcẆ (1.26)
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Where ηc is the collector efficiency factor. Based on the 1982 experiments [1], the

reported value, 0.32, for the Manzanares prototype collector efficiency would be

considered in this analysis.

1.3 Numerical Analysis

To perform CFD analysis, the finite volume method was employed via ANSYS/FLU-

ENT M&S package. The air flow as an ideal gas under Boussinesq effect by solar

irradiation was simulated. In the present CFD analysis the mass flow rate, ob-

tained from the CFD results, along with other parameters were used to evaluate the

maximum mechanical power for each case. The flow of air in SCPPS was assumed

steady (in the average flow sense) and axisymmetric with respect to the chimney

centerline. The meshed SCPPS axisymmetric model is shown in Fig. 1.3 with

the details of applied boundary condition. ANSYS ICEM (Integrated Computer

Engineering and Manufacturing) CFD was employed to generate a quadrilateral

cell mesh. To perform the CFD simulation, the standard k− ε, which is classified

as a two-equation turbulence model, was applied. In this model, with respect

to the sensitivity of the pressure solver to the density change, the density of air

is calculated from the ideal gas equation. Stated differently, EOS was applied

to calculate the air density with respect to the updated values of the pressure

and temperature from the Navier Stokes equation results. The pressure boundary

conditions at the entrance of the collector and the outlet of the chimney were

assumed as atmospheric pressure and identical. The discretization accuracy of the
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CFD solver is second order upwind for the density and momentum equation. Semi-

implicit method for pressure-linked equations (SIMPLE) algorithm was applied as

the pressure-velocity coupling to solve the pressure field. The chimney wall and

the collector roof were considered adiabatic and the solar radiation was introduced

to the ground as a constant heat flux. The residual criteria for all equations were

set to be calculated and iterated not to exceed 10−6. The calculations were done

by using a 16-core, 32 GB RAM computer.

Figure 1.3: Computational domain and applied boundary conditions.

1.4 Results and Disscusion

To evaluate the derived analytical solution for the output power of SCPPS, the

available experimental data from Manzanares prototype was applied and extracted.

The measured updraft velocity of Manzanares power plant for 24 hours operation
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is substituted into the analytical solution (equation (1.26)) and compared against

the experimental output power from the turbine (Fig. 1.4). Figure 1.4 presents the

sixth order polynomial trend of data. Considering a constant collector efficiency

(ηc) as 0.32 for the whole 24-hour analysis, the total output power would be closer

against the experimental data for higher solar radiation. The initial difference

between the analytical and experimental values–light orange area (Fig. 1.4)– is

due to the minimum stack effect (chimney effect) by considering the minimum

reported measured velocity– 2 m/s during 12-1 am –flowing up to the chimney by

the height of 194.6 m. However, it was obtained from the experimental analyses

that the turbine has a minimum start up updraft velocity as 2.5 m/s and would

not rotate for low velocities. Based on reported values from the Manzanares pro-

totype [1] the maximum measured output power for 9m/s updraft velocity was

50kW–without any decimal precision. By imposing the same updraft velocity (9

m/s) at the turbine location, and applying the same collector efficiency (32%) and

loss factor (0.9) the analytical output power would be 51.26 kW .

To have the characteristics of the Manzanares prototype we study the sensitivity

of the analytical output power correlation to the mass flow rates. Therefore, the

effect of mass flow rate on each terms of the total pressure change, including,

inter alia, air flow geometry, solar radiation and stack effect would be observed.

We performed this sensitivity analysis for a range of solar irradiation versus mass

flow rate. It is observed that by increasing the mass flow rate the output power

increases as long as the stack effect dominated the negative pressure difference due

to the change of flow area. The dominant terms in the total pressure difference
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Figure 1.4: Analytical power results against measurement from Manzanares:
updraft velocity and power output for a typical day.

are the flow area change and the stack effect terms. Since the flow is well within

subsonic range, the inlet and outlet flow areas of the collector play the same role

as nozzles and the pressure change of the nozzle flow is negative. By increasing

the flow rate we reach to the theoretical maximum output power for each amount

of solar irradiation. However, after the maximum power the dominant term is the

negative pressure change due to the air flow area. Stated differently, after reaching

to the the maximum theoretical output power, the positive-pressure change which

rotates the turbine blade decreases by growing the pressure drop term due to the

nozzle effect (Fig. 1.5). As it was mentioned before and shown in figure 1.5, the

maximum power for the experimental velocity (9 m/s) is 51.2 kW . However, the

maximum theoretical power from the characteristics of Manzanares SCPPS for
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1000 (W/m2) solar irradiation is 51.8 kW . The output power characteristics with

respect to mass flow rate can be useful for design or rating step of SCCPS.

Figure 1.5: Analytical power results against mass flow rate for a range of
sollar irradiation.

To study the role of collector efficiency factor, we calculate the analytical output

power for the maximum reported solar irradiation as the operating reported case

for the output power of 50kW . Figure 1.6 depicts the logarithmic scale variation

of output power with respect to a rang of mass flow rate for different collector

efficiency factors. Collector efficiency factor varies from 0.1 to 1 and can be con-

sidered as the overall adjusted efficiency factor. The ideal (ηc = 1) maximum

output power for 1000 (W/m2) solar irradiation is 161.7 kW from the analytical

solution (Fig 1.6).
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Figure 1.6: Analytical power results against mass flow rate for different values
of collector efficiency.

To obtain the available power to rotate the turbine, the kinetic energy of the air

flow at the outlet of the collector was calculated. For each CFD analysis (Fig. 1.7),

the mass flow rate and the average density at the turbine location are gained

from the numerical simulation result and used to calculate the available kinetic

energy per time. The calculated available power for different solar irradiation are

compared against the experimental data and the analytical solution in two cases.

Analytic-EXP shows the power where the average velocity were obtained from

the available experimental data at the same amount of reported radiation. It is

needless to say that details of available experimental data are not clear enough

to report the data with all sources of uncertainty(Fig. 1.8). The reliability of

experimental data is suggested to measure for future works. CFD results were
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performed under the ideal assumption of having no heat loss from the tower or

collector. Also we imposed the available heat flux as a boundary condition. Stated

differently, in the CFD analysis we introduced the flow domain e.g. 1000 W/m2

where in the experiment the amount of reported velocity at 1000 W/m2 solar

radiation is lower because of the absoptivity factor of the collector ground. The

available power at the turbine location, CFD in Fig. 1.7, by using the CFD values

for density and velocity were calculated based on the rate of kinetic energy, 0.5ṁu2.

Two different ratios of the available kinetic energy at the turbine location are used

for SCCPS analysis. One is referred as Betz criterion or Betz limit which is 16/23

and was formulated in 1919. Betz criterion is the theoretical power fraction that

can be extracted from an ideal wind stream. The other one is 2/3 and were used

in several investigations. The CFD results that have been calculated by Betz

criterion and 2/3 are shown as CFD-Betz and CFD-2/3 respectively (Fig. 1.8). It

is shown as CFD-Betz The difference between the available power from simulation

results (CFD) and the experimental turbine power is due foremost to the turbine

efficiency and then having no heat loss in the CFD model.

1.5 Conclusion

We presented a combined numerical-analytical analysis for solar chimney power

plant, based on the Manzanares prototype. The harvestable power of Manzanares

power plant was investigated as the function of available solar irradiation and mass

flow rate. The CFD M&S was carried out. Also the one-dimensional analytical

analysis was done with attention to underlying assumptions and simplifications.
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Figure 1.7: Velocity contour plot (m/s) for different available solar heat flux
at the ground of collector, (a):200, (b):400, (c):600, (d):800, (e)1000 W/m2.

We compared the numerical results against the available limited raw experimental

data from the prototype and also showed the range of reliability of the analytical

solution. Where the inlet velocity values for analytical correlation were obtained
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Figure 1.8: Power vs solar irradiaiton.

from the experimental velocities we got higher available power than the output

turbine power. This difference increases for lower solar irradiation and mass flow

rate values due to the stack effect term in the analytical solution. That has

several reasons as, (a) The one dimensional analytical solution has several sim-

plifications, including treatment of average density and the heat flux term., (b)

It is very important to pick the right source to impose the values to the analyt-

ical correlation., (c) Available experimental data are not just limited, but also

not extensively characterized in terms of uncertainty and repeatablity, making

it difficult to produce error bars on experimental values for a prescribed level of

confidence. To present the volatility of the analytical correlation, we selected two
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different approaches to input values in this one-dimensional equation; I- Impos-

ing the experimental velocities and calculation densities with respect to average

temperature., II- Applying a range of mass flow rates to obtain the characteristics

of Manzanares prototype analytically. During the verification and validation pro-

cess, the modeler must ask two questions: Am I modeling the physics correctly?

and Am I modeling the correct physics? Comparison with analytical models is

important for answering both of these questions, and the only way to have them

well-posed is to have correct physics in the analytics.
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Chapter 2

Experimental-Computational

Analysis of Multi-inlet and

Conventional Collectors1

Solar chimney power plant systems (SCPPS) offer a simple and reliable way to

generate electricity using solar radiation to drive a flow of buoyant air. A typi-

cal SCPP setup includes a collector, a tower, and a turbine or several turbines.

Current SCPP designs have low thermal efficiency: only between 0.5% and 5%

of the incident solar energy is converted into electricity. Inefficiencies result par-

tially from limited mass flow rates through the tower. It is therefore desirable to

provide a new design for the collector to increase the inlet air mass flow rate. In

this paper, we present a double-inlet collector concept and results of numerical

1Originally to be published as: Fathi, Nima, Seyed Sobhan Aleyasin, Patrick Wayne, and
Peter Vorobieff. “Computational Assessment of Double-Inlet Collector in Solar Chimney Power
Plant Systems”, ASME Fluids Engineering Division Summer Meeting (FEDSM) Transaction,
2017.
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analysis to evaluate this design in terms of flow rate improvement. Computational

fluid dynamics (CFD) was utilized to perform the numerical modeling and simu-

lation (MS) by using a finite volume method package. The Manzanares prototype

(the only operational solar tower power plant with available published reports)

is selected to implement the double-inlet collector design and study its effect on

the power plant. Beside this case, we fabricated a 1/1000 scale model of the

Manzanares prototype which enables us to measure the field variables experimen-

tally. Validation analysis was performed to quantify the reliability of our numerical

model with respect to the available experimental data. We obtained a significant

increase (14%) in the available output power by using the double-inlet collector.

Nomenclature

V ariables

A cross-sectional area, m2

Ar cross-sectional area of the collector ground, m2

g acceleration due to gravity, m/s2

h height, m

ṁ air mass flow rate, kg/s

p pressure, N/m2

Ẇ flow power, W

q heat transfer per unit mass, J/kg

q′′ heat flux, W/m2
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R air specific gas constant, J/kg.K

T temperature,K

ρ density, kg/m3

u velocity, m/s

cp specific heat capacity, J/kg.K

D experimental data

S simulation result

Subscripts

i inlet

o outlet

c collector

t tower

m mean

∞ ambient air

turb turbine

atm atmospheric

Abbreviations

CFD computational fluid dynamics

EOS equation of state

IGV inlet guide vanes

M&S modeling and simulation
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PIV particle image velocimetry

RHS right hand side

SCPPS solar chimney power plant system

2.1 Introduction

Solar energy is one of the promising renewable energy sources, as the annual

amount of energy sufficient for the needs of our civilization is delivered to Earth

by the Sun in only one hour [1]. Therefore, developing new technologies which can

harvest solar energy efficiently is a prime importance. One of these technologies is

solar chimney power plants (SCPP) which not only provide electricity on a large

scale but also increase the chance of precipitation, even in low-humidity desert

regions, and support the agriculture around the SCPP. In a solar chimney plant,

the energy of buoyant hot air is converted to electrical energy. The plant consists

of a collector at the base covered with a transparent roof that collects the solar

radiation, heating the air inside and the ground underneath. In the center of the

collector, there is a tower, and a turbine is located at its base. The hot air flows

up the tower as a result of its buoyancy, and its energy is extracted and converted

to electricity with the turbine. A typical solar chimney is shown in Fig. 2.1 .

Since the efficiency of SCPP as sketched is relatively low, for commercial SCPP

the chimney and collector need to be built on a very large scale which results in
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Figure 2.1: Schematic of a solar chimney power plant

high capital cost. Therefore any improvement in efficiency that leads to fabri-

cation of smaller and less expensive SCPP can make the output electricity more

competitive. Toward this end, since the successful construction and operation of

Manzanares prototype in 1982 [2], considerable research efforts have been under-

taken to improve the efficiency of SCPP and advance our knowledge in this area.

An analytical and numerical study describes the influence of the chimney height,

collector area, and pressure drop factor at the turbine on the output power of

SCPP [3]. The output power was found to be proportional to the volume included

within the chimney height and the collector area. In an effort to improve the

efficiency of the collector and reduce its fabrication cost, Bonnelle [4] proposed a

collector with ribs containing their branching. This concept provides larger en-

trance area, smaller air velocity, and lower friction under a lower roof compared

with the conventional collector for the same flow rate. Bernardes et al. [5] ana-

lyzed the horizontal to vertical flow passage from the collector to the chimney for

various designs including straight, curved, slanted junctions, and a conic chimney.
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It was observed that the conic chimney had a higher mass flow rate and tempera-

ture at the outlet while the straight junction gave the smallest flow rate due to the

occurrence of recirculation. During night time, as there is no solar energy to heat

up the air, the only source of energy is the heated soil under the collector, which

may not be sufficient for effective operation of SCPP. To address this issue various

solutions such as inclusion of closed water-filled thermal storage system on the col-

lector ground [6], usage of waste heat from nuclear power plants [7], and inclusion

of an intermediate secondary roof under the first collector roof [8] have been sug-

gested. In the latter design, the collector is divided into a top and bottom section.

In the top section the air flows constantly, while in the bottom section the air flow

can be regulated to store the energy during the day and release it at night [8]. It

is widely known that, based on Betz’s law [9], the maximum possible power that

can be extracted by a free-standing wind turbine is limited to 59% of the kinetic

energy of the wind. For a ducted turbine (as in the SCPP), 75% to 85% of the

flow energy can be extracted, taking into account losses associated with conversion

from mechanical to electrical energy [10]. In other recent works, the SCPPS design

involving an inflatable tower was evaluated experimentally and numerically and

validation assessment was performed for a small prototype [11, 12]. Various tur-

bine configurations have been proposed to replace the conventional single vertical

axis turbine. The multiple vertical axis and the multiple horizontal axis turbine

configurations are among them [13, 14]. Fluri and von Backström [14] found that

the single vertical axis turbine had a slightly higher efficiency and energy yield

compared to the layouts with multiple axis turbines, as certain loss mechanisms

were not present in the former. However, studies revealed that the peak output
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torques were considerably lower in the configurations with multiple turbines which

may reduce the cost, particularly for the generators. In addition, the effects of

inlet guide vanes (IGV) and counter-rotating rotors on the performance of the tur-

bines have been studied [15, 16]. It was found that the counter-rotating turbines

without IGV had lower design efficiency but higher off-design performance over a

single-rotor turbine [15]. In this investigation, we propose a new conceptual design

of a double-inlet collector for SCPPS. We study the change of output power of the

power plant due to implementation of this design, and compare its performance

with that of a traditional collector.

2.2 Conceptual Design

Our idea is to consider more than one inlet for the SCPPS collector. This novel

design is a part of a pending patent [17]. Until now, none of the SCPPS collectors

have been built with more than one inlet. Having the secondary inlet can increase

the total inlet air mass flow rate which leads to a higher harvestable kinetic energy

for the turbine to produce electricity. Fig. 2.2 presents the traditional (case A)

and proposed double-inlet collector (case B) schematically.

2.3 Modeling and Simulation Approach

To evaluate the effect of having an extra inlet in the collector on the overall power

plant performance, we modeled case B using ANSYS modeling package based on
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Figure 2.2: Schematic case description, traditional collector (Case A), double-
inlet collector (Case B)

Manzanares prototype (Fig. 2.3). Numerical analysis was performed for both

cases A and B to compare the traditional collector with the double-inlet collector

for a range of solar radiation values, which is the available heat flux from the

collector ground to air in our model.

To model and simulate the turbulent air flow, k− ε model in the commercial flow

solver, ANSYS/FLUENT 17.1, was selected. Steady state axisymmetric compu-

tational domain was created (Fig. 2.4). The grid generation tool in ANSYS/-

Workbench was used to create the mesh in the fluid domain. An unstructured

mesh consisting of quadrilaterals cells was generated for the entire domain. With
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respect to the sensitivity of pressure value to the air density and buoyancy effect

in this model, density was calculated by applying equations of state (EOS).

Computational studies were performed on a 16-core AMD Opteron, 32 Gb Ram

workstation. The applied boundary conditions for this axisymmetric model are

shown in Fig. 4 as well. CFD calculations were performed with second order

formal accuracy for all field variables. The residual convergence tolerance was

set not to exceed 10−7. Residuals were observed decreasing gradually with each

iteration. The iteration error was calculated for the mass flow rate. In Eq. (2.1)

index i represent the ith iteration in the CFD steady state calculation.

eṁi
≡ |ṁconverged − ṁi

ṁconverged

|(2.1)

2.4 Analytical Approach

Recently comparative analytical modeling of a traditional collector of SCPP with

available experimental values was performed [18]. To calculate the pressure dif-

ference generated at the collector and tower, we used the modified version of

the above-mentioned analytical model. This analytical correlation uses a one-

dimensional approach to mass, momentum and energy conservation equations.

Air density was assumed to be related to pressure and temperature via EOS.
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Figure 2.3: Case B model details

2.4.1 Collector

Solar Chimney Power Plants provide a reliable and conceptually straightforward

way of energy generation from the solar irradiation[14, 17]. A solar collector is the

main and only component of this power plant to accumulate the available solar
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Figure 2.4: Computational domain of case B with the applied boundary con-
ditions

energy to heat up air in a greenhouse. The air escapes the collector through a

tall chimney which connects the warm air flow of the collector with the cooler air

above the ground. The temperature difference induces the natural convection, and

turbine at the outlet of collector harvests the energy of the air flow. To model the

collector, the simplified one dimensional mathematical analysis was performed to

clarify the details. The analytical correlation will be applied later to compare the

CFD results against it. To derive the equations, we start from the collector. It is

assumed that the flow through the collector is one-dimensional, steady-state, and

compressible. Let us disregard the friction and assume the total heat from the solar

irradiation is absorbed within the air filling the collector. For this thermal-fluid

analysis, the mass conservation satisfies:

dA

A
+
dρ

ρ
+
du

u
= 0 (Continuity) (2.2)
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.

dp+ ρudu = 0 (Momentum) (2.3)

cpdT − dq + udu = 0 (Energy) (2.4)

dp = d(ρRT ) (EOS) (2.5)

Let be the total mass flow rate combined from the first (ṁi1) and secondary inlet

(ṁi2) . The mass flow rate of the second inlet, ṁi2 , can be a function of the

atmospheric velocity boundary layer which is defined as,

ṁi2 = 2πr(hc,i2 − hc,i1)ui2 (2.6)

ui2 = uref (
hc,i2
href

)α (2.7)

where uref is the wind velocity measured at href which is considered as the refer-

ence wind velocity value, and α is the wind shear exponent that can be calculated

for small height differences as α = 1/ln(href/h). However, in our calculations

we considered the mass flow rate ratio, ṁi2/ṁi1 based on numerical results. The
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pressure drop correlations that were obtained for the collector and tower by con-

sidering the average value for cp of air, and considering the average dimensional

and field values for the collectori1 and collectori2 are as follows.

Collector pressure difference:

pc,o − pc,i '
[
ṁ2

2ρm,c

(
1

A2
c,i

− 1

A2
c,o

)
+

q
′′
ṁ

2πh2ccpρm,cTm,c
ln
rc,i
rc,o

]
(2.8)

Tower pressure difference for Manzanares case:

pt,o − pt,i ' −ρm,tght (2.9)

where ρm,c − ρm,t are calculated by the average density values of air at inlet and

outlet of collector and tower, by using Boussinesque approximation and lapse rate

temperature change respectively. The ideal available power for the turbine is

defined as

Ẇ ' ṁ(pc,o − pt,i)
ρturb

(2.10)

To calculate the turbine power for available pressure difference, the collector effi-

ciency ηc was considered in our calculation as 0.32 based on reported values from

Manzanares prototype.

Pt = ηcẆ (2.11)
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2.4.2 Experimental Prodecure

To have a better understanding of SCPPS, and also benchmark our numerical

results, an experimental study was conducted at a laboratory scale. Particle image

velocimetry (PIV) was used to visualize and measure the velocity flow field in

a small prototype (1/1000 scale of Manzanares prototype). The CFD analysis

was performed for the laboratory prototype as well, for both types of collectors,

traditional collector and the double-inlet collector. Fig. 2.5 shows the laboratory

experimental arrangement.

A sensitive hotplate (1% K) was used to create the temperature gradient under-

neath the collector plate (70C for this experiment). The collector roof in the

experimental model is height-adjustable via four aluminum legs attached to the

edge of the collector plate. Fig. 2.6 shows the experimental apparatus, including

the hot plate, chimney, camera, and laser and optical tools.

The flow field was illuminated with a Quantel Evergreen double-pulsed Nd:YAG

laser (532 nm), operating at a frequency of 15 Hz, and the laser plane was oriented

parallel to the collector, 3.96 mm above the hotplate. Images were taken using

a LaVision SCMOS four-megapixel camera, located 0.762 m directly above the

model. The entire setup including the hotplate, chimney, camera, and laser, were

enclosed in a cage made of PVC pipe and 3 mm thick plastic sheeting. This was

done to contain the glycol tracer particles in a large volume around the model.
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Figure 2.5: PIV SCPPS apparatus

2.5 Results and Disscusion

CFD simulations were performed for both cases A and B for a range of heat flux at

the collector ground. Steady state numerical calculation was performed for both

cases in an axisymmetric computational domain. To study the effect of available

heat flux from the collector ground to the air on different field variables including

temperature, density, pressure, and velocity, several calculations were performed

for solar heat flux values q” of 400-1000 Wm2 . All calculations were performed

with second-order formal accuracy for all field variables. As mentioned before,

for all mass, momentum and energy solutions, the residual convergence tolerance

was set not to exceed 10−7. As defined before, outlet mass flow rate is selected to

calculate the iteration error values. The maximum relative iteration error, eṁi
, is



Experimental-Computational Analysis of Multi-inlet and Conventional
Collectors 44

Figure 2.6: Collector and hot plate arrangement, two types of used collector
in the experimental analysis

8.210−7 %. To study field variables quantitatively in the domain of SCPPS and

perform post processing we obtained results in three regions (Fig. 2.7).

Air velocity in the collector is a function of its buoyancy and the geometry of

the tower/collector. The driven buoyant air rotates the turbine which, in the

majority of designs for SCPPS, is placed at the interface of the collector and

tower (Fig. 2.7). Buoyant driven air velocity was captured along the collector

from the spacing between two inlets until the axis of tower. In many articles, the

reported velocity values are not a function of radiation or available heat flux at

the collector. However, in our analysis the maximum velocity was obtained for
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Figure 2.7: Location of probes for post processing

1000 W/m2 and the minimum is for 400 W/m2 (Fig. 2.8).

As shown in Fig. 4.8, the air velocity increases along the collector until reaching

the chimney/tower interface. The maximum velocity is not at the axis due to the

curve at the interface of the collector/tower and change of the air flow direction.

However, along the tower the fully developed velocity is observed at a 20 m height

(Fig. 2.9). As shown in Fig. 2.9 maximum velocity in all velocity profiles at this

location for different heat flux values are located at the axis, r = 0.

As mentioned above, change of density plays a key role in this renewable power

plant system. The density distribution along the collector is presented in Fig.

2.10. Maximum density is at the inlet collector location and minimum density

occurs at the axis and the centerline of the collector. As it is apparent from Fig.

2.10, increasing in the heat flux leads to increase in the density variation along the
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Figure 2.8: Velocity distribution along the collector for different heat flux
values

collector. The evolution of pressure reduction due to density reduction is shown

in Fig. 2.11.

In simulations pressure gauges were set to zero, and we just observe the effect of

buoyancy effect to drive the flow, and have flow from upstream to downstream,

which is the collector center. The total pressure as the sum of dynamic and static

pressure is zero along the collector, leading to negative values for static pressure

in the plot. Comparing this simulation with reality, we must note that we are

ignoring the stack effect by setting the outlet pressure to zero as well.

Fig. 2.12 shows the temperature behavior along the collector probe line for

different heat flux values. The maximum temperature for each profile occurs at
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Figure 2.9: Velocity profile at 20 m of tower

the center zone of the collector: the bulk of air has achieved the maximum heat

from the ground by passing through the collector which leads to the occurrence of

the minimum density as shown in Fig. 2.10.

To calculate the available output power of SCPP, the velocity at the turbine lo-

cation was considered. As shown in Fig. 2.13, the velocity profile is not fully

developed yet. However, the maximum velocity occurs at the edge of turbine

blades. The maximum available power based on the kinetic energy of air flow is

0.5ṁu2. To have a more realistic approach we considered the reported turbine effi-

ciency (85%) and calculated 2/3 of the remained energy. In the case of an enclosed

turbine, it is a conservative estimate which can also be considered to account for

internal turbine conversion losses.
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Figure 2.10: Density distribution along the collector

The output power from case B was calculated from CFD results and analytical

correlations (Fig. 2.14). It appears that for double-inlet collector the output

power increases about 14% in comparison with single-inlet. As heat flux increases,

we observe reduction in power increase in case B (double-inlet collector) due to the

air back-flow/return from the collector to ambient condition. Return mass flow

increases after 800 W/m2 due to the greater temperature difference of air inside

of the collector close to the inlet zone and the ambient temperature.

It is obtained that the characteristics of double-inlet SCPPS is not the same as

single-inlet and back flow occurs for a lower heat flux. Analytical approach for case

B gives us higher power output due to ignoring the back-flow effect, and several

simplifications in this one-dimensional analysis, including using average values for
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Figure 2.11: Pressure evolution along the collector

density, temperature. Also in the analytical-correlation the friction is neglected

in the derived PDEs. However, we have considered the same collector efficiency

factor to have a more realistic approach in our analytical model. To evaluate our

numerical analysis more quantitatively, a small modular SCPPS was fabricated to

perform PIV measurements. Hot plate plays the same role as irradiated collector

ground which provides heat to the air and generates buoyancy-driven air flow. The

velocity field was evaluated and measured to calculate the total mass flow rate and

the updraft velocity. Mass flow rate and therefore average updraft velocity is the

system response quantity (SRQ) in our validation analysis. Several experiments

were performed for different cases; however, in this article we are presenting the

results for the single inlet collector validation metric analysis. Fig. 2.15 presents
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Figure 2.12: Temperature distribution along the collector

the region of interest to measure the velocity in the small SCPPS. Several simu-

lations were performed for this prototype similarly to the large-scale, Manzanares

system. The epistemic uncertainty of the applied grids was quantified by GCI

study as a part of our solution verification.

The iteration error was 100 times smaller than grid uncertainty and we did not

include them in our error uncertainty calculation. To perform validation, error

is defined as, E = S − D [19]. The experimental data was considered as the

reference of error. However, the uncertainty of error includes the uncertainty of

the simulation based on epistemic uncertainty observed by solution verification.

Validation model assessment was performed by using modified area validation

metric [20, 21].
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Figure 2.13: Velocity distribution at the turbine location

The cumulative and empirical probabilities of the system of response quantity from

experimental measurements and from simulation results were observed. The quan-

titative mismatch of cumulative distribution of experimental data and empirical

distribution function (EDF) of simulation results of SRQ, which called validation

metric area (d), were calculated. Fig. 2.16 is the EDF/CDF representation of

cumulative experimental and numerical results.

The colored areas are the mismatch of experimental and simulation cumulative

values. Red area presents the positive mismatch (d+) and blue area presents the

negative mismatch (d−) which is counted to calculate the model error uncertainty,

umodel. The validation standard uncertainty, uval, which is defined as the sum-

mation of all uncertainties as input uncertainties and experimental uncertainties.



Experimental-Computational Analysis of Multi-inlet and Conventional
Collectors 52

Figure 2.14: Output power for different cases

In our analysis, we have just considered umodel and did not have values for the

other uncertainties. Therefore, the validation standard uncertainty uval in our

simulation is the same as umodel. The validation metric which is E and uval can be

correlated by using a factor of safety and define an interval which uval falls in with

a defined confidence level. The chosen confidence level based on reported V&V 20

standards is 95%.

umodel = [S − Fsd−, S + Fsd
+] = [8.15, 10.3]mm/s (2.12)
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Figure 2.15: Experimental region of interest, blue Square (a) and averaged
velocity vector/contour plot of the area of interest (b)

2.6 Conclusion

Double-inlet collector design for SCPPS was presented and evaluated against the

traditional collector design. Computational analysis for different cases was con-

ducted to evaluate this idea. For Manzanares prototype applying double-inlet

collector design increases the overall efficiency up to 14%. One-dimensional ana-

lytical study for double-inlet collector also was conducted and compared against
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Figure 2.16: Cumulative probabarity of D and S, area metric validation rep-
resentation

the CFD results for traditional and the proposed design. In the analytical study

with respect to ignoring the backflow effect, the agreement of results decreases by

increasing the available heat flux. PIV analysis was performed to have a better un-

derstanding on SCPPS air flow for a smaller prototype. Validation metric study

was performed for this prototype to evaluate the fidelity our CFD model. The

validation standard uncertainty of model was obtained for the smaller prototype.
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Chapter 3

Inflatable Free-Standing Solar

Chimney Power Plants1

We propose a novel design for a solar updraft tower, wherein the chimney that

generates the updraft is a self-supporting, free-standing stack of hollow gas-filled

tori. Considerations for the design stabilizing the structure via a combination of

shape, overpressure, and buoyancy are presented. Filling the tori with air rather

than with a light gas may be advantageous for stability. The chimney shapes

are optimized for deformation under wind loading. We also present simple cost

calculations and results of CFD modeling to confirm the viability of the design.

Variables.

A cross-section of the torus exposed to the wind

Ac horizontal cross-sectional area of the chimney

1Originally published as: Putkaradze, Vakhtang, Peter Vorobieff, Andrea Mammoli, and
Nima Fathi. ”Inflatable free-standing flexible solar towers.” Solar Energy 98 (2013): 85-98.
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Cd drag coefficient of the torus

F force on the torus

f dimensional factor incorporating drag coefficient introduced in Eq. 7

g acceleration due to gravity

h vertical deformation of the torus

M molar mass

Nel estimate of turbine output power in solar chimney

ṁ mass flow rate of air through the chimney

p absolute excess pressure in the torus

P relative excess pressure in the torus

Pmax maximum turbine power

q major radius of torus

r minor radius of torus

R gas constant

s direction of the torque

S representative area due to torus deformation

T torque on the torus (Section 3.3); absolute temperature (Section 3.5)

U average wind velocity at a given altitude

ū average vertical velocity inside the chimney

V scaled wind force (Section 3.3)

V̇ volumetric flow rate (Section 3.5)

z altitude

∆H change in stagnation enthalpy
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∆PT total (inlet-to-exit) turbine pressure loss

ηtt turbine efficiency

µ relative deformation h/r

φ torus deflection angle

Subscripts

d downwind direction

k count referring to current torus in stack

u upwind direction

w due to wind

3.1 Introduction

Solar updraft towers (also known as solar chimneys) offer a simple and reliable way

of generating electricity from solar radiation [1]. For solar chimneys, the principle

of energy production is very simple: a solar collector heats up air in a collector

(greenhouse) occupying a large area. The air escapes the collector through a tall

(hundreds of meters) pipe, which connects the hot volume of the collector with the

cooler air above the ground. The temperature difference induces the convection,

and a turbine within the pipe harvests the energy of the updraft.

The advantages of the design are as follows:
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1. Unlike most other renewable-energy facilities, the huge thermal mass in-

volved in the design means very low variability of the output, with the pos-

sibility of continuous production of dispatchable energy.

2. The only components of the design requiring regular maintenance are the

generating turbines located at ground level.

3. The facility does not need a continued supply of water.

4. The facility can be built from a variety of cheap (and locally sourced) ma-

terials.

However, despite these unique advantages (especially compared with photovoltaic

or wind- turbine systems), there are also significant drawbacks. The key flaw of

this design is extremely low efficiency (0.5-5 %) [2]. One of the ways to improve

this efficiency would be by enhancing the thermodynamics of the updraft flow,

but that requires increasing the temperature differential between the greenhouse

on the bottom and the exhaust on top of the updraft tower, which would mean

building taller towers. Thus the present state of the art relies on a very tall free-

standing updraft chimney to drive the flow. In this paper, we are going to focus

on overcoming the difficulty of building the towers of desired height (hundreds

of meters) that are sufficiently structurally stable to reliably withstand wind and

other atmospheric effects.

An example of a state of the art updraft tower facility is the Jinshawan Tower

[3] currently under construction in north China’s Inner Mongolia Autonomous

Region. The operation of the first stage of the facility started in December 2010,

and the full height of the updraft tower will be about 900 m. One of the problems
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immediately apparent here is that the taller the tower, the better the efficiency,

however, the challenges of building a very tall structure soon begin to outweigh

the thermodynamic benefit. Moreover, the costs of erecting the tower soon begin

to dominate the overall cost of the facility and increase the levelized electricity

cost (LEC) from the tower. For a 100-MW plant, the cost of the chimney already

represents about half of the overall cost [4].

The first operational updraft tower prototype [4] built in Manzanares, Spain, had

the tower height of 195 meters, with thin iron sheet used for construction. The

main cause for the decommissioning of the facility in 1989 [5] was the failure of the

tower’s guy wires in a storm, which led to the tower collapse. Towers for proposed

full-scale facilities, such as the Ciudad Real Torre Solar in Spain [6, 7], are even

taller (750 m to 1500 m).

Because of the gigantic scale required for working solar updraft structures, any

mistakes in design and construction are likely to be very costly. Thus numerical

modeling of chimney/collector systems has attracted understandable recent at-

tention. A study by [8] produces good results in modeling the first operational

updraft tower mentioned above [4], using k − ε turbulence model. In this study,

the collector array, the chimney, and the turbine are all included in the model,

and the thermophysical properties of the soil under the collector are also taken

into account. The size of the structure and the number of factors that have to be

taken into consideration make this problem a challenge to model. Modelers are

somewhat helped by dimensional analysis of [9] that introduce similarity parame-

ters allowing to scale solar chimney models. The possibility of using a converging
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or diverging tower has also been studied numerically by [10], with results directly

pertinent to the discussion that follows in the present paper.

Here we propose a design that takes advantage of the attractive features of the

solar updraft tower as a concept, yet eliminates the most expensive component

of the construction, namely the chimney itself, by replacing it with a lightweight

self-supporting construction of stacked gas-filled toroidal shells which is designed

to withstand the forces of the wind by optimizing its flexing properties.

3.2 Conceptual design and theoretical consider-

ations

The goal of this paper is to discuss methods of replacing the steel updraft chimney

as the most costly and vulnerable part of the design. Several authors have tried

to solve this problem by proposing chimneys that implement buoyant elements in

their designs and are thus self-supported (see [11–13] or [14] for a recent review of

the literature and references). While these ideas are certainly appealing, they have

several drawbacks. First, the designs presented in these works repeat the straight

cylinder geometry of the steel chimneys; under the wind load, the deformation is

concentrated in the elements immediately adjacent to the ground. [14] suggests

using an accordion-like structure attaching the tower to the ground; however,

under repeated oscillations due to wind this structure will also experience a lot

of wear. In addition, the elastic response for the accordion structure is difficult

to predict and for very strong winds, the structure may exhibit some undesirable
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behavior. Second, due to constant wear of buoyancy-providing bladders due to the

deformations of the structure itself, light gas (helium) would leak from bladders,

and subsequent loss of buoyancy would present a problem.

All the designs described in earlier works lose stability if they experience loss of

helium and thus loss of buoyancy. The buoyancy of floating towers has to be

adjusted just right, so the stresses due to the lifting force on the attachment to

the ground do not exceed critical values, and at the same time high enough so that

the structures preserve the stability of the vertical state in the air. This would

require a constant and individually adjusted supply of helium to the bladders,

and since helium is becoming expensive, the cost of maintaining the buoyancy in

the long term use of these towers must be taken into account. There could be a

way to substitute hot air instead of helium, since hot air is in abundance in the

greenhouse, but on demand and consistent supply of hot air to the bladders also

presents a challenge and adds to the cost. Other lighter than air gases, such as

hydrogen and methane, are highly combustible and probably should be avoided

for these applications.

The idea of this paper is to suggest an air-filled tower that is self-supporting with

its shape optimized to take into account the wind pressures, as shown in Fig. 3.1.

The tower’s rigidity is designed in such a way that the deformation along the tower

is controlled. Moreover, since the tower is filled with air, maintaining the desir-

able pressure in each individual toroidal bladder can be achieved with a simple

arrangement of valves and pumps. Such a system could even accommodate the

winds that are strongly varying with elevation. Initially we considered toroidal
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bladders filled with a lighter-than-air gas, e.g., helium, to support the weight.

However, as it turns out, filling these bladders with air is not only highly econom-

ical, but allows to solve the issue of tower stability in a much more efficient way.

The shape of the tower, chosen to deform in the optimal fashion under the wind,

has the additional advantage that the load on each bladder from the weight of the

chimney above it is approximately proportional to the size of the bladder itself,

and thus extra pressure generated by the supporting weight in each bladder dis-

tributed over the respectively larger volumes of the bottom tori will be very small.

In addition, there are extra stability advantages achieved by filling the bladders

with air, as we discuss in details in Sec. 3.3.3. All the following considerations will

be carried out for air-filled bladders. While helium-filled bladders and a mixture

of air/hot air/helium/etc. can still be used, we believe that the air-based design

is the simplest, the most economical, and the most advantageous for stability.

The toroidal bladder may have a rigid structural frame (like a zeppelin) or be

semi-rigid (like a blimp). It may be possible to deflate and secure the bladder

in the case of extreme weather events. The largest helium-filled airships of the

1930s (USS Acron and Macon) were 240 meters long. A 1000-m tall tower would

require merely quadrupling this size, which will be greatly aided both by seventy

years of advances in the materials science and by the fact that the lift of the tower

would merely have to match its own weight. However, from the point of view of

both strength and reliability, as well as stiffness, a design with multiple buoyant

compartments (toroidal in shape) is even more attractive (Fig. 3.1). The buoyant

gas can be helium (considered in the following section) or even hot air, with a
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Figure 3.1: Schematic of a solar updraft tower facility with a chimney com-
prised of toroidal bladders.

possibility of using solar-heating for the latter.

There are different ways to optimize the design of the solar chimney itself. It is

clear that the main obstacle in designing tall towers is presented by the forces of

wind introducing transversal stresses to the construction. These considerations

have provided a lot of difficulties for the designers of rigid tall structures. Per-

haps the most famous example is provided by the celebrated Eiffel tower. To our

knowledge, the most detailed and historically accurate paper [15] explores some of

the history of the tower, and derives the solution for the tower’s shape based on

a careful analysis of Eiffel’s own ideas. We will briefly mention the results of that

paper here, as it is of relevance to our discussions.

Eiffel’s considerations, put in modern scientific language, can be summarized as

follows. Consider an arbitrary cross-section of the tower perpendicular to its axis.

There are support forces acting tangentially to the outer shape, generated by the

support beams of each of the tower’s elements. These forces should pass exactly

through the application point of the force of wind resistance of the part above
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that cross-section. That condition eliminates the need of strong diagonal support

throughout the tower, thus radically reducing the weight and cost of the tower,

and make it more aesthetically appealing by giving it an “airy” look that the

Eiffel tower is now renowned for. A nonlinear integro-differential equation for the

tower can be derived starting with these arguments, and making some assumptions

for the force of wind on an infinitesimal tower element. If it is assumed that

the velocity of the wind is constant with height, and the force on an element is

proportional to its area, then the solution of this integro-differential equation for

the tower shape is exponential. As it turns out, Eiffel was also worried that the

coefficient of wind resistance changes from the bottom elements to the top elements

of the tower, so to enhance the tower stability, the design eventually included one

exponential function at the bottom part of the tower, and another one at the top

part of the tower.

Thus, in some sense, the exponential shape is optimal for rigid structures, as

it minimizes the torques acting on a given cross-section. Assuming exponential

shape is also a possibility for the solar updraft towers. Eiffel’s original design

did not take wind loading into consideration. Had a realistic wind-loading profile

(unknown during the time of the conception and construction of Eiffel’s tower)

been added to his considerations, the shape of the tower would have been a bit

different [16]. However, Eiffel’s assertion that his tower profile conforms to the

moment distribution due to wind loading is, interestingly enough, proven correct.

These advantages of the exponential profile for rigid structures notwithstanding,

as the tower in our design is allowed to flex freely, it is worthwhile to explore
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other possibilities for its shape. The main difference of our flexible tower and rigid

structures is that some flex is not detrimental to our tower’s performance; however,

a “break” (i.e. a sharp deformation blocking the air flow) in the tower would close

the air flow and prevent the tower from operating. Also, a tower which is plagued

by consistent breakage of this kind under the wind will wear out prematurely.

Thus, the goal of designing the tower structure is to distribute deformations, in

some sense, equally along the tower. We will make this statement more precise in

the following sections.

3.3 Optimization strategy: prescribed deforma-

tion design

3.3.1 Formal problem set-up

Let us now consider a more detailed model and try to eliminate the “break” (i.e., a

sharp bend forcing flow blockage) in the tower under the wind force by distributing

deformations equally (in some sense) along the tower. To achieve that, we will need

to derive a model for deformations. As it turns out, since the tower is assumed

to be built out of tori, the contact forces are non-linear, and cannot be linearized

by any method. Therefore, the model is radically different from that of a tower

that can be modeled as a continuous structure, and Eiffel’s considerations do not

apply here.
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The force between two tori Let us consider two tori in contact, for example,

the tori numbered k and k+ 1. These tori have small radii rk and rk+1 in contact

correspondingly. Let hk and hk+1 be the maximum normal deformations of the

k-th and k + 1-st torus. Assume that the excessive pressure inside these tori is pk

and pk+1 and the deformations are small, so the total volume and pressure change

of each torus is negligible. To the first approximation, one can assume that the

area changes linearly away from the maximum contact.

The typical width of the contact area of torus k and k + 1 on the side of k-th

torus is given by
√

2rkhk. The total area of the shaded, sickle-like contact area

for the torus k, as illustrated in Fig. 3.2, can be estimated by multiplying half of

the perimeter of k-th torus exposed to the deformation πqk by the typical contact

width
√
rkhk (ignoring the pre-factor, see below), to give

Sk ' πqk
√
rkhk . (3.1)

Note that this is simply an estimate, the detailed dimensions of sickle-like shape

depending on many factors. For example, the way adjacent tori are attached to

each other and whether vertical gaps between tori are allowed in the upwind direc-

tion will influence the dimensionless pre factor in that expression. However, the

important feature is the square root singularity, which will be discussed immedi-

ately below.

Technically, there is a factor of an order 1 in Eq. (3.1) that takes into account

unequal forces along the torus: they are higher at the maximum deformation
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point and diminish away from it, resulting in the sickle-like shape of deforma-

tion as shown in Fig. 3.2. This pre-factor also incorporates
√

2 from the typical

width of the sickle-like area. However, this pre-factor can be incorporated into the

dimensionless parameter V introduced below

Suppose we define the tilt of the k-th torus with respect to the vertical to be φk.

A sketch of the tori in contact is shown in Fig. 3.2. Then, in the most basic

approximation, assuming the tori were in contact initially, the deformation of the

torus at contact is computed by the change of coordinates of the torus and its

neighbors. Since the deformations are caused by the wind, we will assume that

the wind direction is from the right, and denote the variables as being “upwind”

(subscript u) and “downwind” (subscript d). Assuming that the angle is computed

as positive counter-clockwise and remains small, the deformations are given by the

formulas:

hk,u = |qkφk − qk−1φk−1| , hk,d = |qk+1φk+1 − qkφk| . (3.2)

Notice that hk+1,u = hk,d, coming from the fact that the tori are attached so they

keep continuous, persistent contact throughout their perimeter at all times. If

one connects these tori with, for example, elastic springs, that formula would not

be accurate. The deformation hk,u (and similarly hk,d) consists of two parts: the

positive part contributed by the tilt of the k-th torus, assuming the positive angle is

measured counterclockwise, and negative shift of the k− 1-st torus. The absolute

value sign accounts for cases when the deformation happens on the upwind or
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Figure 3.2: Tori k − 1, k and k + 1 in contact. Top left: front (windward)
view. The toroidal cross-section (area Ak) exposed to the wind is a combination
of a rectangle and two half-circles. Bottom left: top view. The contact area Sk
between two tori caused by the wind deformation is shown. Right: side view.

downwind part of the tower. For static configurations considered in this paper,

the compressed area is always on the downwind side. However, the absolute value

in (3.2) becomes important for modeling the dynamics of the tower, which will be

considered in future works.

Equilibrium conditions The net torque acting on the k-th torus computed

with respect to its center is thus

Tk = qk×Fk, where the applied force Fk is computed from Fk = Skpk, the deformed

area times excessive pressure in the k-th torus. From Eq. (3.1), we obtain

Tk = qkpk · πqk ·
(
sk

√
2rk|hk,d| − sk+1

√
2rk|hk,u|

)
. (3.3)

The sign convention assumes that the downwind part of the deformation generates

clockwise torque, as shown in Fig. 3.3, taken with the positive sign. Here pk is

the excess pressure in the k-th torus. The factors sk = sign(φk − φk−1) define the

direction of the torque. Indeed, if the local relative tilt of the tower changes the
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direction, the contact area shifts from the upwind to downwind part of the torus,

i.e. the darkened sickle-like contact shape on the left of Fig. 3.2 abruptly shifts

to the other side of the torus, contributing to the change of sign in the torque

expression Tk. For steady states of equally pressurized tori (pk = P =const) that

we considered below, the angles φk can be assumed to be monotonically increasing,

so sk = 1. However, these coefficients will become important for the questions of

dynamics and control of the tower, which we will address in future works.

This torque defined by Eq. (3.3) has to balance the torque due to the wind acting

on all the tori above the k-th torus. The cross-section of the torus exposed to the

wind is

Ak = rk(πrk + 2qk) cosφk. Then, the magnitude of the force on the i-th element

is computed as

Fi = CdU
2
i Ai cosφi ' CdU

2
i ri
(
πri + 2qi

)
cosφi , (3.4)

where Ui is the average wind velocity acting at the elevation zk and, correspond-

ingly, Ri is the Reynolds number of the i-th torus. Here, Cd is, for simplicity,

assumed to be the drag coefficient of a single torus which is typically of order 1 for

large values of properly defined Reynolds numbers. We can define, for example,

Ri = Ui
√
qiri/ν, although other definitions of Reynolds number are possible as

well. Then the torque due to wind resistance (as denoted by subscript w) above

the k-th torus is

Tk,w =
N∑

i=k+1

(
zi − zk

)
Fi , (3.5)
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Figure 3.3: An illustration of torque balance on the flexible tower.

and the condition for the equilibrium is simply Tk,w = Tk for each k, where Tk

is given by Eq. (3.3) and Tk,w by Eq. (3.5). More precisely, we get a system of

coupled, nonlinear difference equations for φk as follows:

pkπq
2
k

(
sk
√

2rk|qkφk − qk−1φk−1| − sk+1

√
2rk|qk+1φk+1 − qkφk|

)
=

N∑
i=k+1

CdU
2
i ri
(
πri + 2qi

)
cosφk

(
zi − zk

)
. (3.6)

Note that our equations are invariant with respect to rotations about the vertical

axis z, but not with respect to horizontal axes (x, y). However, we do not think that

this symmetry must be enforced. The strong winds that may threaten the structure

normally blow in the horizontal direction only (it is highly unusual to have a

vertical or inclined wind, although there are rare exceptions). In addition, the

bottom torus is fixed to be horizontal, so the z-direction is truly special. A reader

will notice that we have computed all the deformations by projecting the boundary

of the tori onto the z-axis, see Eq. (3.2). A more detailed deformation estimate
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based on the Euclidian differences between the tori boundaries could be derived,

but this would make the solutions appreciably more complicated (although still

attainable). Thus, we believe that our solution represents a sufficiently accurate

description of the tower design under the constraints as described here.

It is worth noticing that given the geometry of the tower, all the angles can be

found in a recursive manner. While that solution may be interesting for applica-

tions, we will proceed in a different way. We will find the geometry of the tori

and corresponding shapes of the tower that, in some sense, optimize deformations

along the tower for uniform winds.

It is also worth noticing the singular nature of Eq. (3.6) when the arguments in

the square roots tend to zero. It may seem like these forces are singular when no

deformations are present and thus must be avoided, for example, by regularizing

this force and taking into account small deformations caused by the static weight of

the tori at rest. This indeed will make the reaction forces linear for small angles and

square root like for large angles. However, in our opinion, dealing with the square

roots is advantageous. First, for any reasonable wind speeds, the deformations will

be described by the square root, rather than the small deformation regularizations,

so the square root is truly physical. Second, and more important, this singularity

is in restoring force, which means that the restoring force is faster than any linear

force could have been, and thus the system is, loosely speaking, more than linearly

stable. There is a large body of literature dedicated to the dynamics of chains with

singular forces of this type, called Hertzian-type chains, see for example [17, 18].
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These works show that the singularities of this type are actually advantageous, in

addition to being scientifically interesting.

3.3.2 Analytic solution for tower shape

The system of difference equations (3.6), in general, cannot be solved analytically.

However, an explicit solution can be found in a particular case of φk being small, so

cosφk ' 1. This is true even for rather large values of deflection from the vertical,

for example, if φ = π/6, then cosφ ' 0.86 which is still acceptable. In principle,

this analytic solution can be found for any function C(ξ) and any velocity profile

U(ξ). However, to keep the discussion concise, we shall assume, just like it was

done in Eiffel’s considerations, that the force exerted by the wind per unit area is

constant. That assumption is not essential, but it is commonly used and it does

make the formulas substantially simpler. Thus, for the torque balance, we posit

pkπq
2
k

(
sk
√

2rk|Qk+1| − sk
√

2rk|Qk|
)

= f
N∑

i=k+1

ri
(
πri + qi

)(
zi − zk

)
= Tk,w , (3.7)

where for convenience we have called

Qk = qkφk − qk−1φk−1 , k > 1 . (3.8)

Let us rewrite this equation as

√
2rk|Qk+1|+

√
2rk|Qk| = αk =

Tk,w
pkπq2k

(3.9)
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If one assumes free boundary conditions QN = 0 on the top, where k = N , then

starting at k = N − 1 and computing k = N − 2, k = N − 3, etc., we find the

exact solution of Eq. (3.9) as

QN = 0√
2rN−1QN−1 = αN−1√
2rN−2QN−2 = αN−2 − αN−1√
2rN−3QN−3 = αN−3 − αN−2 + αN−1 (3.10)

. . .√
2r2Q2 = α2 − α3 + α4 − α5 + . . .

Since Qk is only defined for k > 2, there is no equation for Q1. This, in turn, gives

values of Qk explicitly as

QN = 0

QN−1 =
1

2rN−1
α2
N−1

QN−2 =
1

2rN−2

(
αN−2 − αN−1

)2
QN−3 =

1

2rN−3

(
αN−3 − αN−2 + αN−1

)2
(3.11)

. . . (3.12)

Q2 =
1

2r2

(
α2 − α3 + α4 − α5 + . . .

)2
. (3.13)

Thus, the values of Qk can be computed analytically for every set of torque values

Tk,w generated by the wind. Once the values of Qk are found, we can find the
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angles φk from Eq. (3.8). This time, we need to start from the bottom, at k = 0,

and utilize the boundary condition that the first torus remains fixed, i.e. φ1 = 0.

From Eq. (3.8), we get, iteratively:

φ2 =
1

q2
Q2

φk =
1

qk

(
Qk − qk−1φk−1

)
, k = 3, . . . N. (3.14)

Solution (3.11,3.14) is valid for an arbitrary set of radii qk and rk and applied wind

forces, no optimization procedure has been undertaken yet. Different conditions

can be imposed on the optimization, and the analytic solution we have derived here

allows for a quick and efficient tower design. As an example, let us demonstrate

how to optimize the tower in a specific case of practical importance for the solar

updraft tower.

Under the influence of strong winds, the tower will deform according to Eq. (3.6).

While deformation, even a large one, may be acceptable in a flexible structure,

we want to enforce the uniformity of this deformation along the tower. More

precisely, we would like to avoid the situations when the tower“breaks” (kinks) at

some point, restricting the air flow and rendering our design inoperative. Thus, in

what follows, we consider optimizing the tower design so there is as little chance

as possible for the obstruction of the air flow inside the tower to occur. As one will

see below, the optimization procedure is not unique. In the rest of the paper, we

shall assume that the chance of obstruction is minimized if the following condition

is enforced:

The vertical compression of any torus caused by the wind has to be a fraction µ of
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the radius of that torus, with µ being the same for all tori. This way, the relative

deformation caused by the wind is equally distributed along the tower and makes

it less likely for the air flow in the tower to be blocked.

This condition, expressed in formulas, enforces hk = µrk, where hk is both the

upwind and downwind parts defined by Eq. (3.2). Let us for convenience non-

dimensionalize the excess pressure pk in each torus using, e.g., the atmospheric

pressure p0, so that Pk = pk/p0. Thus Eq. (3.6) now defines a set of conditions for

qi as follows:

Pkπq
2
kp0
√

2µ
(
rk−rk+1

)
= f

N∑
i=k+1

ri
(
πri+2qi

)(
zi−zk

)
, k = 1, . . . N −1 (3.15)

Since f also has units of pressure, we can set

µ =
1

2

(V f
p0

)2
, V dimensionless , (3.16)

so that the constant V is the sole dimensionless dynamic parameter containing the

information about loading due to the wind and reaction forces.

The numerical value of the parameter V for design of a particular tower should

be chosen in such a way that for typical winds in the area the tower should be

fully operational. For example, the value V = 2000 that we chose will facilitate

continuous operation for sustained winds on the order of 10 m/s. If stronger

winds are anticipated, the tower should be simply deflated. In our opinion, it does

not make sense to plan for uncommon, extremely high, hurricane-strength winds

(say, 35 m/s and above), as this will lead to small values of parameter V and,



Inflatable Free-Standing Solar Chimney Power Plants 80

correspondingly, to a tower which is very inefficient for energy production due to

severe constriction on the top.

With this convenient rescaling using V , Eq. (3.15) becomes:

V Pkπq
2
k

(
rk − rk+1

)
=

N∑
i=k+1

ri
(
πri + 2qi

)(
zi − zk

)
, k = 1, . . . N − 1 . (3.17)

The optimization proceeds as follows:

1. Specify the desired geometry of the tori, which is obtained from either engi-

neering or economy reasons. We shall perform computations for two partic-

ular examples: a) all tori are the same small radius, rk = R, and b) all tori

are similar in shape, so rk/qk =const.

2. Specify the geometry of the top torus only, i.e., qN = qT . This scale is

normally determined from engineering considerations, such as the power of

the turbine and the cost of the apparatus.

3. One can further adjust excessive pressures Pk to improve the flow of air

through the tower by changing its shape, for example, increase the diameter

of the upper tori. Generally, higher pressures Pk lead to larger diameters on

top and smaller on the bottom. Thus, we shall assume that Pk are chosen

to be maximum possible for each torus, limited by the fabric strength, and

assume Pk = P for all k in what follows. 2

4. Using typical wind for the area, estimate the parameter V in (3.17).

2See also (3.20) using pk to control the dynamics
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5. Solve for tower shape, i.e. determine qN−1, qN−2 etc. recursively from (3.17).

Optimization procedure I Let us first illustrate the results of the optimiza-

tion procedure when for all rk being the same, rk = R for k = 1, . . . , N .

We shall denote this solutions as ”fixed-height” design. The advantage of this

procedure is that the shape qk can be computed explicitly if we define the top

torus’ geometry, i.e. qN and rN = R.

This equation can be solved by specifying the scale, let us say qN = qT – the radius

of the top torus – and proceeding to qN−1, qN−2 and so on until we reach q1. Once

we obtain the sequence of radii qN , qN−1, . . . , we can choose an arbitrary part of

this sequence and it will be satisfying the optimization condition as well. We use

that fact to remove the expanding part of the tower developing for the step from

N to N − 1 unless the constant V is chosen to have a particular value.

For this calculation, we assume that all zi to be equally spaced, so that zi −

zk = H(i − k). We shall also assume that all the tori are inflated to the same

pressure Pk = P = 1, meaning the excessive pressure in each torus is equal to

the atmospheric pressure. In Fig. 3.4, we present a tower shape obtained from

Eq. (3.17).

It is also interesting to make a note about the connection between the towers

presented here and Eiffel’s idea, leading to exponentially decreasing width of the

tower versus height. In our case, the dependence is, in general, not exponen-

tial. For some designs when Rk is a certain power of qk, the shape has the form

qk ∼ f(k) exp(−γk) where f(k) is a slowly varying (algebraic) function of k, and
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Figure 3.4: Left: solar tower computed from Eq. (3.17) with V = 2000. The
radius of the bottom torus is roughly 200 m, top torus 10.5 m, the tower height
is 800 m and the inner diameter of each torus is 10 m (leading to a rather severe
constriction on top). Right: the same solar tower with the relative maximum
deformation δRk for each torus being 1% of the smaller radius Rk = R. Since
the radius qk of the tower is smaller at top, and Rk = R =const, the tilt

(arctan(hk/qk)) is correspondingly larger for the top tori.

γ is a parameter depending on V and P . For Rk = R = const, the dependence

of the tower width with height is approximately quadratic. It is interesting that

some analogues with Eiffel’s ideas persist here, radically different physics notwith-

standing. This is probably the best testament to Eiffel as a modern visionary,

whose ideas reach far beyond his time.

Optimization procedure II Let us now turn to the tower design using similar

tori, when rk = αqk with α being a given number, common for all tori. Such a

selection means that all the tori are similar in shape, but vary in size.
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We shall call this ”proportional” design. Considering qk as the unknown variable

in (3.17) gives an implicit equation for qk as a function of qk+1:

V Pkπαq
2
k

(
qk − qk+1

)
=

N∑
i=k+1

riqi
(
απ + 1

)(
zi − zk

)
, k = 1, . . . N − 1 . (3.18)

with

zk+1 − zk = 2rk = 2αqk . (3.19)

Equations (3.18) and (3.19) must be solved simultaneously, as coupled implicit

equations. Starting with qN := qT as before, and choosing, for example, zN = 0,

we can find qN−1 and zN−1, followed by qN−2 and zN−2 and all the way to q1 and

z1. Since zk only enter the equations in a difference with other zk, we can choose

z1 = 0 by a simple shift. In Fig. 3.5, we show the results of simulations with

V = 2000 and α = 0.2. We also show the tower deformed under the wind force.

It is clear that such a procedure is advantageous to the optimization procedure

defined in Fig. 3.4, as the constriction of the tower is much less severe at the top.

The proportional tower design is clearly advantageous over explicit designs: for the

same values of the parameter V , corresponding to the same wind speed tolerances,

the proportional tower design is much less restrictive with regard to the air flow

inside the tower. Conversely, had we taken the tower deigns obtained by the fixed-

heigh and proportional methods with similar levels of internal flow constriction,

the fixed-height design would have had considerably less tolerance to wind. The

superior performance of the proportional design will also be demonstrated below

in the analysis of Section 3.5.
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Figure 3.5: Left: solar tower computed from Eq. (3.18) and (3.19) with V =
2000. The ratio of smaller to larger radii of all tori is assumed to be 0.1. The
radius of the top torus is 50 m, the radius of the bottom torus is 88.4 m. Right:

the same solar tower with the relative tilt for each torus being 1% .

3.3.3 Control of tower deformation using adjustable air

pressure

The calculations we have done in this paper so far were based on rather simple

and crude estimates of the wind forces for each individual bladder. However, it is

certainly true that the wind resistance is far more complex than we have assumed

here, so pre-inflating each bladder to the computed pressure will not produce ex-

actly the desired deformation profile in practice. This problem can be dealt with by

controlling the pressure in each bladder in real time, using the deformation of the
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tower as a guide. This procedure can also accommodate arbitrary change of wind

speed away from the surface, thus adding robustness to the tower construction.

Consider, for the moment, the idealized situation where all the forces on each

bladder are known, and we need to compute the pressures Pk yielding a given

deformation profile, namely, the set of deformation angles φk. This problem can be

solved exactly even in the more complex formulation of Eq. (3.6), as the left-hand

side of the equation is proportional to pk, and the right-hand side is independent

of pk, so the solution is computed simply as

pk =

∑N
i=k+1

(
zk − zi)Fi

πq2k
(
sk
√

2rk|qkφk − qk−1φk−1| − sk+1

√
2rk|qk+1φk+1 − qkφk|

) . (3.20)

This solution is simple, but of course too idealized. In reality, the forces on each

bladder are not known. However, the deformations of the tower can be measured

in real time. This can be accomplished by either scattering a light from small

reflective elements attached on the outside of the tower, analyzing tower shapes

from on-site visual observations, installing small beacons (possibly including GPS

units) along the tower, etc. Thus, if we consider φk to be known from observation,

and also pk known from valve and pressure sensors, then from the equilibrium

conditions (Eq. (3.6)) we can determine Fi, i = 1, . . . , N by solving a linear system.

Once Fi are known, we can solve Eq. (3.20) to determine the pressures necessary to

equilibrate the tower to the desired configuration. The pressures in each bladder

have to be adjusted accordingly. Unfortunately, this will alter the shape of the

tower and thus change all Fi, and the process would need to be repeated. Luckily,

the procedure converges, so the desired configuration can be reached, provided
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that the time necessary to adjust the pressures in the bladders is much smaller

than the typical time of the wind change.

3.3.4 Deformations of bladders due to the supporting weight

One may wonder whether the tower will be able to support its own weight, since it

is made out of elements that are heavier than air, and overpressure in the bladders

increases their mass. That would certainly be a problem with the cylindrical tower,

which will need rather a high overpressure to keep it upright and stable. However,

remember that the cross-section of the tower and thus the weight of each torus is

decreasing rapidly with height. It is most convenient to illustrate this for the case

of an exponential tower. In that case, the weight of all the bladders, including

extra air, above a given level is always roughly equal to the fraction of the weight

of the bladder itself. This can be seen as follows. Let us assume that the mass

of the bottom bladder is M0. Then, the mass of the k-th bladder roughly equals

qkM0 with 0 < q < 1, up to algebraic corrections in k (such as k2) which grow

much slower than qk. Then the mass of all the bladders above the k-th bladder is

N∑
i=1

Mi =
N∑
i=1

qiM0 = qk+1M0
1− qN+1

1− q
' q

1− q
Mk . (3.21)

Since the radius of the bladder also decreases exponentially with k, the larger

bladders in the bottom will have proportionally more area to support the extra

weight. This translates into roughly equal deformation relative to the bladder’s

size.
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A more precise calculation for the shapes shown in Fig. 3.4 gives the relative

deformation of each bladder in the inflated state to be about 1% of the radius of

each bladder, for the conditions used in the computations for these figures, and

correspondingly produces no appreciable change in the pressure. Thus, the towers

will have no difficulty supporting their own weight.

The heavier-than-air design of the towers has additional effects on the stability:

1. As we discussed above, the use of the ambient air for inflation radically

simplifies addition of air into the towers. The tower can be built to remedy

small leaks appearing in bladders with a pump and valve system.

2. The use of ambient air also allows additional control of the tower rigidity by

inflating and deflating each individual bladder.

3. Due to a very large support system and optimized wind torque application,

the tipping of the tower is unlikely, and the base of the tower will not detach

from the ground even under strong wind loading.

4. Should one of the bladders develop leaks too strong for the pumps to com-

pensate for, it can be simply deflated. The tower’s center of mass, as well

as the center of torque application, will move downward, and the tower will

remain stable. This will allow the tower to operate until necessary repairs

are ready to be made.

5. Because of the use of the ambient air, should repairs be needed, e.g. to repair

a leaking bladder, all the tori below it can be deflated and then re-inflated

again, making it possible to conduct all repairs at or near ground level. If
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the tower is built in an area prone to excessively strong winds exceeding

design tolerances, due to e.g. hurricanes or tornadoes, then the tower can

be deflated when such an inclement weather is approaching and re-inflated

when it has passed.

3.4 Savings and other considerations

Let us begin with noting that a careful cost study for the construction of a solar-

chimney power plant with an inflatable tower should be conducted together with a

parametric investigation of the proposed plant geometry, performance, appropriate

materials and components, etc. Here we present some preliminary considerations

suggesting that the inflatable design may not just simplify the construction, but

bring along substantial cost savings when compared with the rigid-tower design.

Costs of the construction of full-scale solar chimney plants with a rigid chimney

have been assessed by [19], [20], [21], and recently by [22] for comparable power

plants (output 100 MW, chimney height between 850 and 1000 m). However, the

estimates of the cost of the chimney varied rather strongly – from the best case

of 68 million to 156 million. Notably, the chimney represents at least about 20%

and likely as much as about 40% of the total cost of the construction.

Any cost estimate of the inflatable tower would involve a large inherent uncer-

tainty, simply because there are few, if any, precedents for building kilometer-

sized inflatable structures. One estimate that appeared in the literature relates

to a free-floating buoyant tower using the design originally proposed by [12]. The
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estimate presented in the paper by [23] is USD 30 million, which includes the costs

of gas (helium) and rigid structural elements necessary for that construction. This

suggests that our free-standing solar tower might be even cheaper.

A crude cost estimate for the solar tower we propose may be obtained using the

pricing of a mass-produced inflatable structure similar in size to the basic ele-

ment of the chimney described above, namely the torus. Pre-fabricated spherical

coated-fabric helium-filled advertising balloons (diameters ∼ 8 m) are commer-

cially available from a variety of sources for about USD 800. One can theoretically

use the same fabric, although modern film materials, such as [24] may be more

appropriate for our design, as they have superior resistance to wear and elements,

and lower cost. If we estimate our cost (scaled up about sixfold from an 8 m

balloon to a 50 m torus) as USD 5,000 per torus on average, which should also

include the air valve and pressure sensor, then the rough estimate for the cost of

fabricating a 1 km tall tower suitable for a 200-MW plant and consisting of 500-

1,000 tori would be USD 5 million (or, 3.8 million, using a 1.316 conversion rate).

Let us mention here that the inflatable tower design also saves on foundation work

and transportation costs, as compared with the rigid towers. Thus it is reasonable

to expect that the cost of the inflatable tower will be at least several times lower

than that of the rigid tower. Moreover, the difference in costs is likely to increase

with chimney height.

An additional possibility of savings (which should be considered in detail in future

work) involves the turbine(s) used to produce electricity. For a traditional cylin-

drical tower, these turbines are of modest sizes and can be installed in a ring at



Inflatable Free-Standing Solar Chimney Power Plants 90

the bottom of the tower, as Fig. 3.1 shows, with the axis of each of turbine parallel

to the ground. An alternative is a single turbine (again, of relatively modest size)

coaxial with the tower and located near the inlet. [25] considered using a conical

tower with a turbine near the top. However, this design in combination with a tra-

ditional (rigid) chimney has no tangible advantages (why restrict the airflow?) and

is likely to develop additional problems due to difficulty of maintenance and the

extra expense required to strengthen the construction. In the case of an inflatable

chimney, however, the shape of the tower is dictated by stability requirements, the

extra mass near the top due to the turbine can be offset via buoyancy, and the

maintenance procedure can be simplified by the ability to bring the turbine down

to ground level via controlled deflation of the tower.

Let us warn the reader that the shape of the tower dictated by the stability con-

siderations described in the previous section may impede the power production,

similar to the converging tower of [25]. According to a numerical study of [10], if

a converging, diverging, or straight chimney is to be considered with a turbine at

the ground level, the most energetically advantageous configuration is that with

a diverging (wider at the top) chimney. However, if a converging chimney shape

is necessitated by other considerations, then the placement of the turbine near

the top may have to be considered, as we discuss in the next section. Here the

penalty in the power production due to the tower shape must be offset by the

lowered upfront cost of the facility, or by the possibility of a taller tower for the

same initial investment.

With a wide-based tower shown in Fig. 3.4, it may be possible to use a single
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turbine with a vertical axis located at the inlet, or a smaller turbine near the

exit. The next section discusses the respective advantages/disadvantages of dif-

ferent turbine placement choices and tower shapes. The dimensions of the tower

could easily allow to adapt mass-produced turbines, with minimal modifications

to the hub and additional ease of maintenance, because all the components can be

serviced at ground level.

3.5 Modeling of the updraft flow

We performed numerical modeling with the goal to assess the effect the tower

shape (as determined by stability considerations outlined in Section 3.2) has on

the overall performance of the chimney. The scope of the modeling was limited

by this goal, and thus we used simplifying assumptions to account, e.g., for the

effect of the turbine, etc., as described below. The simulations assumed a tower

height of about 1 km. For this height, both the differences in temperature and in

pressure at the bottom and the top have to be taken into consideration.

The simulation models both the chimney and the collector. The conditions at

the entry of the collector are assumed as follows. Air enters the greenhouse at

pressure 1 atm (101.3 kPa). We assume the unheated air outside the green-

house is at T0 = 20 ◦C. The temperature of the ambient air near the chimney

exit can then be calculated using the standard value for atmospheric lapse rate

[26], with the average drop of temperature with elevation estimated at 6.5 ◦C
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per km. Pressure at the exit is calculated using the standard barometric for-

mula p(z) = p0 exp(−Mgz/RT ), where z is the elevation, p0 is ground pressure,

M is molar mass, R is gas constant, and T absolute temperature. With setting

M = 29 g/mol for air, this simple formula based on ideal-gas considerations is

remarkably accurate (within 5% for elevations below 6 km, [27]) in predicting the

pressure change with elevation. The numerical model has to take buoyancy into

account.

For modeling, three tower geometries were used: one based on the fixed-heigh

solution (Fig. 3.4), one based on the proportional solution (Fig. 3.5), and a straight

tower with the same vertical cross-sectional area as the proportional tower. The

modeling did not directly account for the presence of the turbine, but in numerical

calculations for each geometry, three values of the pressure drop at the exit were

considered. The first was zero. The second and the third were selected to represent

characteristic values of pressure drops due to the use of a turbine at the bottom

or at the top of the chimney.

The decision not to model the turbine explicitly was driven partly by compu-

tational limitations and partly by the motivation to preserve the simplicity and

generality of the modeling, as we are primarily concerned with the effect of the

chimney shape.

The numerical simulation assumes the flow of air in the chimney is steady (in

the average flow sense) and axisymmetric. Based on the characteristic internal

dimensions of the structure L ∼ 10 m, and the anticipated velocities U ∼ 10

m/s, the representative Reynolds number would be UL/ν ∼ 6 × 106, indicating
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turbulent flow. Thus k − ε turbulence model was used. The calculations were

performed with a commercial CFD package [28] on a 16-core AMD Opteron, 36

Gb RAM workstation. Several mesh sizes were used to ensure 99% or better mesh

convergence. For the results presented here, this resulted in the computational

domain discretized with 500,000 to 750,000 (depending on the specific geometry)

two-dimensional unstructured mesh elements. Calculations were performed with

double precision, the iteration error range was set not to exceed 10−6 (10−9 for

the energy equation). Under these conditions, the solutions converged in less than

2,000 iterations for all cases.

At the entrance to the collector, the temperature and pressure were set to be T0

and p0, at the exit of the chimney T1 and p1. The latter value takes into account

both the change in pressure in the atmosphere and the pressure drop added to

account for the turbine effects. The outer radius of the collector was maintained

at 1753 m for all the numerics, leading to the collector area of about 9.6 km2.

This choice was dictated by the largest grid size we could reasonably use while

maintaining grid convergence at 99% or better. To simplify the calculations, the

boundary conditions both at the collector surface and on the chimney wall were

assumed to be convective, while the ground served as the source of constant heat

flux at 770 W/m2.

The chosen tower geometries are characterized by comparable surface and foun-

dation areas, so the construction costs of all three designs would be similar.

Fig. 3.7 shows the velocity and temperature maps inside the chimney for all three

tower shapes in the case when the additional pressure drop to represent the effect
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Figure 3.6: Computational domain, boundary conditions, and closeups of the
grid for numerical modeling (proportional tower shape). For clarity, the most
sparse grid is shown (50,000 nodes). The actual calculations used a finer grid

with about 10 times more elements.

of the turbine was neglected. There are notable differences in the flow behavior,

particularly prominent when the straight tower is compared with the fixed-height

tower. For the former, velocity distribution is much more uniform, and the exit

velocity is appreciably lower. The temperature at the core of the fixed-height tower

is also much higher. We will compare the performance of all three geometries in

quantitative terms, however, first let us provide some justification for the values

we chose for the pressure drops included in the boundary conditions.

The pressure drops included in the boundary condition p1 to simulate turbine

losses (from stator, rotor, and diffuser) were estimated as follows. The efficiency

of a turbine can be written in terms of total (inlet-to-exit) pressure loss ∆PT as

ηtt =

(
1 +

∆PT
ρ∆H

)−1
. (3.22)

Here ρ is average density, and ∆H is the change in stagnation enthalpy. Equa-

tion (3.22) [29] was used by [30] for their calculations of the solar chimney turbine
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Figure 3.7: Results of numerical simulation of the air flow in solar updraft
towers of different shapes (top row – velocity, bottom row – temperature, no
∆PT pressure drop). Left –proportional shape with decreasing inner cross-
section computed using Eqs. 3.18,3.19 with V = 2000. Center – fixed-height
shape computed using Eq. 3.17 with same V value. Right – reference straight
tower with the same vertical cross-sectional area as the proportional tower. The

vertical extent of the images is 1 km.

characteristics, including efficiency. Here we can use the same equation “back-

wards” at a given location (e.g., bottom or top of the chimney) to estimate the

pressure drop for known average flow parameters and prescribed efficiency η. Then

the pressure drop is included into the outlet pressure condition p1, and the numer-

ical calculation and subsequent estimation of the pressure drop repeated, usually

providing convergence within 95% within two cycles of iteration. One more aspect

of the flow the model does not take into account is the mixing in the flow due to

the presence of the turbine, which is likely to affect the temperature and velocity

fields.
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Inasmuch as the turbine efficiency is concerned, different values are stated (or, in

some cases, assumed) in literature – from 40 to 80% [31] to the highest attainable

value of nearly 90% [30]. The latter is backed up by a careful treatment of all the

factors contributing to turbine efficiency optimization, so we based our calculations

described in the previous paragraph on 89% efficiency.

This procedure for estimating the pressure drops, while not at all rigorous, pro-

duces plausible values that manifest reasonable change with assumed location of

the turbine – higher at the bottom of the chimney, lower near its top. Table 3.1

presents the quantitative results we obtained for the geometries and pressure drops

we considered. In the first three columns, Table 3.1 lists the case number, the tower

shape (proportional, fixed-height or straight), and the assumption about the tur-

bine location (none, top, or bottom of chimney). In the fourth column we present

the value of ∆Pt obtained by the iterative procedure described above.

For example, in the case of the straight chimney with no turbine (Case 5), the

pressure difference between the inlet and the outlet is 10,000 Pa. With the turbine

at the bottom (Case 7), ∆Pt = 4, 700 Pa, and the inlet-outlet pressure difference

used in the simulation is reduced to 10, 000 − 4, 700 = 5, 300 Pa. The next two

columns show the fluxes of kinetic energy at the top and at the bottom of the chim-

ney in the form 1/2 ρū3Ac, where ū is average vertical velocity at the appropriate

location (top or bottom of chimney), and ρ and Ac are density and cross-sectional

area of the chimney at that location. All of these numbers are normalized by the

value for the straight chimney with the highest pressure drop. The last (seventh)

column shows the estimate of the power output using the assumed pressure drop
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Case Tower
shape

Assumed
turbine
location

∆PT , Pa Scaled
kinetic
energy
flux, top

Scaled
kinetic
energy
flux,
bottom

Scaled
turbine
output
estimate

1 Fixed None 0 1.91 0.01 -
2 Prop. None 0 19.2 1.74 -
3 Prop. Top 2048 14.0 1.27 0.47
4 Prop. Bottom 4500 7.34 0.65 0.83
5 Straight None 0 2.08 2.08 -
6 Straight Top 2054 1.92 1.92 0.50
7 Straight Bottom 4700 1.00 1.00 1.00

Table 3.1: Results of numerical simulations for different tower geometries
and different assumptions about turbine placement and corresponding pressure
drops. Lablels “Fixed” and “Prop.” refer to fixed-height and proportional
designs as described in the text. Kinetic energy fluxes 1

2ρū
3Ac are normalized

by the value for the straight tower and maximum pressure drop. Turbine output,
estimated as ηttūAc∆PT , is likewise normalized.

∆PT at the chosen location (top or bottom of the chimney, according to column 3),

and the value of turbine efficiency ηtt used in the same calculation. These fluxes

show total extractable kinetic and pressure energy, without making any further

assumptions about the turbine efficiency (with one implicit assumption used to

estimate ∆PT .)

Case 1 (Fixed height tower shape, no ∆PT ) was characterized by a very poor mass

flow rate (8.2 times worse than the proportional tower) and kinetic energy flux, so

that further cases for this geometry were not considered. This is not at all surpris-

ing, considering the strong role of the acceleration pressure drop in the chimney

[32], which the converging design exacerbates. However, this does not rule out the

use of the fixed-height shape altogether, because it may be feasible to decouple

the outside shape of the tower from its inside shape, e.g., by placing an expanding

funnel inside a very wide fixed-height tower. The straight tower produces a little
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more turbine power (16% for the bottom turbine location and maximum associ-

ated pressure drop) than the proportional tower. Thus the performance penalty

for the proportional tower shape is quite modest.

Some interesting conclusions can also be derived from the results for kinetic and

pressure energy fluxes, if these results are considered in the context of the power

extraction technique. Modern wind turbines (referred to as lift turbines, [33])

use aerodynamic lift on their blades to extract a fraction of the kinetic energy of

the flow. Drag turbines, relying on the force (and thus pressure) of the wind to

power them, are also possible, however, lift turbines are usually about twice as

efficient as the drag turbines in extracting energy from the flow [33]. There are

also devices specifically designed to combine extraction of energy from lift and

from drag (Savonius rotors, etc.). Here, however, let us limit our considerations to

pure “lift” and “drag” devices. Table 3.1 shows that for a straight chimney and a

prescribed pressure drop, there is no advantage in extracting kinetic energy near

the top or near the bottom of the chimney. This will not be the case, however,

for a converging chimney, where the kinetic energy flux is greater near the top.

Thus, if kinetic energy is harvested, top turbine placement might be worth some

consideration. The preferable drag turbine placement for the same chimney shape,

on the other hand, would favor the bottom of the chimney.

For a practical decision on the turbine placement, additional factors must be con-

sidered. Bottom turbine placement is favorable for service access (although an

inflatable tower with a turbine placed near the top can be deflated for turbine

service). A slower-rotating and larger turbine located near the bottom of the
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tower may be more expensive to maintain (because a reductor mechanism will be

necessary) and may have lower efficiency. Another consideration pertinent to the

turbines located near the bottom of the tower is that there, as [30] note, the flow

enters in the radial direction from the collector to drive an axial turbine. That

transition area could likely benefit from some optimization.

Let us also discuss how the results presented here compare with the results in

literature. A well-known equation for the peak theoretical power Pmax of a wind

turbine, which disregards the contribution of pressure and just accounts for kinetic

energy capture, can be written as

Pmax =
16

27

ρAcū
3

2
(3.23)

Here the ratio 16/27 is known as the Betz limit [34], or, more accurately, as the

Lanchester-Betz-Joukovsky limit [35]. It refers to the maximum amount of ki-

netic energy of the flow of average density ρ and average velocity ū traversing the

area Ac swept by the rotor of the wind turbine that can be converted to work.

Many modern turbines have effective performance within 15% of that theoretical

limit. The Lanchester-Betz-Joukovsky limit, however, does not apply to turbines

in channels, which can actually produce more power than freestanding wind tur-

bines. Thus columns 5 and 6 of Table 3.1 present (with normalization and no

assumed coefficients) the same quantity as Eq. 3.23.

Another power estimate for a turbine in a solar chimney Nel [19] is

Nel = ηt∆PT V̇ , (3.24)
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where ηt is a coefficient including the efficiencies of the turbine, gearing, and the

generator, ∆PT is the pressure drop at the turbine, and V̇ = ūAc is the volumetric

flow rate. Equation 3.24 is effectively the same as one used to populate column 7

of Table 3.1.

Let us note that in our modeling, the collector roof was considerably taller than

in many other simulations, and this may have had an effect of the flow behavior

that may be worth considering further in terms of optimization – the velocity at

the chimney exit is much higher, and the temperature increase across the collector

– lower. Another reason for that might be in the sensitivity of the numerical

model to the boundary conditions, in particular, the pressure boundary condition

at the outlet. Our original assumption is that the inlet-outlet pressure difference

driving the flow in a 1000 m tower is 10,000 Pa. For modeling the power plant

in Manzanares [4] with FLUENT (the same software we employed), [36] applied a

twofold approach. First, they derived a system of governing equations and solved

it iteratively. Second, they used an axisymmetric CFD grid with k− ε turbulence

model. Both results were in good agreement with the experimental data, but it

is noteworthy that the inlet-outlet pressure difference in the CFD modeling was

zero.

As a check, we conducted a numerical simulation of the Manzanares plant with

our model and simple boundary conditions consistent with those used by other

researchers (Table 3.2), using the same assumption as [36] (trivial inlet-outlet

pressure difference), and were also able to achieve very good agreement with the

reported data (average outlet velocity 14.9 m/s, turbine output estimate 49 kW).
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Position BC type Note

Collector inlet Pressure inlet ∆P ∼ 0
Collector ground Wall Heat flux 1000 W/m2

Collector roof Wall Adiabatic
Chimney wall Wall Adiabatic
Chimney axis Axis Axial symmetry
Chimney outlet Pressure outlet ∆P ∼ 0

Table 3.2: Boundary conditions used for modeling the Manzanares power
plant.

For the Manzanares tower of a relatively modest height, the zero pressure differ-

ence assumption makes better sense than it would for a 1000 m tower. However,

modeling the exit of the 1 km chimney as a pressure outlet at 10,000 Pa less

than the inlet pressure may also be less than perfect. For a more accurate rep-

resentation, some volume of atmosphere above the exit could be considered, with

appropriate wind speed and pressure conditions applied at its boundary. This

would allow to account for the jet of air leaving the chimney and interacting with

the atmospheric cross-flow, with the actual collector inlet to chimney outlet pres-

sure difference likely different from 10,000 Pa. The computational penalty for

implementing this representation, however, would be huge.

Thus for a 1 km tower, modeling with a trivial inlet-outlet pressure drop would at

least represent an interesting limit case, which we decided to consider for the same

three tower shapes as shown in Fig. 3.7. For all geometries, this modeling produced

much reduced velocities at the tower exit (Fig. 3.8, Table 3.3). The straight

chimney still produces the highest mass flow rate, but again, the proportional

design does not fare too badly either – the decrease in kinetic energy flux compared

with the straight design is only about 20%. The most realistic values for the exit

velocities are likely somewhere in between the maxima and minima from Table 3.3,
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Fixed Proportional Straight

Case of 10,000 Pa, m/s 111.1 123.0 58.0
Case of no pressure drop, m/s 16.1 15.3 12.6

Table 3.3: Average exit velocities for different tower shapes and the cases of
10,000 Pa vs. zero inlet-outlet pressure difference. Pressure drop due to the

turbine is not considered here.

Figure 3.8: Velocity maps for the flow with no inlet-to-outlet pressure drop.

perhaps closer to the lower end of the range.

Our numerical analysis focused on the effects of the chimney shape rather than of

the overall performance of the system, and used many simplifying assumptions.

Thus a direct comparison with other modeling results presented in literature would

not be rigorous or fair. However, it must be noted that the results for the straight

tower shape (and bottom location of the turbine), when adjusted for the differences

in the collector shape (in our model the collector area is relatively small, but the

collector roof is taller than in most other models) are quantitatively consistent with

the figures characterizing performance of 100-MW power plants from literature

[19–22].

We must also add a cautionary note regarding the numerical results in general.

Computational models of solar chimneys appear to be keenly sensitive to many

subtle factors, including boundary conditions, geometry (especially if it includes
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abrupt transitions), implementation of turbulence modeling, etc. Thus it is al-

ways advisable to validate numerical results with experimental data or, due to the

lamentable scarcity of the latter, to use common-sense conservation and scaling

considerations to check if the numerical results make physical sense. In the im-

mediate future, we intend to acquire experimental data specifically pertaining to

the effects of chimney and collector shape on the flow (using a small-scale proto-

type), and use that data to conduct a code validation exercise for a solar-chimney

numerical model.

3.6 Conclusions

The proposed design makes it possible to radically reduce the challenges associ-

ated with the construction of a solar updraft tower, with the potential to greatly

simplify the construction of solar updraft facilities and to make solar-generated dis-

patchable power available in a variety of locations. Realistic optimization consid-

erations for the design lead to elegant analytic solutions describing a free-standing

tower comprised of a stack of soft toroidal shells made from widely available ma-

terials. Replacing a traditional updraft chimney with such a tower will also result

in a significant reduction in the upfront construction cost. The inflatable updraft

tower shape dictated by stability considerations is less than optimal for producing

the optimal internal flow, however, the penalty may be a fair trade-off for the

simplification of construction and cost reductions.
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In the immediate future, we plan a small-scale feasibility study that will involve

constructing a prototype of an inflatable chimney at the Universirty of New Mex-

ico. The prototype will be highly reconfigurable and will allow us to examine

several factors that may influence the chimney performance, including the collec-

tor height. Investigation of the prototype will also make it possible to address

several other issues of importance not covered in the present study, such as the

effect of flow-induced vibrations due to vortex shedding on the stability of the

flexible chimney. In addition, the experimental data will provide a set of useful

validation benchmarks for numerics3.

3Appendix B presents the validation experimental analysis.
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Combined Power Cycles
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Chapter 4

Efficiency Enhancement of Solar

Chimney Power Plant System by

Use of Waste Heat from Nuclear

Power Plant1

A solar chimney power plant system (SCPPS) is an effective system for converting

solar irradiation to electrical power. It can be combined with a conventional power

plant to improve its efficiency and minimize its environmental impact. Rather than

dumping the waste heat rejected by a nuclear power plant to a wet cooling tower, a

better solution may be to connect it to an SCPPS. This is particularly true in arid

regions. The SCPPS can serve the function of a dry cooling tower and produce

1Originally to be published as: N. Fathi, P. McDaniel, S.S. Aleyasin, M. Robinson, P. Vorobi-
eff, S. Rodriguez, C. de Oliveira,”Efficiency Enhancement of Solar Chimney Power Plant System
by Use of Waste Heat from Nuclear Power Plant”, Journal of Cleaner Production, Elsevier, 2017.
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additional electrical power. In a solar chimney power plant, the energy of buoyant

hot air is converted to electrical energy. SCPPS includes a collector at ground

level covered with a transparent roof. Sun heats the air inside the collector and

the ground underneath. A tall chimney is placed at the center of the collector,

with a turbine located at its base of the chimney. In this investigation, the surplus

heat from the nuclear cycle is used to increase the temperature of the air in the

collector and therefore produce more electricity in the solar chimney power plant.

The efficiency of the nuclear plant will be lowered due to the higher temperature

of the condenser, but the loss can be made up by the increased power of the solar

chimney. Heat from the sun is always free once the solar plant has been constructed

and is not normally considered in the efficiency calculation. Computational fluid

dynamics (CFD) and thermal analysis has been performed to apply the available

surplus heat from the nuclear cycle and measure the available kinetic energy of

air for the turbine of the solar chimney power plant system. The feasibility of

the system is evaluated, and the thermal efficiency of the combined power plant

has been computed. By applying this idea to a typical 1000 MW nuclear power

plant with a nominal 35.3% thermal efficiency, its efficiency can be increased to

42.0%. The combined cycle as presented is advantageous in environments where

water is scarce. The cooling tower is replaced by the solar chimney power plant

utilizing the surplus heat from the available warm steam in the secondary loop of

the reactor.
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Nomenclature

V ariables

ε dissipation rate (per unit mass), m2/s3

η efficiancy

g acceleration due to gravity, m/s2

h height, m

k turbulence kinetic energy (per unit mass), m2/s2

ṁ air mass flow rate, kg/s

µ dynamic viscosity

p pressure, N/m2

q heat transfer per unit mass, J/kg

q′′ heat flux, W/m2

Ẇ flow power, W

R air specific gas constant, J/kg.K

S user defined source term

T temperature,K

ρ density, kg/m3

u velocity component, m/s

cp specific heat capacity, J/kg.K

σ diffusion term

x spatial component, m

Subscripts

th thermal
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Abbreviations

ASME American Society of Mechanical engineers

CFD computational fluid dynamics

CHT computational heat transfer

CSP concentrating solar power

CAM customer adoption model

DER distribution energy resource

EOS equation of state

HES hybrid energy system

FSI fluid solid interaction

ISO independent system operator

LWR light water reactor

MSR molten salt reactor

PV photovoltaic

RPS renewable portfolio standard

SRQ system response quantity

TTD terminal temperature difference

M&S modeling and simulation

SCPPS solar chimney power plant system

V HTR very high temperature reactor

V PP virtual power plant
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4.1 Introduction

4.1.1 Motivation and Background

While renewable energy systems are steadily improving their global share [1], the

challenge is to convince the industry and governments to invest more money in

the renewable energy field and to make it more attractive by decreasing the cap-

ital cost. Until recently, uncertainties in funding have limited renewable energy

development, especially in the US. That limitation has been one of the barriers to

progress. Another limitation of many renewable energy systems is the variability in

their output, which makes them unsuitable for baseline power production. There-

fore, fossil fuels are still the dominant source of energy globally. The estimated US

energy consumption in 2015 relied heavily on fossil fuels which generated about

82% of US primary energy. Coal provides 58% of the energy used for power and

most oil (71%) is used for transportation. Nuclear energy provides around 8% of

the total primary energy consumption and all of it is used for electricity generation

as is shown in Fig. 4.1 [2]. The share of nuclear energy in electricity generation

is around 21%.

Fossil fuels have two major limitations including the finite sources, being a func-

tion of political and sectarian issues. Also, there is no balance between the fuel

consumption and discovery of new fossil reserves around the world [3]. More

importantly, the consumption of fossil fuels, which accounts for 60% global green-

house gas emissions [4], has negative impacts on both environment and human
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health. Climate changes including receding of glaciers [5], rise in sea level, deserti-

fication and formation of hurricanes are some of these destructive impacts on the

environment [6]. On the other hand, every year millions of premature death and

various diseases such as allergies and asthma [7] due to air pollution are reported

worldwide. Only in the US, the US Environmental Protection Agency estimated

that in 2010 there were more than 160000 premature deaths due to air pollution

[8]. To tackle these issues, many countries introduced renewable energy plans and

aim to supply part of their energy from renewable resources such as wind, solar

biomass and geothermal. In 2014, the share of solar and wind powers in the net

electricity consumption in the European Union was 12%; however, this share in

Denmark and Portugal was 37% and 27%, respectively [9].

Proper technologies are required to extract electrical energy from solar energy.

Solar chimney power plants are one of the available technologies which have been

studied since 1970s.

The share of solar energy in 2015 US energy consumption is just 0.43%. This

is a dramatic small share for solar energy. Solar energy incident upon the earth

is considerable. However, it is diffuse and approximately 23% of the energy is

absorbed by the atmosphere. There are different types of solar energy systems

including flat-plate collectors like photovoltaic (PV), focusing collectors like solar

concentrated tower (SCT) and SCPP. One of the systems which have not been

studied comprehensively in the approach of combined cycle with other primary

power plant systems is SCPPS.
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Figure 4.1: Estimated US energy flows in 2015. Values are in quadrillion
British units. Total energy input is 98.3 Quads.

Solar chimneys are one of the rare examples of renewable energy power plants

that can produce a reliable baseline power. In a solar chimney plant, the energy of

buoyant hot air is converted to electrical energy. The plant consists of a collector at

the base covered with a transparent roof that collects the solar radiation, heating

up the air inside and the ground underneath. In the center of the collector, there

is a tower, and a turbine is located at the base. The hot air flows up the tower

as a result of the buoyancy effect, and its energy is extracted and converted to

electrical energy by means of the turbine. A typical solar chimney is shown in Fig.
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4.2.

Figure 4.2: Schematic of an SCPPS (left), Manzanares prototype (right).

During the day, the sun heats the ground under the collectors, and at night, the

heated ground continues warming the air, thus sustaining the power-generating

updraft flow.

The primary goal of this research is a fundamental feasibility study of having

SCPPS combined with a nuclear reactor power plant cycle to replace cooling tower.

Consequently, the effect of this combined cycle on the efficiency SCPPS was also

investigated. Therefore the second objective of this investigation is to detect the

possible increase of SCCPS efficiency by utilizing the available waste heat. It was

observed that the performance of solar chimney systems increases by making them

utilize an available source of waste heat. This would make it possible to be built

in a smaller scale.
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4.1.2 Previous Work

The first prototype of solar chimney power plant was constructed in Manzanares,

Spain. This plant operated between 1982 and 1989, and its electricity was used as

a part of the local electrical network [10]. The information from the Manzanares

prototype has been used for extrapolation to larger models for solar chimney power

plant systems (SCPPS) [11]. In 1991 Yan et al. developed a detailed model for

an SCPPS by using a practical correlation. They considered several key parame-

ters, such as air velocity, air flow rate, output power, and thermal efficiency [12].

Several researchers studied the effect of different geometrical parameters on plant

efficiency. In 1995 Schlaich et al. reported that according to the mathematical

model, there were no optimal dimensions for a solar chimney; however, by consid-

ering construction costs, a thermo-economically optimal plant configuration might

exist [13].

One of the important aspects of solar chimneys is that to provide 24/7 power and

to be economically competitive, they must be built on a large scale, requiring cor-

responding upfront investment. The efficiency of SCPPS is extremely low ranging

from 0.5 to 10% of solar energy input. Therefore, considerable research efforts

have been made to enhance the efficiency of SCPPS. As the ground under the

collector has a certain thermal storage capacity, during night time, SCPP cannot

work as efficient as day time. Kreetz [14] introduced the concept of water-filled

tubes/tanks under the collector roof to increase the thermal storage capacity. This

idea helps to smooth out the generation of warm air to drive the turbine and im-

prove the power output after sunset [15]. In an attempt to improve the SCPPS
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function at night, double-roof collector was proposed by Pretorius [16]. This gives

the plant the ability to store and release energy to regulate the output power.

It is usually assumed that the tall chimney follows a conventional design (rigid

construction, foundation, guy wires, etc.). Such a construction on the scale suitable

for a commercially viable SCPPS is not only very expensive, but also presents

a challenge in terms of surviving an extreme weather event. To address this

issue, a free-standing inflatable design was proposed to reduce the construction

costs and increase the survivability of a solar chimney [17]. The prototype was

able to withstand hurricane-strength winds [18]. Chimney outlet air velocity was

measured experimentally as the system response quantities (SRQ) to validate the

numerical simulation results [19].

Over the last few years, concentrating solar power system projects have been

rapidly increasing [20]. In these systems, solar radiation is concentrated onto a

focal point or line using mirrors or lens to enhance the efficiency of extracting solar

energy compared to the conventional SCPPS.

Fig.4.3 depicts the open air Brayton cycle of a SCPPS. The concept presented

here is a combined cycle adding the SCPPS to a power plant system to utilize

the surplus heat and produce more electricity. In principle, many combined cycles

using the same concept are possible, including SCPPS installations combined with

an array of traditional PV collectors, with an array of algal bioreactors, or even

installed over a landfill to utilize its waste heat. Several examples of combined

cycles were described and studied to address sustainability challenges that energy

industry faces [21]. This technology has a broad application to all thermal power
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plants. Several investigations have proposed combined cycle power plants that

utilize available heat from a high temperature reactor or fossil fuel plant [22].

Simplified mathematical models have been developed to study the thermal power

plant system. A typical system has the heat recovery steam generator (HRSG)

fed by the exhaust of the turbine. HRSG provides heat to produce steam that

drives a bottoming steam turbine for extra electric power production [23]. In this

article, the focus is on a typical nuclear power plant as the main element of this

combined cycle. Current light water reactors (LWRs) power plants operate with

thermal efficiencies in the range of 30 to 35% rejecting 65 to 70% of the energy

consumed. Advanced molten salt reactors (MSRs) and very high temperature

reactors (VHTRs) will reach efficiencies in the 42 to 48% range [24]. The ratio of

heat output from a power plant that is actually converted into electrical energy is

called the thermal efficiency, ηth of the system,

ηth =
Electrical Energy Generated

Heat Produced by the Reactor
. (4.1)

By combining the solar chimney tower system with a nuclear power plant, the

overall thermal efficiency will increase because of the extra electrical power pro-

duced by the turbine in the SCPPS (Fig.4.4). The issue is how to apply the waste

heat from the nuclear power plants, such as pressurized water reactor (PWR),

molten salt reactor (MSR), or VHTR. The authors suggest replacing the cooling

tower with an SCPPS to extract more heat from the overall system. This would

make it possible to build smaller solar chimney plants and consequently decrease

the upfront cost, producing a competitive levelized cost of electricity.
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4.1.3 Utilization by Grid

The SCPPS technology can be added to the mix of generation resources. The

SCPPS could enter the grid at several levels. The first would be to provide electric-

ity, locally, for the power plant (pumps, fans, etc.). Secondly, it can be employed

for direct use on the grid allowing the solar chimney to be used in various ways and

fit in with the future framework of the grid. The simplest method by which the

solar chimney can provide a service to the electrical grid is in economic dispatch

mode. When the demand is high, output power from a solar chimney power plant

can be dispatched to the grid before expensive peaking plants are used. However,

this does not lend itself to day-ahead resource planning due to the solar chimney

being a function of weather and cooling tower output, both of which are subject

to random fluctuations.

In either scenario, potential output of the SCPPS can be used in forecasting to

allow for optimization of the resources available locally or grid-wise. Presently,

the grid is beginning a transformation from a centralized generation scheme to a

distributed paradigm. There are many reasons for this development such as in-

creased penetration of rooftop solar, the emergence of renewable energy portfolio

standards (RPS) which requires a certain percentage of electricity generation from

renewable sources, and an overall concern over reliability and sustainability of en-

ergy resources for consumers. The shift from centralized to distributed generation

has led to changes in how loads are met in certain areas of the US (independent

system operators), and developments continue to be proposed. An important re-

cent concept that must be mentioned here is the virtual power plant (VPP) [25].



Efficiency Enhancement of Solar Chimney Power Plant System by Use of Waste
Heat from Nuclear Power Plant 123

The idea of a VPP is to aggregate generation resources that may be small in ca-

pacity or intermittent (or both) and to let them act as a collective to meet the load

(or perform another grid service). Another important development for the future

of the grid comes from hybrid energy systems (HES). This concept decouples the

pairings between the traditional sources and sinks, such as coal only for generation

of electricity [26]. Fig. 4.5 illustrates the solar chimney as a resource in a VPP

scheme. The resources are aggregated and with forecasts and current demand on

the grid, a dispatch schedule is produced for each resource to satisfy the agreed

bid to the independent system operator (ISO).

As the numbers of distributed resources continue to increase, there are several

studies that show how the grid can benefit and continue to be stable. One example

uses the distributed energy resource customer adoption model (DER-CAM). DER-

CAM was initially designed to increase investment in distributed energy systems

and provide a scheduling service for the resources [27]. As research continued, it

was found that what is best for one customer may not be optimal for the operation

of the entire grid. For example, if there are several cold water storage units on

a grid, the optimal time to charge the individual units (for the customer) would

be early morning before a time-of-use tariff or demand charge can be recorded.

However, if all the individual customers do this, there will be a spike on that

portion of the grid. DER-CAM was used to solve this issue by performing a

collective optimization to save money for the consumer and smooth the spike [28].
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Figure 4.3: Schematic diagram of a pressurized water reactor and the steam
turbine that convert work into electrical energy with a cooling tower.

4.2 Modeling and Simulation

4.2.1 CFD analysis

To have a better understanding of the air flow behavior in an SCPPS and its rela-

tionship with the available heat flux at the collector, computational fluid dynamics

(CFD) analysis was applied. A CFD simulation using the finite volume method

was employed to investigate the sensitivity of turbine output power to different

values of the available heat flux at the collector part. This numerical flow calcu-

lation helps us to evaluate the nuclear-solar combined cycle when SCPPS is used
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Figure 4.4: Block diagram of an open air-Brayton cycle of SCCPS (instead of
cooling tower) combined with a pressurized water reactor.

to replace a conventional cooling tower. To date numerous numerical models with

various coupling between the collector, turbine, and chimney have been introduced

to evaluate SCPPS [29]. To measure the reliability of the CFD results, due to the

limited available experimental data for validation, analytical correlation and math-

ematical models have been applied. The analytical correlation for output power

for an SCPPS was studied, and the modified form of that was compared against
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Figure 4.5: Example process of producing a schedule given base load gen-
erators, solar chimney, and other distributed energy resources (DERs; such as

photovoltaic arrays, wind farms, etc.).

CFD and available experimental data from the Manzanares prototype [30]. In the

present investigation, the Manzanares prototype was modeled and simulated by

considering the real dimensions and available operating conditions with respect

to the available reports [2]. Table 4.1 presents the dimensions of the Manzanres

prototype.

In the numerical analysis, the heat flux was calibrated with respect to the actual

values from the available experimental data. The mass flow rate obtained from
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Prototype component Size (m)

Mean collector radius 122.00
Collector height 1.85
Chimney radius 5.08
Chimney height 196

Rotor blade length 5

Table 4.1: Manzanares prototype dimensions.

the CFD results, along with other parameters, was used to evaluate the maximum

mechanical power for each case. ANSYS ICEM (Integrated Computer Engineering

and Manufacturing) CFD was employed to generate a quadrilateral cell mesh. The

calculations were carried out on a four-core, 32GB RAM Xeon computer. Table

4.2 presents the applied boundary conditions in our numerical flow calculation.

To perform this steady-state CFD simulation, the standard k − ε two-equation

model was applied. The standard k − ε model has been a common turbulence

model in industrial CFD since it was proposed by Launder and Spalding[31]. This

is due to its robustness, economy, and reasonable accuracy in simulation of certain

basin turbulent flows in engineering applications. However, unless special measures

are taken k − ε models are not suitable in the evaluation of flows where adverse

pressure gradients or separation are present. They typically predict a delayed and

reduced separation compared to observations. This can result in overly optimistic

design evaluations for flows which separate from smooth surfaces (aerodynamic

bodies, diffusers, etc.). The k − ε model is therefore not widely used in external

aerodynamics. Applying a wall function helps the accuracy of the standard k − ε

model. The standard k− ε model includes two extra transport equations: one for

turbulence kinetic energy (k) and the other for dissipation rate (ε). The model
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transport equation for k was adjusted from the exact equation based on experi-

mental data. However, the model transport equation for ε bears little resemblance

to its mathematically exact counterpart. The standard k − ε is suitable for high

Reynolds-number flows, and the setup we investigate here definitely falls within

the high Reynolds number range, especially in the tower it exceeds 10000.

Model component Boundary condition

Collector ground Thermal flux
Chimney wall Adiabatic
Collector roof Adiabatic

Chimney center line Axis
Collector inlet Zero gauge pressure

Collector outlet Zero gauge pressure

Table 4.2: Applied boundary conditions in CFD analysis

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0 (4.2)

∂

∂t
(ρui) +

∂

∂xj

[
ρu′iu

′
j + ui

∂uj
∂xj
− νSij

]
+
∂p

∂xi
= 0, i = 1, 2, 3 (4.3)

Here ui is the local velocity and u′i represents the velocity fluctuation. Sij is the

mean strain rate calculated as follows:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.4)

The equations for turbulence kinetic energy k and dissipation rate ε are
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∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk +Gb − ρε− YM + Sk (4.5)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε

(4.6)

Here Gk and Gb denote the generation of turbulence kinetic energy due to the mean

velocity gradients and buoyancy respectively. YM represents the contribution of

the fluctuating dilation in compressible turbulence to the overall dissipation rate.

σk and σε are turbulent Prandtl numbers for k and ε respectively. C1ε, C2ε and C3ε

are constants. Sk and Sε are user-defined source terms.

4.2.2 Thermal analysis

In this investigation, the second part of M&S was performed by means of numerical

thermal simulation to identify the thermal characteristics of the combined nuclear-

solar cycle. Once the thermal characteristics of the systems have been identified,

then a search can be undertaken for off-the-shelf components that come close to

meeting the requirements of an optimal system. Fathi et al. reported the results of

thermal power cycle assessment of combined nuclear power plants for low carbon

grids recently by using a steady state thermal cycle modeling [32]. Here we provide

a simple example of a solar tower power plant coupled to a nuclear power plant.
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The nuclear power plant is modeled schematically, and the focus of the exercise is

on the effects of the coupling. Only one steam turbine is considered and no nuclear

feedwater heaters are included. Both of these would add to the cycle efficiency for

the basic plant and the combined plant and their absence does not detract from

the essence of the analysis.

To perform the cycle modeling the techniques described in [33] were followed.

Scaling parameters given in [34] were applied for size estimates for turbomachinery.

Air compressor and turbine polytropic efficiencies follow the published scaling rules

[33]. Steam turbines were simply set at a 90% isentropic efficiency. The heat

exchanger was designed to meet a 1% pressure drop and the effectiveness of 95%.

The output power of SCPPS was considered as an electrical power to the combined

thermal cycle.

4.3 Results and Disscusion

4.3.1 CFD/Thermal Results

In the following subsection, we present the results of the preliminary analysis of

combining a larger (200 MW) SCPPS with a 1000 MW nuclear power plant. The

goal of the CFD analysis is to have a better understanding of the air flow behavior

with respect to the different rate of available heat flux (solar irradiation and nuclear

waste heat). For this purpose, several CFD exercises were performed for different

values of heat flux to cover all the cases. The minimum available solar radiation
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characterizes the winter case. From a typical 1000 MW nuclear reactor, 600 W/m2

extra added heat flux can be obtained from the waste heat. A nominal output

power for the Manzanares prototype is about 50 kW based upon the experimental

data. Fig. 4.6 presents a comparison of the available turbine output power based

on reported experimental data for the Manzanares power plant (experimental data

in Fig. 4.6) and on our CFD results for the same setup, including the case when

the solar output of the plant is boosted by adding 600 W/m2 from the waste heat.

In our numerical calculation, we have considered the turbine efficiency as 85%.

As shown in Fig. 4.6, the output in the light blue area (200-400 ) represents the

winter case. The same case boosted by 600 W/m2 from the available surplus heat

is represented by the light orange zone, and is roughly the same as the unboosted

summer case. Note that the available surplus heat from the secondary cooling loop

of the reactor, considering the operating range of heat exchanger effectiveness, may

be appreciably greater than 600 W/m2. However, with respect to the reported

characteristics of the Manzanares prototype, the above-mentioned flux value is

chosen as the designed shift range of heat flux [30]. For the summer case, it is

assumed that the amount of power increase can be zero for the maximum available

reported solar irradiation of 1000 W/m2, to be more conservative in our evaluation.

By considering both the summer and winter cases using the Manzanares SCPPS

as a model, we obtain a range from 0 to 300% increase in the output electricity

of the turbine of the solar chimney power plant. For the annual added power,

150% is chosen, ignoring the power increases during fall and spring cases to be on

the conservative side. By building a bigger prototype on the order of 1 km height,
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Figure 4.6: Experimental and numerical comparative representation of the
output turbine power of Manzanares prototype vs a range of available heat flux

and the effect of applying heat waste to the solar cycle

power generation from the turbine can be raised from 100 to 200 MW. That makes

the presented idea more economically beneficial and decreases the capital cost of

the SCPPS and the nuclear power plant as well

A brief outline of the thermal analysis approach to be considered was set forth in

the modeling and simulation part. The presentation of the current investigation

and results will follow simple coupled nuclear-solar cycle. Consider a nominal nu-

clear power plant that produces saturated steam at 7.2 MPa and 288 ◦C. This

gives an enthalpy of 2769.9 kJ/kg and an entropy of 5.80029 kJ/(kg K). Start by

considering a nominal standard day at 15 ◦ C. Expanding the steam isentropically

to an average day condenser pressure of 6.58 kPa and a temperature of 38 ◦C
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gives a final enthalpy of 1793.3 kJ/kg. The nominal terminal temperature dif-

ference (TTD) across the condenser is 23 ◦C. The ideal enthalpy drop across the

turbine is 976.6 kJ/kg. For a 95% efficient steam turbine, the net work will be

927.7 kJ/kg resulting in a steam quality of 69.8% and an enthalpy of 1842.2 kJ/kg

at turbine exit. To return the saturated water to 7.2 MPa requires 9.1 kJ/kg for

an 80% efficient pump or a net energy produced of 918.7 kJ/kg. Then to raise

the temperature to 288 ◦C requires 2602.3 kJ/kg. This gives a thermodynamic

efficiency of 918.7/2602.3 = 35.3%. A 1000 MW(e) power plant will require a heat

input of 2832.8 MW(t) and a heat dump to the circulating water system of 1832.8

MW(t).

Now consider a hot day when the water reservoir is 30 ◦C and the condenser

maintains the same TTD. The condenser conditions are now 53 ◦C and 14.2 kPa.

This gives a turbine work of 830.3 kJ/kg and a steam turbine exit quality of 71.3%.

The efficiency drops to 33.3%. The electrical power output is now 942.7 MW(e)

and the circulating water heat dump is 1888.2 MW(t). Consider also a nighttime

temperature of 5 ◦C. The efficiency will be 36.7%. The electrical power output

will be 1038.4 MW(e) with a circulating water heat dump of 1794.1 MW(t).

Now let us add a solar tower to this power plant to perform the function of waste

heat removal. For a nominal 1000 MW(e) nuclear plant we will add a 200 MW(e)

solar plant to dissipate waste heat and produce additional electricity. Nominal

conversion efficiency for the solar energy absorbed will be 8%. We will assume

that the Terminal Temperature Difference for the collector of the solar tower is
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the same at 23 ◦C. We are now cooling the steam with air, but the heat exchanger

(solar collector) is very large. However, the solar collector will heat the air by an

additional 20 ◦C, and the solar collector heat exchanger surface is another 10 ◦C

above the peak air temperature. So the minimum condenser water temperature

will be 23 + 20 + 10 = 53◦C. Accordingly, on a 30 ◦C day the condenser steam

temperature will be 83 ◦C, and the pressure will be 53.2 kPa. The reactor will

produce 828.6 MW(e) and the reactor efficiency will drop to 29.2%. But by reject-

ing the waste heat to the solar collector, the solar system will now produce 360.3

MW(e) for a nominal 200 MW solar tower. The total station power output will

be 1188.9 MW(e).

Figure 4.7: Thermal Power Plant efficiencies vs. Ambient Temperature.

This gives a combined efficiency for the nuclear plus solar plant of 42.0%, treating
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the solar energy input as free. The increase in efficiency is 8.7% relative to the

stand-alone nuclear plant. Similar efficiencies as a function of ambient temper-

atures are plotted in Fig. 4.7 for the basic nuclear plant, the nuclear and solar

plants combined during daylight operation, and the nuclear and solar plants com-

bined during nighttime operation. At the night time condition of 5 ◦C, when the

solar tower receives no solar gain, the power produced by the SCPPS will be 146.6

MW(e) because it is being driven by the waste heat from the nuclear plant that

would normally go to the circulating water system. This gives an overall plant

efficiency of 40.5%, or an increase of 3.8% over the stand-alone nuclear plant oper-

ating at night-time temperatures. These calculations are summarized in Table 4.3.

It is noteworthy that Fig. 4.7 shows a decrease for efficiency improvement with

the combined cycle as the ambient temperature increases, which suggests that use

of the combined cycle in hot and arid environments might be advantageous. This

advantage may be made even more important when increased temperature due to

climate change [35] is taken into consideration.

Nuclear only Nuclear hot day Nuclear night Combined nominal Combined hot day Combined night
Ambient temperature (◦C) 15 30 5 15 30 5
Throttle enthalpy (kJ/kg) 2769.9 2769.9 2769.9 2769.9 2769.9 2769.9

Condenser temperature (◦C) 38 53 28 68 83 38
Condensor pressure (kPa) 6.58 14.2 3.75 28.4 53.2 6.58

Turbine exit quality 0.698 0.713 0.688 0.728 0.742 0.698
Nuclear plant efficiency 0.353 0.333 0.366 0.313 0.293 0.353

Combined efficiency 0.353 0.333 0.366 0.438 0.420 0.405
Nuclear plant power (MW (e)) 1000 942.7 1038.4 885.6 828.6 1000

Solar plant power (MW (e)) 0 0 0 355.8 360.3 146.6
Total power (MW (e)) 1000 942.7 1038.4 1241.3 1188.9 1146.6

Table 4.3: Comparison of nuclear only power plant with combined nuclear
and SCPPS

This analysis can be extended to smaller ratios of SCPPS to the power produced

by the nuclear plant. The results are plotted in Fig. 4.8. One can see that

the combined daytime efficiency increase falls considerably with a decrease in the
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solar plant design power. Realistic considerations for sizing the SCPPS should

include efficiency (favoring larger sizes) and cost. Here applying the inflatable

towers [8] could make larger solar components more feasible by lowering the cost

of construction.

Figure 4.8: Increase in efficiency vs. the output power of SCPPS.

It is interesting to note that even at night, the efficiency increases, but the increase

remains constant at about 4% even for smaller ratios of the solar tower power to

the nuclear plant power. Only when the collector cooling can no longer maintain

an exit TTD of 23 ◦C will the efficiency gain drop. Given the size of the required

collectors, this will likely hold true down to relatively small SCPPS. By adding

the solar tower as both an energy producer and waste heat absorber, the com-

bined system has eliminated the need for a circulating water system. Thus the

requirement to be located near a water supply has been eliminated.
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4.3.2 Economic Considerations

As the results in the previous subsection shows, even a modestly-sized SCPPS

can increase the efficiency of a nuclear power plant – both during the day and

night-time operation. The boost in overall efficiency increases with the size of

the SCPPS, but from practical considerations, an optimal size for the SCPPS

component of the combined plant likely exists. In fully assessing the economic

feasibility of the proposed combined cycle, costs must be compared between a

power plant with a traditional cooling tower and with a solar chimney. A full

comparison should consider construction costs, operation costs (including the cost

of water), and the levelized electricity cost, and deserves a thorough future study.

Here we present a preliminary assessment showing that the cycle we describe is

likely not merely viable, but attractive from an economic standpoint. Here capital

costs are the most important factor because they account for up to 74 % of the

levelized cost of nuclear power [36].

Capital costs of modern nuclear power plants vary significantly – from USD 2

billion to USD 9 billion per unit, and have undergone a dramatic recent escalation,

particularly in the US and in France [37]. Thus providing a realistic general capital-

cost estimate for a nuclear power plant presents a considerable challenge. A study

of a large number of nuclear power plants, both existing and under construction,

in the US, and in Europe [38], provides an average capital cost estimate of GBP

4,613 (USD 7,381 using the 2012 conversion rate) per kW. For a 1000-MW power

plant, that would mean the cost of USD 7.381 billion. Costs beyond the proper

reactor, including the land and the cooling tower, can account for up to half of
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the total amount [39]. Assuming a conservative estimate of the cooling tower and

related systems comprising 15% of the cost of the plant, we arrive at a cost of

USD 1.108 billion. Section 3 describes utilizing a 200-MW SCPP to dissipate the

waste heat. A careful 2005 estimate of the cost of a 200-MW SCPP using a rigid

tower is EU 606 million [40] (USD 770 million using the 2005 conversion rate, or

USD 960 million adjusted for inflation to 2017).

Thus the capital cost of a traditional cooling tower and the cost of a rigid solar

chimney-based cooling system are comparable. However, this does not take into

account the savings that can be achieved by switching to a non-rigid tower design.

The rigid tower accounts for at least 28 % of the total cost of the SCPP [40] (USD

269 million). A cost estimate for a replacement inflatable tower serving the same

200-MW plant is USD 5 to 30 million [17]. Replacing the traditional chimney with

an inflatable one will also bring considerable savings in foundation construction

and transport costs. Thus a solar chimney setup with an inflatable tower has the

potential of both increasing efficiency and decreasing the capital cost.

4.3.3 Future Work

Our immediate goal is to design a platform based on numerical and analytical stud-

ies of all the components of the combined nuclear-solar thermal cycle. Specifically,

we will consider the waste heat recovery heat exchanger which gets the surplus

heat from the cooling loop of the nuclear thermal cycle and transfers it to the
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open air Brayton cycle of the SCPPS. To have a better understanding of the per-

formance of the whole combined cycle, thermal/CFD analysis will be performed

for each of the components of the combined power plant cycle (Fig 4.9).

The thermal analysis will be performed by applying an open source object-oriented

package, Modelica—block diagram thermal analysis. MATLAB thermal simula-

tion also will be applied to perform code to code verification to evaluate the fi-

delity of our results. After performing the overall thermal/CFD analysis with

respect to the available thermal hydraulics values, the waste heat recovery heat

exchanger (Fig. 4.4) will be designed, rated and simulated based on ASME

standards. Three-dimensional CFD/CHT simulations will be performed to have

a better understanding of this heat exchanger and its thermal characteristics.

Thermal/Structural fluid-solid interaction (FSI) simulation will be performed to

observe the thermal stresses and evaluate the exchanger for all cases. As a final

note, tube buckling and leakage analysis will be performed with respect to the

CFD/CHT outputs to have a reliable design for the heat exchanger.

4.4 Conclusion

A novel idea to use the available surplus heat (waste heat) from thermal power

plants for a solar chimney was presented to enhance the SCPPS efficiency com-

pared to the traditional cooling setup. The possibility of this combined cycle was

studied for a typical nuclear power plant. There also exists a possibility of reducing

the capital cost of combined cycles for power plants, such as nuclear power plants
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Figure 4.9: MATLAB thermal simulation block diagram for steam power
plant cycle. 1-5 are thermal probes to read the thermal properties.

plus solar power plants. The total thermal efficiency of the combined thermal

system can increase by up to 8.7%, which is considerable for the electrical power

industry and should have a significant effect on capital cost and development of

new generations of power plants. Utilizing the harvestable power increases the

output power of the Manzanares-type SCPPS up to 150% annually. Another im-

portant advantage of the combined thermal system described here is that it does

not require a body of water to provide cooling, and thus can be better suited for

arid environments. This feature may become more important in the immediate

future, as climate change is expected to lead to higher desertification of large ar-

eas. A detailed comparison of the technological complexity and cost of operation

of the SCPPS versus the traditional nuclear plant cooling system remains a task

for the future, along with considering redundancies that would need to be built
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into the combined nuclear-solar power plant. Use of the recently proposed inflat-

able, free-standing chimney design is highly recommendable here both because it

greatly reduces the SCPPS cost and increases its survivability to adverse weather

events.
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Chapter 5

Power Cycle Assessment of

Combined Clean Energy Systems1

The intermittency of renewable power generation systems on the low carbon elec-

tric grid can be alleviated by using nuclear systems as quasi-storage systems.

Nuclear Air-Brayton systems can produce and store hydrogen when electric gen-

eration is abundant and then burn the hydrogen by Co-Firing when generation is

limited. The rated output of a nuclear plant can be significantly augmented by

Co-Firing. The incremental efficiency of hydrogen to electricity can far exceed that

of hydrogen in a stand-alone gas turbine. Herein we simulate and evaluate this

idea on a 50 MW small modular liquid metal/molten salt reactor. Considerable

power increases are predicted for Nuclear Air-Brayton systems by Co-Firing with

1Originally to be published as : N. Fathi, P. McDaniel, C. Forsberg, C. de Oliveira, “Power
Cycle Assessment of Nuclear Systems, Providing Energy Storage for Low Carbon Grids,“ Journal
of Nuclear Engineering and Radiation Science, 2017.
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hydrogen before the power turbine 2.

Nomenclature

V ariables

T temperature,K

p pressure

Subscripts

a air

w water

Acronyms

GTCC Gas turbine combined cycle

HRSG Heat Recovery Steam Generator

HTE High-temperature electrolysis

NACC Nuclear Air-Brayton Combined Cycle

NARC Nuclear Air-Brayton Recuperated Cycle

RIC Recuperator and intercooler

SCO2 Supercritical Carbon Dioxide

TIT Turbine Inlet Temperature

2Some parts of this chapter were published as a technical paper at ASME ICONEO24 pro-
cedings in 2016 as : Fathi, Nima, Patrick McDaniel, Charles Forsberg, and Cassiano de Oliveira.
”Nuclear Systems for a Low Carbon Electrical Grid.” In 2016 24th International Conference
on Nuclear Engineering, pp. V001T03A007-V001T03A007. American Society of Mechanical
Engineers, 2016.
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5.1 Introduction

5.1.1 Motivation and Bakcground

As the US moves toward a low carbon electrical grid, the only power sources that

will be available to any great extent will be the renewables, solar and wind, and

the dispatchable, nuclear. For these three types of sources to provide a stable

grid, a strategy must be developed for them to work together. The intermittent

characteristics of solar and wind sources require that an energy storage system be

developed that can smooth the differences between power production and power

demand. One possible solution is a nuclear component that develops its own

storage. There will clearly be times when a solar system is incapable of generating

power. The same is true of a wind system. At those times it would be very useful

to have nuclear systems on line. Of course when the sun is shining and the wind

is blowing, nuclear systems may not be needed. This poses a dilemma for nuclear

systems as they produce very little revenue when shut down. Quite simply the

electric grid needs an energy storage system, and it needs to be flexible. Here we

describe several nuclear power systems that can meet this need. The total system

has multiple components (Fig. 5.1). The reactor provides heat to the power

cycle—the subject of this paper. The reactor operates at base load. The system

can operate at base-load on nuclear heat. To produce peak power, hydrogen is

added to the compressed air after nuclear heating in the power cycle to raise

temperatures and power levels. At times of low electricity demand, electricity

from the grid is fed to a High-Temperature Electrolysis (HTE) system to produce
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hydrogen. Hydrogen is stored and used as fuel for peak electricity production.

Hydrogen as a storage system has the advantage of low-cost storage using the

same underground storage technologies as used for natural gas. However, the

challenge is round-trip efficiency of electricity to hydrogen to electricity. HTE

is the most efficient method to produce hydrogen. A Nuclear Air-Brayton cycle

(described herein) is the most efficient method to convert hydrogen to electricity.

This combination creates new options for using hydrogen for energy storage.

Figure 5.1: System description

5.1.2 Technical Approach

A nuclear system is needed to store energy when its production is not needed and

recover that energy when it is needed to augment the nuclear system’s baseload

capability. One possible solution to this challenge is to develop a Nuclear Air-

Brayton Combined Cycle (NACC) system. The standard Gas Turbine Combined
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Cycle (GTCC) would be modified to use nuclear energy rather than chemical en-

ergy. This can be accomplished by replacing the gas turbine combustion chamber

with a heat exchanger. A nuclear driven heat exchanger cannot reach the high

temperatures that current gas turbine combustion chambers do as it requires a

temperature drop from its walls to the working fluid (air) rather than a temper-

ature drop from the working fluid to the walls of the chamber. However, there

are compensating benefits. In particular a heat exchanger can be built with a

smaller pressure drop in the working fluid, and the air can be heated multiple

times. Heating the working fluid multiple times is very common in steam systems.

Since this is an advanced concept and system performance is always better at peak

cycle temperatures, only liquid metal systems and molten salt systems have been

considered for this study. High temperature gas systems could also be considered,

but the cycles would look enough different that they need to be analyzed in a

different fashion. It is also possible to develop a Nuclear Air-Brayton Recuperated

Cycle (NARC) system with an intercooler using either water (NARCw) or air

(NARCa) to cool the intercooler. Liquid metal and molten salt heat exchangers

were developed in the 1960’s for the Aircraft Nuclear Propulsion program and

performed quite well [1]. Sodium to air heat exchangers were used on the Fast

Flux Test Facility to dump the heat generated in the nuclear core. Currently

there are designs to use sodium-to-air heat exchangers for safety heat dumps on

sodium fast reactors. Apparently such heat exchangers are not as complicated

as sodium-to-water heat exchangers and do not have some of the severe safety

issues [2]. The system of interest is described in Fig. 5.2. It is an open cycle

Air-Brayton topping cycle mated to a Steam-Rankine bottoming cycle similar to
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most Gas Turbine Combined Cycles. The Brayton system consists of one or two

compressors and three gas turbines followed by a Heat Recovery Steam Generator

(HRSG). The HRSG drives three steam turbines in the bottoming cycle. To im-

prove the normal operating efficiency of the system a recuperator can be included

after the HRSG. If this is done, an intercooler can also be included between the

two compressors.

Figure 5.2: Schematic presentation complete nuclear Air-Brayton combined
cycle with recuperator and intercooler

The recuperator is required to take advantage of the efficiency improvements pro-

vided by the intercooler. Three gas turbines with three reheat cycles were chosen

as this system performs better than the two gas turbine system and very close to

the performance of four gas turbines. The three gas turbines consist of two turbines

connected directly to the compressor(s) and a power (or free) turbine connected

only to the driven electrical generator. The system has three heat exchangers,

one before each turbine. The power turbine approach seems to perform slightly

better than a system with all three turbines, the compressor(s), and the generator
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on the same shaft. The turbines for the steam system can be connected to the

same shaft as the power turbine or to a separate shaft driving a second generator.

The basic cycle without the recuperator and intercooler (RIC) has been identified

as a NACC. When RIC is added it is identified as a NACC&RIC. Since the RIC

seemed to make the combined cycle more efficient, a system was considered that

did not include the bottoming cycle with the turbine exhaust going directly to the

recuperator. This system has been identified as a NARCw or NARCa. The cal-

culated efficiency of each of the three systems is compared with the Supercritical

Carbon Dioxide (SCO2) system [3] under study by DOE in Fig. 5.3.

Figure 5.3: Cycle Efficiencies for NACC, SCO2, NACC&RIC and NARC

The basic NACC system is significantly less efficient than SCO2 system when

both operate at a Turbine Inlet Temperature (TIT) of 500 ◦C, typical sodium
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reactor output temperatures [4], but improves significantly as temperatures ap-

proach those expected from molten salt reactors [5]. Adding the recuperator and

intercooler brings the performance of the NACC&RIC system up considerably

at the lower temperatures. It appears that the NARCw system outperforms all

three on an efficiency basis. Typical compressor pressure ratios for the NACC

and NACC&RIC systems are given in Fig. 5.4. Adding the recuperator lowers

system operating pressure as expected. This would work as follows. The nuclear

reactor system would operate continuously in somewhat of a baseload fashion.

When the sun is shining and the wind is blowing, the electricity produced by the

nuclear system will be used to produce and store hydrogen by high temperature

electrolysis [6]. Any excess electricity produced by the renewables could also be

diverted to produce and store hydrogen. When the sun goes down and the wind

stops blowing the nuclear system will produce the electricity required to meet the

grid’s demands. In addition to the rated nuclear plant output, the stored hydro-

gen can also be burned in a combustion chamber and its exhaust fed to the power

turbine to ”superheat” the airflow. This process is called Co-Firing. Augmenta-

tion of the nuclear system’s output in this fashion is the purpose for considering

NACC and NARC systems as a type of energy storage mechanism for the grid

of the future. Other energy storage mechanisms have been proposed that may

be more efficient than producing and storing hydrogen, such as heating firebricks

electrically and recovering the energy by flowing the air over the firebricks prior to

entering the nozzle for the power turbine [7]. Only the hydrogen production and

burning scheme will be considered here. Of course NACC/NARC systems have

other advantages than advanced efficiencies and serving as a grid energy storage
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mechanism. They will take advantage of the broad manufacturing base of gas

turbine components and technology. And they will significantly reduce the water

requirements for waste heat removal, reducing such requirements by at least a

factor of two, compared to current LWR’s. But the focus here is on the energy

storage mechanism.

Figure 5.4: Compressor Pressure Ratios

5.1.3 Modeling Approach

The goal of this effort has been to develop models that will enable us to identify the

characteristics of optimal systems. Once the optimal systems have been identified,

then a search can be undertaken for off-the-shelf components that come close to

meeting the requirements of an optimal system. If no such components exist,

then a development need has been identified, and specific requirements can be
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set. There exist a number of cycle analysis codes that can address NACC/NARC

systems such as ThermoLib, ThermoFlex, and AspenTech. Many of our results

have been checked against ThermoLib, but it was desirable to build a code that

would allow not only cycle calculations but also sizing estimates and possibly a

bottom up economic analysis. The cycle modeling follows the techniques described

in [8–10]. Size estimates for turbomachinery follow the scaling parameters given

as in [11]. Heat exchanger sizes are calculated based on preliminary designs. Air

compressor and turbine polytropic efficiencies follow the published scaling rules [8].

Steam turbines were simply set at a 90% isentropic efficiency. All heat exchangers

were designed to meet a 1% pressure drop and a 95% effectiveness. Recuperators

and intercoolers are counterflow, and all other heat exchangers are cross flow. A

pinch point temperature difference of 10◦ was baselined. Predicted efficiencies

have been compared against currently published data for Gas Turbine Combined

Cycles and agree very closely [12, 13].

5.2 NACC Scenarios Analyzed

The objective of this effort was to analyze the impact of Co-Firing the power tur-

bine of a NACC system with a hydrogen burn to augment its power output. Since

the normal turbine inlet temperatures produced by a liquid metal or molten salt

heat exchanger are well below typical gas turbine inlet temperatures, two burn

temperatures were chosen as being of interest. The first was 927◦ which corre-

sponds to the peak temperature that uncooled turbine blades are advertised to

withstand [8]. The second was 1427◦, the temperature advertised as the peak that
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GE H series turbines can achieve [14]. Clearly the nuclear heated only systems

can operate with uncooled turbine blades. If they can operate with cooled blades

without the cooling air losses at reactor outlet temperatures, then it is worth con-

sidering Co-Firing at the 1427◦ limit. At the 1427◦ limit, it may well be necessary

to require ceramic heat exchangers for the HRSG and its superheaters. Estimated

HRSG inlet temperatures in this case are about 1154◦. It should also be pointed

out that the power turbine in all cases will have to be fed by a variable area noz-

zle to accommodate the higher temperature gas and maintain input pressure and

mass flow rate. The operating pressures in the steam bottoming cycles were held

constant between the normal operating conditions and the Co-Firing environment.

This was done to eliminate one control variable in the analysis. It may be useful to

address this restriction in the future. The near optimum pressure for the NACC

system was 9 MPa, and the near optimum pressure for the NACC&RIC system

was set at 12 MPa. The NACC efficiency improves slightly at lower pressures,

and the NACC&RIC improves slightly at higher pressures due to higher temper-

ature air reaching the recuperator. But the improvements in performance are not

significant, and these two pressures are in the range of current GTCC systems.

The power level chosen for this study was 50 MW(e), typical of some Small

Modular Reactors currently being considered. For both systems (NACC and

NACC&RIC) the Brayton air cycle produced about 70% of the power, and the

Rankine steam cycle produced 30% of the power at rated power output. A crucial

parameter of interest is the ratio of the mass flow rate of steam to the mass flow

rate of air. For the NACC system this ratio was about 3% at 500◦ and 6% at 700◦.
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For the NACC&RIC system it was approximately 1% lower at all temperatures.

Normal turbine inlet temperatures (TIT) are used to characterize the systems

analyzed as they can easily be related to the technology involved.

5.3 NACC with only Co-Firing

For both the NACC and NACC&RIC systems there are several design strategies

that can be pursued. Consider first the NACC system. For this system there are no

downstream temperature limitations. So when the gas exiting the power turbine

is routed to the HRSG, the entry temperature for the 927◦ power turbine inlet

temperature is 763◦, and the HRSG exit temperature is 277◦ if the normal turbine

inlet temperature is 500◦. The pinch point temperature difference is 348◦. For

this power turbine inlet temperature when the normal turbine inlet temperature

is 700◦ the HRSG inlet temperature is 666 ◦ and the exit temperature is 405◦. The

pinch point temperature difference is now 163◦. The increase in power as a result

of the hydrogen Co-Firing is given in Fig. 5.5 for both the 927◦ and 1427◦ cases.

At a normal 500◦ TIT, the power goes up about 55% when Co-Fired to 927◦ and

more than doubles at 1427◦. The hydrogen is burned with an efficiency of between

20% and 32% for both the 927◦ case and the 1427◦ case. This low efficiency occurs

because the temperature drop between the air and the steam in the evaporator

is quite large. The pinch point temperature difference goes from 10◦ to 153◦.

This is a major penalty and probably not a reasonable method of operation. The
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Figure 5.5: Power increase due to Co-Firing at normal steam flow rates

efficiency of the hydrogen burn is improved significantly with other designs, as

shown.

5.4 NACC with Co-Firing and Increased Steam

Flow

The large pinch point temperature differences with simple Co-Firing imply a large

increase in irreversibility or exergy. The easiest way to bring the pinch point

temperature difference back down to a more efficient case ( 10◦) is to increase the

steam flow in the bottoming cycle. This would imply that during normal operation

the bottoming cycle would operate at flow rates significantly less than maximum.
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The loss in efficiency for operating in this manner has not been calculated. How-

ever, since the steam system only produces 30% of the total power during normal

operation the loss in efficiency will be mitigated. Fig. 5.6 describes the increase

in steam flow required to lower the pinch point temperature difference to its value

before Co-Firing.

Figure 5.6: Increase in steam flow to maintain pinch point for the NACC
system

At a 500◦ nominal TIT the increase in steam flow is 300% for 927◦ and 500%

for 1427◦. This means the normal bottoming system would be running at 25% of

maximum if a 927◦ burn is desired and at 17% of maximum if a 1427$◦ burn is

desired.

However the increase in power is significant as described in Fig. 5.7. For the

normal 500◦ TIT case the power can be increased by 200% for a burn at 927◦ and
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Figure 5.7: Power increase for NACC if the pinch point temperature difference
is held constant.

450% at 1427◦. At a normal 700◦ TIT the increases are not as great, but still very

significant - 200% for Co-Firing at 1427◦ and 100% for 927◦. Fig. 5.8 presents

the hydrogen burn efficiency for this case.

5.5 NACCRIC with Co-Firing - Maximum Re-

cuperator Temperature Limit

When the recuperator and intercooler are added the normal operation efficiency

increases, but it sets a limit on the peak temperature that the recuperator can

add to the flow entering the first heat exchanger. No matter how much heat

the recuperator adds during Co-Firing, it will affect the heat transferred in the
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Figure 5.8: Hydrogen burn efficiencies when the pinch point temperature
difference is constant.

first heat exchanger. The limiting case occurs when the air temperature entering

the first heat exchanger reaches the normal TIT. In this case the heat exchanger

transfers no heat to the air, and the reactor power must be reduced to compensate

for this lack of heat transfer. This doesn’t appear to be an impossible condition,

but all of the ramifications have not been explored at this time. Therefore the

following analysis is based on limiting the hot air out of the recuperator to the

normal TIT for the system. This can be accomplished in three ways. First it is

possible to limit the burn temperature in the Co-Firing process to less than the

maximum. Second it is possible to dump the hot gas going into the recuperator

so as to not exceed its output limit. Third it is once again possible to increase the

steam flow in the bottoming cycle to pull down the fluid temperature entering the

recuperator so that it only transfers enough heat to bring the air flow entering the
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first heat exchanger up to its normal TIT. The second option will not be considered

as it is obviously a waste of energy.

5.6 Limiting the Co-Firing temperature

The limit on the Co-Firing temperature as a function of the normal system TIT

is plotted in Fig. 5.9. The limit is less than 927◦, up to about 560◦. So at normal

system TITs above 560◦, the full 927◦ Co-Firing can be accomplished. The peak

Co-Firing temperature for the 700◦ case is about 1317◦, so the 1427◦ Co-Firing

can’t be reached even in this case.

Figure 5.9: The maximum Co-Firing temperature allowed to reach the system
normal TIT

Fig. 5.10 describes the power increase possible by choosing to limit the maximum

Co-Firing temperature as described above. The increase varies from 35% to 70%
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as a function of the normal system TIT. Fig. 5.11 presents the required reactor

heat output as a function of its rated power during Co-Firing at the maximum

allowed temperature.

Figure 5.10: Power increase allowed by Co-Firing at the maximum allowed
temperature

The reactor power must be reduced because the first heat exchanger is no longer

transferring heat to the air. Fig. 5.12 presents the hydrogen burn efficiency for

this case. Note that the efficiency for this case is significantly greater than those

for the basic NACC system and 10 to 15% greater than any achieved by current

Gas Turbine Combined Cycle systems.
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Figure 5.11: The required fraction of rated power for the reactor when Co-
Firing at maximum temperature

Figure 5.12: Hydrogen burn efficiency at the maximum Co-Firing temperature
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5.7 NACCRIC with Co-Firing - Increased Steam

Flow to Meet Recuperator Temperature Limit

The steam flow in the bottoming cycle can be increased to limit the temperature

out of the recuperator to the normal operating TIT similar to the way it was for

the NACC system. In this case it is not the pinch point temperature difference

that matters, but rather the recuperator outlet temperature entering the first

heat exchanger. Fig. 5.13 plots the required increase in steam flow to limit the

recuperator outlet temperature. Note that for normal system TITs above about

560◦, the steam flow does not have to be increased for the 927◦ Co-Firing. The

peak increase is about 150% at a system normal TIT of 500◦. When Co-Firing a

700◦ system at 1427◦ the peak increase in steam flow is about 15%. The increase in

power achieved by increasing the steam flow in the bottoming circuit is described

in Fig. 5.14.

At the 500◦ limit increasing the steam flow by 140% increases the power output by

slightly over 100% when Co-Firing at 927◦. When Co-Firing at 1427◦ increasing

the steam flow by 400%, increases the power output 340%. At the 700◦ limit, the

steam flow does not need to be increased but a 25% increase in output is achieved

by Co-Firing at 927◦. Co-Firing at 1427◦ increases the power output 90% for a 15%

increase in steam flow. The reactor power requirements are plotted in Fig. 5.15.

For the 927◦ Co-Firing the power requirements decrease with normal system TIT

until an increase in steam flow is no longer required. When the increased steam

flow is no longer required, the recuperator outlet temperature to the reactor drops
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Figure 5.13: Increase in steam flow for the recuperator outlet temperature
limit

Figure 5.14: Percent power increase when the steam flow is increased to reach
the maximum recuperator outlet temperature.
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and the reactor power must be increased to maintain the nominal system TITs.

This causes a rather dramatic increase in reactor power above 550◦. When Co-

Firing occurs at 1427◦, increased steam flow is always required, so the reactor

power requirement continuously decreases from about 40% to 30%.

Figure 5.15: Required fraction of reactor rated power when Co-Firing with
increased steam flow

The efficiency of the hydrogen burn is plotted in Fig. 5.16. For the 927◦ Co-Firing

the efficiency starts at 45% but rapidly rises to over 70% and peaks for the 700◦

system at almost 90%. This is because the hydrogen is introduced at the normal

TIT temperature and must raise the fluid temperature to only 927◦. For the 1427◦

Co-Firing the burn efficiency starts at 47% and eventually increases to over 75%

for the 700◦ system.
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Figure 5.16: Hydrogen burn efficiency when steam flow is increased to meet
the maximum recuperator outlet temperature.

5.8 NARC Scenarios Analyzed

By dropping the steam bottoming cycle it is possible to build a Nuclear Air Bray-

ton Recuperated (Only) Cycle. With a water cooled intercooler (NARCw) this

cycle appears to be the most efficient as plotted in Fig. 5.3. The relative amount

of heat that must be dumped to the environment for a NACC&RIC system and a

NARCw system is plotted in Fig. 5.17. The NARCw system is significantly better

than a NACC&RIC system. However it is also possible to build a NARC with an

air cooled intercooler (NARCa). These systems will not require any environmental

water for a heat dump.

Since the same problem with the exit temperature from the Recuperator not ex-

ceeding the system nominal TIT occurs for NARC systems, it is better to set the
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Figure 5.17: Comparison of required environmental heat removal by water for
NACC&RIC and NARCw systems

burn temperature for hydrogen augmentation based on this limit. Fig. 5.18 plots

the peak burn temperature for this condition. Note that the peak burn temper-

ature in all cases does not significantly exceed the 927◦ temperature for uncooled

turbine blades.

Similar to the case for a NACC system, the hydrogen is burned at a very high

efficiency. This data is presented in Fig. 19. In the case of recuperated systems

this efficiency is always over 70%. Since instead of producing the hydrogen on

site and storing it, natural gas could be burned with a slightly different turbine

strategy and achieve a similar efficiency. This means that the most efficient use

of natural gas would be to augment a NARC system [15]. Of course this means

a larger carbon footprint, but not as large as burning it in a gas turbine of any
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Figure 5.18: Recommended peak burn temperatures for NARC systems

variety.

Figure 5.19: Hydrogen burn efficiency for NARC systems
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The power augmentation due to Co-Firing for NARC systems is not as significant

as it is for NACC systems. The power increases are presented in Fig. 5.20: the

augmentation varies from about 16% to 26% from low to high nominal TIT. Since

the NARC systems do not have the power enhancement capability of the steam

bottoming cycle, the gains due to Co-Firing are not as significant. However there

is also less concern about efficiencies over the operating range of the steam cycle.

The NARCa is a little less efficient and produces a smaller increase in power during

Co-Firing.

Figure 5.20: Percent power augmentation for NARC systems using Co-Firing

Finally it is worth talking about overall system efficiencies during Co-Firing, and

the sizes of these Nuclear Air-Brayton systems. The overall efficiency for burning

both nuclear and hydrogen fuel for the NACC and both NARC systems is presented
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in Fig. 5.21. For the two systems requiring water as a heat dump, the overall

efficiency starts at about 50% for 500◦ and climbs to almost 60% for a 700◦ system.

Figure 5.21: Overall system efficiencies for the co-fired systems

Estimates of overall system sizes are presented in Fig. 5.22. These are for the

nominal 50 MW(e) system. The NACC and NARCw systems are very comparable

in size to the proposed NuScale system, an LWR small modular reactor. NARCa

is significantly larger due to the size required for an air to air intercooler. However

it is worth pointing out that this system requires no cooling water source and can

be built or installed anywhere in the world.
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Figure 5.22: Estimated system volumes for NACC and NARC systems

5.9 Conclusion

Nuclear power plants can serve the role of energy storage systems for the national

electric grids by producing hydrogen when there is an excess of generation due to

strong renewable sources and burning the hydrogen to augment their rated capa-

bility when renewables are not available. The analysis has been performed for a

50 MW small modular reactor, using sodium/molten salt as a primary coolant.

Scale up for a power plant can be accomplished by adding more SMRS or ex-

panding this to a large reactor. Significant power increases can be obtained for

Nuclear Air-Brayton systems by Co-Firing with hydrogen before the power tur-

bine. Power increases in the range of 300-400% can be achieved for NACC that

systems normally operate at 500◦ and increases in the range of 100 to 200% for

systems normally operating at 700◦. The most effective strategy appears to be
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increasing the steam flow in the bottoming cycle when Co-Firing. This works for

both recuperated and unrecuperated systems. Nuclear Air-Brayton Recuperated

(only) systems can achieve higher normal operation efficiencies and comparable

overall efficiencies to NACC systems. The power enhancement provided by NARC

systems is significantly less, in the range of 20%, but easier to implement. The

NARCa system is significantly larger and has a slightly lower efficiency, but it

requires no cooling water to operate. The Air-Brayton power conversion systems

provide a very flexible storage capability for a low carbon grid.
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Experimental Analysis of

Inflatable Tower

The aim of this investigation is to verify and validate the modeling of fluid me-

chanics and heat transfer processes in a solar chimney power plant. The modeling

uses a finite volume method applied to simulate the fluid flow and solve Navier-

Stokes equations for the two- dimensional models of the plant. The representative

size of the plant can be very large, and turbulence must be accounted for. Several

turbulence models were applied in the model. The upstream velocity and power

generated by the power plant system was calculated from the CFD results and

compared with experimental results and available theory. Code sensitivity to dif-

ferent parameters of the flow was investigated. Power prediction from the model

appears to be keenly sensitive to the pressure boundary conditions, suggesting

184
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that some choices of the boundaries of the computational domain may lead to

unreliable results.

https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=44167

https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=44167
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Motivation 

• How can we generate electricity from the 
natural convection effect? 

• Alternate sustainable energy pathway from 
solar radiation to electrical available for night 
operation. 

• Are we able to combine our cycle? 

 



Solar Tower Power Plant 



Background 

• Spanish colonel proposed this idea(1903). 

 

•  The most famous prototype built in 
Manzanares at Spain in 1982 and rebuilt in 
1989. 

• China recently started to invest on this 
industry. 
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Flow 
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Manzanares Simulation  
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Numerical Analysis-I 

Verification 

• Mesh Independency  

• Iterative Convergence 

• Consistency: 0.001 mass flow rate 

• Boundary Condition Sensitivity 

• Density Sensitivity  Analysis 

•  Second Order of Discretization  

 



Numerical Analysis-I 

Calibration of pressure boundary 
condition 

Calibration of collector boundary 
condition 
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Validation  

 

• Updraft Vel. of experimental set up: 10-12 m/s 

• Updraft Vel. of numerical analysis: 11.56 m/s 
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Numerical Analysis-II 
CFD Analysis of Solar Chimney Power Plant Prototype 

Finite Volume 
Method to Solve 

N.S. Equations 

Shear Stress 
Transport Model 

(SST) 

Density 
Calculation by 

Ideal Gas 
Equation 

Steady State  

Two-Dimensional 
Analysis 

First Order 
Spatial 

Discretization  
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• Detail of Boundary Conditions, 53k nodes. 
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CFD Analysis of Solar Chimney Power Plant 
Prototype 

Case I 

∆T = 15 K 

No Wind 

Case II 

∆ T=5 

5 m/s wind flow 

Case III 

∆ T≈ 0 

5 m/s wind flow 
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Prototype 

• Case I 
 

Velocity contour plot, Unit is m/s, mass flow rate= 0.0521 kg/sec, Buoyancy effect is dominant.  
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Prototype 

• Case II 
Velocity contour plot, Unit is m/s, mass flow rate= 0.0559 kg/sec, Dynamic pressure is dominant.  
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Prototype 

• Case III 
 

Velocity contour plot, Unit is m/s, mass flow rate= 0.0557 kg/sec. 
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Validation 

 

 

• 4-5 m/s wind, probe shows: 2.5 m/s 

• 5 m/s wind, at the same position : 2.3 m/s 
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Innovations 

 What differentiates our approach (two patents). 

o Optimize solar chimney with new enhancements for higher energy 
efficiency: 
• Optimal design of sloping collectors and divergent towers. 

• Convergent-divergent shape to increase energy production by about 15%. 

• Performance gains from a flow-directing hub on the ground. 

• Higher harvestable kinetic energy at the turbine. 

• Double tray collector. 

o Adapt the advanced solar chimney onto a power plant for more efficient 
energy : 
• The above modifications can be incorporated into an optimized solar 

chimney, which is then interfaced onto a power plant, such as nuclear and 
coal.  

• Instead of releasing the waste heat through a cooling tower, the heat is 
transformed from buoyant to kinetic energy that drives the turbines, 
thereby significantly increasing the overall power plant efficiency.  

 

 



Conclusion 

 For BC, it is better to use temperature 
difference for the ground. 

 Code calibration plays an important role for 
SCPP. 

 It is better to validate the calibrated code with 
another experimental model too. 

 Wind situation should be considered in CFD to 
be closer to the reality. 
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