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Abstract — New results on the nilpotency of the waveform 

relaxation (WR) algorithm are presented for chains of general 

linear time-invariant circuits. Strictly dissipative impedance 

coupling is used in the WR method to decouple the cascaded 

parts. Three relaxation schemes: Gauss-Jacobi, Gauss-Seidel 

and relaxation by forward and reverse sweeping implement 

the WR iterations. The analysis of the operator matrices in the 

Fourier domain leads to the characterization of the nilpotent 

WR operator for the three relaxation schemes. 

 

Index Terms—Waveform relaxation, impedance coupling, 

transmission conditions, iteration matrix, nilpotent operators, 

transient simulation. 

I. INTRODUCTION 

AVEFORM RLAXATION (WR) techniques [1]–[7] 

were introduced in the early 1980s as an alternative to 

direct time-stepping algorithms used by circuit simulators 

for solving ordinary differential equations. The concept of 

WR is based on partitioning the original circuit into 

subcircuits that are solved independently of each other on 

the entire time interval of interest. Coupling effects among 

individual subcircuits are represented by time-domain 

sources that are initially assumed to be known. Circuit 

response is reached iteratively through repeated estimations 

of these coupling effects. The main steps of WR circuit 

computing can be found in [8]. 

Several techniques were proposed in the literature to 

improve the efficiency of WR analysis including dynamic 

partitioning, scheduling, and time windowing, see [9, Ch. 8, 

pp. 41-123] and references therein. However, the rate of 

convergence remains a major challenge facing WR 

techniques and limits their applicability. To obtain fast 

convergence, it is necessary that partitioning the original 

circuit is done in such a way that the coupling among the 

individual subcircuits is weak. A requirement which is 

difficult to fulfill in general in longitudinal partitioning 

schemes (LP). 

The idea of optimal WR convergence was brought to 

circuit problems in [23] and led to the emergence of a class 

of WR-LP methods called optimized WR. These methods 

are suitable for strongly coupled serial circuits. They attain 

a faster and more uniform convergence through the 

exchange of appropriate combinations of current and 

voltage waveforms between adjacent subcircuits instead of 

just a current or a voltage, as in classical WR [23].  

Such information exchange was implemented in the so-

called transmission conditions (TC) equations [23, eqn. 

(2.5)],[30, eqns. (17),(18)] for one-node overlap and [24, 

eqn. (2.9)] for two-node overlap.  Optimal convergence 

requires nonlocal operators in the TC equations and 

therefore is expensive [24]. To avoid this obstacle, constant 

and first-degree polynomial approximations of the optimal 

operators were calculated for RC ladder circuit in [24] and 

in sequel works [25]-[27], for one lumped RLCG line type 

circuit [28],[29], and for the PEEC circuit [30].  

The WR-LP algorithms in the early and intuitive work 

[10],[11] and later in [12]-[16] are not classic. According to 

[32, Sec. II.B], they executed what was defined later as 

transmission conditions [23, eq. (2.5)] on the line 
−𝛼 = 𝛽 = 𝑅𝑜

−1 by inserting a neutral series connection of 

three resistances (−𝑅𝑜), (2𝑅𝑜), and (−𝑅𝑜), 𝑅𝑜 > 0, between 

every channel or TL and its terminations. The algorithm 

[31] also executed conditions [23, eqn. (2.5)] on region 

ℝ∗
− × ℝ∗

+: (𝛼, 𝛽) = (−𝑅2
−1, 𝑅1

−1) by replacing insertions 

(−𝑅𝑜), (2𝑅𝑜), and (−𝑅𝑜) [10]-[13] with (−𝑅1), (𝑅1 + 𝑅2), 

and (−𝑅2) where 𝑅1 and 𝑅2 are different in general. The 

WR-LP [31] relies on a numerical optimization step to 

calculate near-to-optimal values for its coupling resistances. 

The replacement of coupling resistances by strictly 

dissipative impedances produces a general and consistent 

WR-LP algorithm [32, Lemma D.1]. In the one-node 

overlap case, coupling impedances represented kernels of 

convolution integral operators in the companion TC 

equations [32, eqns. (5),(6)]. The algorithm is optimal when 

its kernels are equal to the driving-point impedances of the 

decoupled parts themselves [32, Thms. D.3,D.4]. An 

optimal kernel produces a null transmission gain in the 

corresponding direction and results in a null local 

convergence factor. 

The optimal WR-LP algorithm is not cost-efficient, 

however judicious approximations of its kernels produced 

cost-efficient methods at suboptimal speeds of convergence 

[24],[25],[29]-[32]. In the same way, a nilpotent WR-LP 

algorithm is not expected to be cost-efficient either but 

clever approximations of its nilpotency condition would 

also lead to efficient algorithms. Like the convergence of the 

WR, the existence and possibly the characterization of the 

nilpotent algorithm depend closely on the underlying circuit 

problem to be solved, see [33] for instance. The 

characterization of the nilpotent set would be useful in 

designing efficient approximation schemes. 
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This paper concerns the application of the WR-LP [32] 

for the time-domain analysis of chains of general passive 

linear time-invariant (LTI) circuits [34]. It presents new 

results on the nilpotency of the WR-LP method with respect 

to three relaxations schemes: Gauss-Jacobi relaxation (GJ), 

Gauss-Seidel relaxation (GS), and relaxation by forward 

and reverse sweeping (S). The iteration matrices of the 

corresponding operators: GJ-WR, GS-WR and S-WR are 

derived in the Fourier domain and their nilpotency is 

investigated for positive real frequencies, 𝜔 ≥ 0. It is shown 

that nilpotent operators must have null local convergence 

factors, but the converse is not true. It is demonstrated that 

all nilpotent S-WR operators are optimal whereas there exist 

nilpotent GJ-WR and GS-WR that are not optimal. The 

analysis reveals that the way forward and reverse 

transmission gains are set to zero affects the indices of the 

nilpotent GJ-WR and GS-WR. Finally, optimality condition 

[29, Thm. 2.1],[32, Thm. D.4] is relaxed and is replaced 

with two new conditions; one for chains with an odd number 

of subcircuits and the other is for chains with an even 

number of subcircuits. 

The rest of the paper is organized as follows: A review of 

impedance coupling [32] is presented in section II.A, and 

the implementation of GJ-WR, GS-WR and S-WR are 

briefly explained in section II.B. The iteration matrices of 

the three WR-LP operators are constructed in section III and 

their nilpotency is examined in section IV. Numerical 

experiments are presented in section V to validate the 

theoretical results.   

II. PRELIMINARIES 

A. Strictly dissipative impedance coupling [32]  

Impedance coupling applies on any two parts P1 and P2 in 

a circuit that are connected in an open-loop configuration, 

either directly or via a strictly dissipative element 𝑍𝑜 (Fig. 

1). Impedance coupling is realized by inserting a neutral 

series connection of three impedances (−𝜁1), 𝜁Σ and (−𝜁2) at 

the split node between P1 and P2. Coupling impedances 𝜁1 

and 𝜁2 are strictly dissipative, ie 𝜁1(𝑠) and 𝜁2(𝑠) are two 

strictly positive-real complex functions of the complex 

frequency 𝑠 = 𝜎 + 𝑖𝜔, (𝜎, 𝜔) ∈ ℝ+ × ℝ, 𝜔 is the real 

frequency and 𝑖2 = −1. The two-terminal circuit 𝜁Σ 

represents the created overlap from insertion 
{(−𝜁1), 𝜁Σ, (−𝜁2)}. Overlap 𝜁Σ = 𝜁1 + 𝜁2 for a direct 

connection and 𝜁Σ = 𝜁1 + 𝜁2 + 𝑍o in the presence of 𝑍o (Fig. 

1). 

Two possible circuit realizations of impedance coupling 

are presented in Fig. 2 and in Fig. 3. In the first interface, 

coupling impedances 𝜁1, 𝜁2 and their additive inverses (−𝜁1) 

and (−𝜁2) are realized according to the procedure explained 

in [32, Sec II.C]. The relaxation algorithm exchanges nodal 

voltages at the two extremities of 𝜁Σ in P1 and P2 in order to 

implement the iteration regardless of the type of 𝜁1 and 𝜁2 

(Fig. 2) 

𝑤1
1,2(𝑘+1)

= v2
1,2(𝑘)

 (1) 

𝑤2
1,2(𝑘+1)

= v1
1,2(𝑘+𝜐)

 (2) 

Parameter 𝜐 =0 in the GJ relaxation and 𝜐 =0 in the GS case.  

Lumping 𝜁Σ and (−𝜁1) together on the side of P1 and 𝜁Σ and 
(−𝜁2) together on the side of P2 leads to a compact interface 

(Fig. 3). Nodal voltage exchange (1),(2) is no longer 

possible since nodes v2
1,2 and v1

1,2 are not available. The 

algorithm uses instead a more elaborate voltage exchange, 

expressed in the Laplace space as, see [32, eqns. (3),(4)] 

𝑤̃1
1,2(𝑘+1)

= 𝑢̃2
1,2(𝑘)

(𝜁1 + 𝜁2) 𝜁1⁄ − 𝑤̃2
1,2(𝑘)

𝜁2 𝜁1⁄  (3) 

𝑤̃2
1,2(𝑘+1)

= 𝑢̃1
1,2(𝑘+𝜈)

(𝜁1 + 𝜁2) 𝜁2⁄ − 𝑤̃1
1,2(𝑘+𝜈)

𝜁2 𝜁1⁄  (4) 

Aside from case 𝜁1 = 𝜆𝜁2, 𝜆 ∈ ℝ+
∗ , where update equations 

(3) and (4) use local data points at every time step  

𝑤1
1,2(𝑘+1)

= 𝑢2
1,2(𝑘)

(1 + 𝜆) 𝜆⁄ − 𝑤2
1,2(𝑘)

𝜆⁄  (5) 

𝑤2
1,2(𝑘+1)

= 𝑢1
1,2(𝑘+𝜈)

(1 + 𝜆) − 𝑤1
1,2(𝑘+𝜈)

𝜆 (6) 

the source update in general requires nonlocal operators in 

time. When kernels 𝜁1 and 𝜁2 are nonproportional complex 

rational or irrational functions, it is possible to avoid the 

repetitive expensive source update by also realizing the 

additive inverses (−𝜁1) and (−𝜁2) in the first implementation 

(Fig. 2). 

B. GJ-WR, GS-WR and S-WR in the chain problem 

Consider a cascaded chain of N parts Pn, 1 ≤ n ≤ N and N ≥

3, see Fig 4. To compute the WR solution, every two 

consecutive parts Pn and Pn+1, 1 ≤ n ≤ N − 1, are decoupled 

 
Fig. 2 First circuit representation of impedance coupling. 

 

  
Fig. 1 Parts 𝑁1 and 𝑁2 are connected in an open-loop 

configuration. Left. Direct connection. Right. Connection via 

element 𝑍𝑜.  

 

 

Fig. 3 Second (compact) circuit representation of impedance 

coupling. 

 

 

Fig. 4 Chain connection of N parts 
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by inserting a neutral series connection of three impedances 

{−𝜁n
n,n+1, 𝜁n

n,n+1 + 𝜁n+1
n,n+1, −𝜁n+1

n,n+1} at node an+1 and 

grounding node bn+1, see Fig. 5. Coupling impedances 

𝜁n+1
n,n+1

 and 𝜁n
n,n+1

 represent the total additions to Pn and Pn+1 

whereas 𝑤n
n,n+1(𝑡) and 𝑤n+1

n,n+1(𝑡), 𝑡 ≥ 0, are the WR external 

variables and are realized as voltage sources. The iteration 

is sustained by the repetitive update of sources 𝑤n
n−1,n

, 2 ≤

n ≤ N, and 𝑤n
n,n+1

, 1 ≤ n ≤ N − 1 using eqns. (1),(2). The 

three pseudocodes in ALGORITHMS 1, 2 and 3 summarize 

the main steps in executing the GJ-WR, GS-WR, and S-WR 

for the first implementation (Fig. 2).   

III. CONSTRUCTION OF WR ITERATION MATRICES 

Every part Pn is represented with a LTI reciprocal two-

port network. For the linear initial-value problem 

represented by the circuit of Fig. 5, it suffices to study the 

convergence of the error to the zero solution of the 

subsequent homogeneous problem with zero initial 

conditions represented by the circuit of Fig. 6. The two 

terminations of the chain are replaced by their respective 

input impedances ZTL and ZTR. Let e1
1,2(𝑡)(𝑘),.., en

n−1,n(𝑡)(𝑘), 

en
n,n+1(𝑡)(𝑘),.., eN

N−1,N(𝑡)(𝑘), 2 ≤ n ≤ N − 1, be the differences 

between the WR external variables w1
1,2(𝑡),.., wn

n−1,n(𝑡)(𝑘), 

wn
n,n+1(𝑡)(𝑘),.., wN

N−1,N(𝑡)(𝑘) calculated at iteration 𝑘 and  

their final waveforms at convergence. Let ê1
1,2(𝑘)

,.., ên−1
n−1,n(𝑘)

, 

ên
n−1,n(𝑘)

,.., êN
N−1,N(𝑘)

 be their respective Fourier transforms. 

The iteration matrices are obtained with respect to the 

following 2(N − 1) × 1 error vectors 𝐞𝟏, 𝐞𝟐 and 𝐞𝟑.  

𝐞𝟏 = (ê2
1,2, ê1

1,2, ê3
2,3, ê2

2,3, . . , ên
n−1,n, ên−1

n−1,n, . . , êN
N−1,N, êN−1

N−1,N )
𝑇
 

(9) 

 
Fig. 5 Decoupled parts of the chain. First interface implementation. 

 
ALGORITHM 1 GJ-WR 

1: Initialize all relaxation sources      

2: 𝑘 ← 0: set iteration count to zero 
3: 𝜀 ← 𝜖: threshold tolerance 𝜖 
4: Do 

5: Begin 

6: Solve all parts  Pn using their input 

𝑤n
n−1,n(𝑘)

 and 𝑤n
n,n+1(𝑘)

  

7: Collect vn
n−1,n(𝑘)

 for all 2 ≤ n ≤ N  

   and vn
n,n+1(𝑘)

 for all 1 ≤ n ≤ N − 1 

8:  𝑤n
n,n+1(𝑘+1)

← vn+1
n,n+1(𝑘)

 for all 1 ≤ n ≤ N − 1 

  𝑤n
n−1,n(𝑘+1)

← vn−1
n−1,n(𝑘)

 for all 2 ≤ n ≤ N 

9:  Compute errors  
10:  𝑘 ← 𝑘 + 1 
11: End 

12: While errors ≤ 𝜀 

 
ALGORITHM 2 GS-WR  

1: Initialize relaxation sources of odd     

 All numbered parts P2m+1 

2: 𝑘 ← 0: set iteration count to zero 
3: 𝜀 ← 𝜖: threshold tolerance 𝜖 
4: Do 

5: Begin 

6: Solve all parts  P2m−1 using inputs  

 𝑤2m−1
2m−1,2m(𝑘)

 and 𝑤2m−1
2m−2,2m−1(𝑘)

 

7: Collect all voltages v2m−1
2m−1,2m(𝑘)

  

 and v2m−1
2m−21,2m−1(𝑘)

 

8: 𝑤2m
2m−1,2m(𝑘)

← v2m−1
2m−1,2m(𝑘)

 and 

 
𝑤2m

2m,2m+1(𝑘)
← v2m+1

2m,2m+1(𝑘)
 for all P2m  

9: Solve all parts  P2m using inputs 

 
𝑤2m

2m−1,2m(𝑘)
 and 𝑤2m

2m,2m+1(𝑘)
          

10: Collect all voltages v2m
2m−1,2m(𝑘)

 and  

 v2m
2m,2m+1(𝑘)

 

11: 𝑤2m−1
2m−1,2m(𝑘+1)

← v2m
2m−1,2m(𝑘)

 and 

 𝑤2m−1
2m−2,2m−1(𝑘+1)

← v2m−2
2m−2,2m−1(𝑘)

 for all P2m−1              

12: Compute errors  
13: 𝑘 ← 𝑘 + 1 
14: End 

15: While errors ≤ 𝜀 

 

ALGORITHM 3 S-WR  

1: Initialize relaxation sources 𝑤n
n,n+1

 of     

 all parts Pn 

2: 𝑘 ← 0: set double sweep count to zero 
3: 𝜀 ← 𝜖: threshold tolerance 𝜖 
4: DO 

5: BEGIN 

6: 𝑘 ← 𝑘 + 1 

7: FOR m = 1 TO N − 1 DO 

8: Solve part Pm 

9: Collect voltage vm
m,m+1(𝑘)

 

10: 𝑤m+1
m,m+1(𝑘)

← vm
m,m+1(𝑘)

 

11: ENDFOR 

12: FOR m = N TO 2 DO 

13: Solve part Pm 

14: Collect voltage vm−1
m−1,m(𝑘)

 

15: 𝑤m−1
m−1,m(𝑘)

← vm−1
m−1,m(𝑘)

 

16:  ENDFOR 

17: Compute errors in all relaxation  

    sources 

18: END 

19: WHILE errors ≤ 𝜀 
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for the GJ-WR, 

𝐞𝟐 = (
𝐞𝟐,𝒐

𝐞𝟐,𝒆
)   

𝐞𝟐,𝒐 = (ê1
1,2, ê3

2,3, ê3
3,4, . . , ê2n+1

2n,2n+1, ê2n+1
2n+1,2n+2, . . )

𝑇
  

𝐞𝟐,𝒆 = (ê2
1,2, ê2

2,3, . . , ê2n
2n−1,2n, ê2n

2n,2n+1, . . )
𝑇
 

(10) 

for the GS-WR, and 

𝐞𝟑 = (
𝐞𝟐,𝒇

𝐞𝟐,𝒃
)   

𝐞𝟐,𝒇 = (ê2
1,2, ê3

2,3, . . , ên+1
n,n+1, . . , êN−1

N−2,N−1, êN
N−1,N)

𝑇
  

𝐞𝟐,𝒃 = (ê1
1,2, ê2

2,3, . . , ên
n,n+1, . . , êN−2

N−2,N−1, êN−1
N−1,N)

𝑇
 

(11) 

for the S-WR. Subscripts 𝒐, 𝒆, 𝒇 and 𝒃 stand for odd, even, 

forward and backward whereas 𝑇 is the transpose operator. 

Note that it is possible to put relaxations sources e1
1,2(𝑡), 

e2
1,2(𝑡),.., en

n,n+1(𝑡), en+1
n,n+1(𝑡),.., eN−1

N−1,N(𝑡), eN
N−1,N(𝑡) in any 

order to form vectors 𝒆𝟏 and in 𝐞𝟐,𝒐 and 𝐞𝟐,𝒆 to form 𝒆𝟐. 

Different orderings in vectors 𝒆𝟏 and 𝒆𝟐 lead to similar 

iteration matrices. Ordering (9) considers the location of the 

primary inputs and the signal simultaneous propagations 

along both directions in a bidirectional chain. Ordering (10) 

reflects the two-time update during one GS iteration. Both 

GJ-WR and GS-WR update their sources simultaneously on 

both directions along the serial partition. The S-WR 

algorithm however updates its sources successively along 

same one direction: from P1 to PN (forward sweep) then from 

PN back to P1 (backward sweep), which justifies ordering 

(11). The iteration matrix of the S-WR is not similar to those 

of GJ-WR and GS-WR. Finally, it is worth noticing that 

errors 𝐞𝟏, 𝐞𝟐 and 𝐞𝟑 are used only to study convergence. In 

practice, the consistent algorithms retain the values of their 

external variables from the last two iterations. They 

calculate their difference and use it as an error estimate to 

detect convergence. 
To update the error sources (1),(2), it is necessary to 

calculate voltages v1
1,2 at node a2 in P1, vn

n−1,n and vn
n,n+1

 at 

nodes an and an+1 in any internal part Pn, and finally vN
N−1,N 

at node aN in PN (Fig. 6). Basic circuit analysis of the 

decoupled parts in the frequency domain (Fig. 10), results 

in the following equations  

v̂1
1,2 = 𝑎1

+ê2
1,2   

v̂n
n,n+1 = 𝑏n

+ ên
n−1,n + 𝑎n

+ ên
n,n+1   

v̂n
n−1,n = 𝑎n

− ên
n−1,n + 𝑏n

− ên
n,n+1 , (2 ≤ n ≤ N − 1)  

v̂N
N−1,N = 𝑎N

−êN
N−1,N  (12) 

Coefficient 𝑎n
+, 1 ≤ n ≤ N − 1, is the forward transmission 

gain from part Pn to Pn+1 whereas 𝑎n
−, 2 ≤ n ≤ N, is the 

backward or reverse transmission gain from Pn back to Pn−1. 

Coefficients 𝑎n
+, 𝑏n

+, 𝑏n
− and 𝑎n

− are given as 

𝑎n
+ =

Zn
n,n+1 − 𝜁n

n,n+1

Zn
n,n+1 + 𝜁n+1

n,n+1 , (1 ≤ n ≤ N − 1) 

𝑎n
− =

Zn
n−1,n − 𝜁n

n−1,n

Zn
n−1,n + 𝜁n−1

n−1,n , (2 ≤ n ≤ N) 

𝑏n
+ =

(𝜁n
n,n+1 + 𝜁n+1

n,n+1)𝑍12
𝐧

(Zn
n−1,n + 𝜁n−1

n−1,n)(𝑍22
𝐧 + 𝜁n+1

n,n+1)
 

, (2 ≤ n ≤ N − 1) 

𝑏n
− =

(𝜁n−1
n−1,n + 𝜁,n

n−1n)𝑍12
𝐧

(Zn
n,n+1 + 𝜁n+1

n,n+1)(𝑍11
𝐧 + 𝜁n−1

n−1,n)
 

(13) 

where Z11
𝐧(𝑖𝜔), Z12

𝐧(𝑖𝜔), Z21
𝐧(𝑖𝜔) and Z22

𝐧(𝑖𝜔) are the 

impedance parameters of part Pn, 1 ≤ n ≤ N, such that 

Z12
𝐧 = Z21

𝐧, see Fig. 6. Every interior Pn possesses two input 

impedances  Zn
n−1,n and Zn

n,n+1 taken at its nodes an and an+1 

respectively. At the extremities, Z1
1,2 and ZN

N−1,N represent the 

input impedances of parts P1 and PN at nodes a1 and aN. 

Using (1),(2), the interdependence between individual 

errors is expressed as 

ê2
1,2(𝑘+𝜈1)

= 𝑎1
+ê1

1,2(𝑘)
  

ên
n−1,n(𝑘+𝜈1)

= 𝑏n−1
+ ên−1

n−2,n−1(𝑘+𝜈2)
+ 𝑎n−1

+ ên−1
n−1,n(𝑘)

  

(3 ≤ n ≤ N)  

ên−1
n−1,n(𝑘+𝜈1)

= 𝑎n
−ên

n−1,n(𝑘+𝜈2)
+𝑏n

−ên
n,n+1(𝑘+𝜈2)

  

(2 ≤ n ≤ N − 1)  

êN−1
N−1,N(𝑘+𝜈1)

= 𝑎N
−êN

N−1,N(𝑘+𝜈2)
 (14) 

parameters 𝜐1 = 1 and 𝜐2 = 0 for GJ-WR (ALGORITHM 

1), 𝜐1 = 1 for n odd, 𝜐1 = 0 for n even, and 𝜐2 = 0 for GS-

WR (ALGORITHM 2), and finally 𝜈1 = 𝜈2 = 1 for S-WR 

(ALGORITHM 3).   

A. GJ-WR  

A recurrent relation over one iteration, is obtained with 

respect to vector 𝐞𝟏 

𝐞1
(𝑘+1) = 𝐉N 𝐞1

(𝑘) (15) 

Matrix 𝐉N ∈ ℂ2(N−1)×2(N−1) is defined in eq. (16). 

 

 

 

Fig. 6 Chain connection. Left. Homogeneous problem. Right. Frequency-domain representation of part Pn. 
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A second iteration must be performed to obtain a recurrent 

relation for single errors   

𝐞1
(𝑘+2) = (𝐉N)2 𝐞1

(𝑘) (17) 

Matrix (𝐉N)2 in eqn. (18), represents the GJ iteration matrix 

over two iterations. It will be referred to as the GJ iteration 

matrix in the rest of the text. Its diagonal elements 

𝑎n
+(𝑖𝜔)𝑎n+1

− (𝑖𝜔), 1 ≤ n ≤ N − 1, are the local rates of the WR 

for the chain partition.  

A. GS-WR 

A recurrent relation over one iteration with respect to 

vector 𝐞𝟐, is produced 

𝐞𝟐
(𝑘+1) = 𝐒N 𝐞𝟐

(𝑘) (19) 

𝐒N = [
𝐄 𝟎
𝟎 𝐅

] (20) 

𝐒N ∈ ℂ2(N−1)×2(N−1) is the iteration matrix of the GS-WR. 

Block matrices 𝐄, 𝐅 ∈ ℂ(N−1)×(N−1) are given in eqns. 

(21),(22) for N even and in eqns. (23),(24) for N odd. 

A. S-WR 

A recurrent relation over two consecutive sweeps (one 

forward then one backward) with respect to vector 𝐞𝟑, is 

produced 

𝐞𝟑
(𝑘+1) = 𝐑N 𝐞𝟑

(𝑘)   (25) 

𝐑N = [
(𝐀+ ∘ 𝐁+)𝐓(𝐀− ∘ 𝐁−)𝐓 𝟎

𝟎 𝐓(𝐀− ∘ 𝐁−)𝐓(𝐀+ ∘ 𝐁+)
] 

(26) 

𝐑N ∈ ℂ2(N−1)×2(N−1) is the iteration matrix of the S-WR. 

Operator ∘ refers to Hadamard product [35] and 𝐓 ∈

ℂ(N−1)×(N−1) is the involutory backward identity matrix. 

Matrices 𝐀+ ≔ (𝑟𝑖𝑗), 𝐁+ ≔ (𝑠𝑖𝑗), 𝐀− ≔ (𝑡𝑖𝑗) and  𝐁− ≔ (𝑢𝑖𝑗) 

are lower triangular of order (N − 1).  

𝑟𝑖𝑗 = {
0 , 𝑖 < 𝑗

𝑎𝑗
+ , 𝑖 ≥ 𝑗

 (27) 

𝑠𝑖𝑗 = {

0 , 𝑖 < 𝑗

∏ 𝑏𝑘
+

𝑖

𝑘=𝑗+1

, 𝑖 ≥ 𝑗
  (28) 

                
 𝑎1

+𝑎2
− 0 0 𝑎1

+𝑏2
− 0 0          

 0 𝑎1
+𝑎2

− 𝑏2
−𝑎3

− 0 0 𝑏2
−𝑏3

−          

 0 𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 0 0 𝑎2
+𝑏3

− ⋱ ⋱        

 𝑏2
+𝑎3

− 0 0 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 0 ⋱ ⋱        

 𝑏2
+𝑏3

+ 0 0 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 0 ⋱ ⋱ ⋱ ⋱      

 0 0 𝑏3
+𝑎4

− 0 0 𝑎3
+𝑎4

− ⋱ ⋱ ⋱ ⋱      

(𝐉N)2 =   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

     ⋱ ⋱ ⋱ ⋱ 𝑎N−3
+ 𝑎N−2

−  0 0 𝑎N−3
+ 𝑏N−2

−  0 0  

     ⋱ ⋱ ⋱ ⋱ 0 𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  0 0 𝑏N−2
− 𝑏N−1

−   

       ⋱ ⋱ 0 𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  0 0 𝑎N−2
+ 𝑏N−1

−   

       ⋱ ⋱ 𝑏N−2
+ 𝑎N−1

−  0 0 𝑎N−2
+ 𝑎N−1

−  𝑏N−1
− 𝑎N

− 0  

         𝑏N−2
+ 𝑏N−1

+  0 0 𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− 0 

(18)          0 0 𝑏N−1
+ 𝑎N

− 0 0 𝑎N−1
+ 𝑎N

− 

 

 𝑎1
+𝑎2

− 𝑏2
+𝑎3

− 𝑏2
−𝑏3

−     0           

 𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 𝑎2
+𝑏3

− 0           

 0 𝑏3
+𝑎4

− 𝑎3
+𝑎4

− 𝑏4
−𝑎5

− 𝑏4
−𝑏5

− 0         

 0 𝑏3
+𝑏4

+ 𝑎3
+𝑏4

+ 𝑎4
+𝑎5

− 𝑎4
+𝑏5

− 0         

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

𝐄 =     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

         0 𝑏N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  𝑏N−2
− 𝑏N−1

−   

         0 𝑏N−3
+ 𝑏N−2

−  𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑏N−1

−   

           0 𝑏N−1
+ 𝑎N

− 𝑎N−1
+ 𝑎N

− (21) 

 

 0 𝑎1
+ 0 0        

 𝑎2
− 0 0 𝑏2

−        

 𝑏2
+ 0 0 𝑎2

+ ⋱ ⋱      

 0 0 𝑎3
− 0 ⋱ ⋱      

𝐉N =   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

     ⋱ ⋱ 0 𝑎N−2
+  0 0  

     ⋱ ⋱ 𝑎N−1
−  0 0 𝑏N−1

−   

       𝑏N−1
+  0 0 𝑎N−1

+   

       0 0 𝑎N
− 0 (16) 
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𝑡𝑖𝑗 = {
0 , 𝑖 < 𝑗

𝑎N+1−𝑗
− , 𝑖 ≥ 𝑗 (29) 

𝑢𝑖𝑗 = {

0 , 𝑖 < 𝑗

∏ 𝑏𝑘
−

N−𝑗

𝑘=N−𝑖+1

, 𝑖 ≥ 𝑗
 (30) 

where 1 ≤ 𝑖, 𝑗 ≤ N − 1. Note: In all products ∏  (. )
𝑄
𝑟=𝑃  

throughout the text, take ∏  (. )
𝑄
𝑟=𝑃 = 1 when 𝑃 > 𝑄. Matrix 

products (𝐀+ ∘ 𝐁+)𝐓(𝐀− ∘ 𝐁−)𝐓 ≔  (𝑣𝒊𝒋) and 𝐓(𝐀− ∘

𝐁−)𝐓(𝐀+ ∘ 𝐁+) ≔ (𝑤𝒊𝒋) are defined as  

𝑣𝑖𝑗 = 𝑎1+𝑗
− ∑ 𝑎𝑘

+

min(𝑖,𝑗)

𝑘=1

∏ 𝑏𝑙
+

𝑖

𝑙=𝑘+1

∏ 𝑏𝑚
−

𝑗

𝑚=𝑘+1

 (31) 

𝑤𝑖𝑗 = 𝑎𝑗
+ ∑ 𝑎𝑘+1

−

N−1

𝑘=max(𝑖,𝑗)

∏ 𝑏𝑙
−

𝑘

𝑙=𝑖+1

∏ 𝑏𝑚
+

𝑘

𝑚=𝑗+1

 (32) 

In the next section, nilpotency is examined for the three 

algorithms. Matrices (𝐉N)2 (18) and 𝐒N (20) are similar. The 

similarity transformation matrix P is the permutation 

defined by 𝐏𝐞𝟏 = 𝐞𝟐. The nilpotency analysis is therefore 

limited to the GJ relaxation. 

IV. NILPOTENCY ANALYSIS 

Let us define a necessary condition for the existence of 

nilpotent algorithms. First, for the GJ-WR and GS-WR. 

Theorem IV.1 Nilpotent GJ-WR and GS-WR algorithms 

possess null local convergence factors 

 

 𝑎1
+𝑎2

− 𝑎1
+𝑏2

− 0 0               

 𝑏2
+𝑎3

− 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 𝑏3
−𝑏4

−           

 𝑏2
+𝑏3

+ 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 𝑎3
+𝑏4

− 0 0         

 0 0 𝑏4
+𝑎5

− 𝑎4
+𝑎5

− 𝑏5
−𝑎6

− 𝑏5
−𝑏6

−         

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

𝐅 =   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

         𝑏N−4
+ 𝑏N−3

+  𝑎N−4
+ 𝑏N−3

+  𝑎N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑏N−2

−  0  

         0 0 𝑏N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑎N−1

−  𝑏N−1
+ 𝑎N

−  

           𝑏N−2
+ 𝑏N−1

+  𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− (22) 
 

 𝑎1
+𝑎2

− 𝑏2
−𝑎3

− 𝑏2
−𝑏3

−     0               

 𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 𝑎2
+𝑏3

− 0            

 0 𝑏3
+𝑎4

− 𝑎3
+𝑎4

− 𝑏4
−𝑎5

− 𝑏4
−𝑏5

− 0          

 0 𝑏3
+𝑏4

+ 𝑎3
+𝑏4

+ 𝑎4
+𝑎5

− 𝑎4
+𝑏5

− 0          

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱        

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱        

𝐄 =     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱      

     ⋱ ⋱ ⋱ ⋱ ⋱ ⋱      

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

       ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

         0 𝑏N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  𝑏N−3
− 𝑏N−2

−  0  

         0 𝑏N−3
+ 𝑏N−2

+  𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  𝑎N−3
+ 𝑏N−2

−  0  

           0 𝑏N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑎N−1

−  𝑏N−1
− 𝑎N

−  

           0 𝑏N−2
+ 𝑏N−1

+  𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− (23) 
 

 𝑎1
+𝑎2

− 𝑎1
+𝑏2

− 0           

 𝑏2
+𝑎3

− 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 𝑏3
−𝑏4

− 0         

 𝑏2
+𝑏3

+ 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 𝑎3
+𝑏4

− 0         

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱       

𝐅 =    ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

    ⋱ ⋱ ⋱ ⋱ ⋱ ⋱     

      ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

      ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

        0 𝑏N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  𝑏N−2
− 𝑏N−1

−   

        0 𝑏N−3
+ 𝑏N−2

+  𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑏N−1

−   

         0 0 𝑏N−1
+ 𝑎N

− 𝑎N−1
+ 𝑎N

− (24) 
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𝑎j

+𝑎j+1
− = 0, for all  1 ≤ j ≤ N − 1 (33) 

Proof. If complex matrix (𝐉N)𝟐 (18) is nilpotent, then its 

trace ∑ aj
+ aj+1

−N−1
j=1 = 0 at every frequency point ω ≥ 0 [36]. 

A requirement met when aj
+aj+1

− = 0 for all 1 ≤ j ≤ N − 1. 

Same condition applies to 𝐒N (20) since trace is invariant 

under a similarity transformation [36].                              ∎                                                                                                                                                                                                                                                                                                                                                                           

Next, a similar condition is presented for the S-WR. This 

necessary condition is also sufficient according to the 

following result 

Theorem IV.2 A S-WR algorithm is nilpotent if and only if 

all its transmission gains satisfy 

𝑎𝑝
+𝑎𝑞

− = 0, for all  1 ≤ 𝑝 < 𝑞 ≤ N (34) 

Moreover, all nilpotent S-WR algorithms converge exactly 

in two rounds independently of initial waveforms. One 

round is one forward sweep followed by one backward 

sweep. 

Proof. Products (𝐀+ ∘ 𝐁+)𝐓(𝐀− ∘ 𝐁−)𝐓 (31) and 𝐓(𝐀− ∘

𝐁−)𝐓(𝐀+ ∘ 𝐁+) (32) have same trace 𝑎2
−𝑎1

+ + ∑ 𝑎𝑘
−(𝑎𝑘−1

+ +N
𝑘=3

∑ 𝑎𝑙
+ ∏ 𝑏𝑚

−𝑏𝑚
+𝑘−1

𝑚=𝑙+1
𝑘−2
𝑙=1 ), which must be zero if matrix 𝐑N 

(26) is nilpotent. A requirement met when condition (34) is 

satisfied. Conversely, a close look at expressions (31) and 

(32) shows that all entries 𝑣𝑖𝑗 = 0 and 𝑤𝑖𝑗 = 0 if condition 

(34) is satisfied. Hence 𝐑N = 𝟎 is the only nilpotent iteration 

matrix. At the end of round one, all relaxation sources attain 

zero DC waveforms together for the first time. One 

additional round will bring all system variables to the zero 

solution of the homogeneous problem with zero initial 

conditions.                                                                           ∎                                                                                                                                                                                                    

The nilpotent S-WR algorithms of Thm. IV.2 are optimal 

in the sense that faster convergence is not possible. Unlike 

condition (34) which characterizes the nilpotent S-WR, 

condition (33) is not sufficient. There exists GJ-WR and 

GS-WR algorithms with null local convergence factors, yet 

they are not nilpotent according to the following result.   

Theorem IV.3   

(a) Let 𝑎2
− = 𝑎2

+ = ⋯ = 𝑎2k
− = 𝑎2k

+ = ⋯ = 0 while 𝑎1
+, 𝑎3

−, 

𝑎3
+, 𝑎5

−,…, 𝑎2k+1
− , 𝑎2k+1

+  are not equal to zero. The 

resulting GJ-WR and GS-WR algorithms are not 

nilpotent for any chain of at least three subcircuits, N ≥
3.        

(b) Let 𝑎1
+ = 𝑎3

− = 𝑎3
+ = ⋯ = 𝑎2k+1

− = 𝑎2k+1
+ = ⋯ = 0 

while 𝑎2
−, 𝑎2

+, 𝑎4
−, 𝑎4

+, …, 𝑎2k
− , 𝑎2k

+ ,… are not equal to 

zero. The resulting GJ-WR and GS-WR algorithms are 

not nilpotent for any chain of at least four subcircuits, 
N ≥ 4.   

Proof. Cases (a) and (b) are demonstrated by inspection. A 

proof for case (a) is presented. A similar approach is used 

for (b).  

Let us start with matrix 𝐉3 in eqn. (35) where 𝑎2
− = 𝑎2

+ =

0. The column vectors of 𝐉3 are linearly independent in 

general. Matrix 𝐉3 is nonsingular and cannot be nilpotent. 

Next, let us examine matrix 𝐉4 in eqn. (36) where 𝑎2
− = 𝑎2

+ =

𝑎4
− = 0 . If P𝐉3 and P𝐉4 denote the characteristic polynomials 

of matrices 𝐉3 and 𝐉4, then P𝐉4
(𝑥) = 𝑥2 P𝐉3

(𝑥), 𝑥 ∈ ℂ. Matrix 𝐉4 

shares the same non-zero eigenvalues of 𝐉3 and therefore is 

not nilpotent. In the same way, a close look at matrices 𝐉5 in 

eqn. (37) where 𝑎2
− = 𝑎2

+ = 𝑎4
− = 𝑎4

+ = 0 and 𝐉6 in eqn. (38) 

where 𝑎2
− = 𝑎2

+ = 𝑎4
− = 𝑎4

+ = 𝑎6
− = 0  shows that the column 

vector of 𝐉5 are linearly independent since 𝑎3
−𝑎3

+ − 𝑏3
+𝑏3

− ≠ 0.  
Matrix 𝐉5 is therefore nonsingular. As with 𝐉3 and 𝐉4, the 

characteristic polynomials P𝐉5 and P𝐉6 of 𝐉5 and 𝐉6 satisfy 

P𝐉6
(𝑥) = 𝑥2 P𝐉5

(𝑥). Matrix 𝐉6 cannot be nilpotent.  

In general, any two successive matrices 𝐉2𝑚+1 where 𝑎2
− =

𝑎2
+ = ⋯ = 𝑎2m

− = 𝑎2m
+ = 0 and 𝐉2𝑚+2 where 𝑎2

− = 𝑎2
+ = ⋯ =

𝑎2m
− = 𝑎2m

+ = 𝑎2m+2
− = 0 with characteristic polynomials 

P𝐉2𝑚+1
 and P𝐉2𝑚+2

, satisfy the following: 1) The column 

vectors of the 4𝑚 × 4𝑚 matrix  𝐉2𝑚+1 are linearly 

independent since 𝑎𝑙
−𝑎𝑙

+ − 𝑏𝑙
+𝑏𝑙

− ≠ 0, 3 ≤ 𝑙 < 2𝑚 + 1. 2) 

Matrices 𝐉2𝑚+1 and 𝐉2𝑚+2 have the same non-zero 

eigenvalues since P𝐉2𝑚+2
(𝑥) = 𝑥2 P𝐉2𝑚+1

(𝑥). Both 𝐉2𝑚+1 and 

𝐉2𝑚+2 are not nilpotent.                                                        ∎                                                                                                                                                                                                                                           

The conditions of Thm. VI.3 do not satisfy condition (33) 

and hence produce non-nilpotent S-WR. These algorithms 

are not unique. In general, setting gains to zero according to 

the following alternating fashions     

𝑎1
+ = 𝑎2

+ = ⋯ = 𝑎k1

+ = 0,  

𝑎𝑘2

− = 𝑎𝑘2−1
− = ⋯ = 𝑎𝑘1+2

− = 0,  

𝑎𝑘2

+ = 𝑎𝑘2+2
+ = ⋯ = 𝑎k3

+ = 0,  

⋮ (39) 
𝑎𝑘𝑟−2

+ = 𝑎𝑘𝑟−2+1
+ = ⋯ = 𝑎𝑘𝑟−1

+ = 0,  
𝑎𝑘𝑟

− = 𝑎𝑘𝑟−1

− = ⋯ = 𝑎𝑘𝑟−1+2
− = 0  

𝐉3 = 

0 𝑎1
+ 0 0 

0 0 0 𝑏2
− 

𝑏2
+ 0 0 0 

0 0 𝑎3
− 0 

 

(35) 

𝐉4 = 

0 𝑎1
+ 0 0 0 0 

0 0 0 𝑏2
− 0 0 

𝑏2
+ 0 0 0 0 0 

0 0 𝑎3
− 0 0 𝑏3

− 

0 0 𝑏3
+ 0 0 𝑎3

+ 

 0 0 0 0 0 0 
 

(36) 

𝐉5 = 

0 𝑎1
+ 0 0 0 0 0 0 

0 0 0 𝑏2
− 

⋮ 

0 

⋮ 
⋮ 𝑏2

+ 0 0 0 0 

0 

⋮ 

𝑎3
− 

⋮ 

𝑏3
− 

⋮ 
𝑏3

+ 𝑎3
+ 0 

0 0 0 𝑏4
− 

0 𝑏4
+ 0 0 0 

0 0 0 0 0 0 𝑎5
− 0 

 

(37) 

𝐉6 = 

0 𝑎1
+ 0 0 0 0 0 0 0 0 

0 0 0 𝑏2
− 

⋮ 
⋮ 

0 

⋮ 
⋮ 

⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑏2
+ 

⋮ 
⋮ 

0 0 0 

0 𝑎3
− 

⋮ 
⋮ 

𝑏3
− 

⋮ 
⋮ 

𝑏3
+ 𝑎3

+ 0 

0 0 0 𝑏4
− 

⋮ 
⋮ 

𝑏4
+ 

⋮ 
0 0 0 

0 𝑎5
− 

⋮ 
𝑏5

− 

0 𝑏5
+ 𝑎5

+ 

0 0 0 0 0 0 0 0 0 0 
 

(38) 
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⋮  

such that 1 ≤ 𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘𝑟 ≤ ⋯ ≤ N and 𝑟 ≥ 3, lead to 

non-nilpotent GJ-WR, GS-WR and S-WR methods. Similar 

patterns to (39) are also constructed starting from reverse 

gain 𝑎N
−. It is key to notice that patterns (39) satisfy (33) but 

not the much stronger condition (34). Therefore, the search 

for nilpotent GJ-WR and GS-WR algorithms will be based 

on two non-alternating patterns. In the first one, either all 

forward gains 𝑎j
+ = 0 or all reverse gains 𝑎j+1

− = 0. In the 

second one, the first 𝑚 forward gains 𝑎1
+ = ⋯ = 𝑎m

+ = 0 and 

the first 𝑚′ backward gains 𝑎N
− = ⋯ = 𝑎N−𝑚′+1

− = 0 where 

𝑚 + 𝑚′ ≥ N − 1. A strict equality ensures all local 𝑎j
+𝑎j+1

− =

0 by making either 𝑎j
+ = 0 or 𝑎j+1

− = 0 and not 

simultaneously. 

First, let us start by revisiting the optimal result in [29, 

Thm. 2.1],[32, Thm. D.4]. The following theorem proposes 

a new and rigorous proof of the GJ result and introduces its 

GS version for the first time.   

Theorem IV.4 Let 𝑎j
+ = 𝑎j+1

− = 0, 1 ≤ j ≤ N − 1. The 

resulting GJ-WR and GS-WR algorithms converge exactly 

in N iterations and in [N 2⁄ ] + 1 iterations respectively, 

independently of initial waveforms. 

Proof. Reasoning by induction is used to demonstrate the 

result. When all coefficients a1
+ = a2

− = a2
+ = a3

− = ⋯aN
− = 0, 

N ≥ 3, it is possible to express the 2N × 2N matrix 𝐉N+1 in 

terms of 𝐉N, see eqn. (40), and show that its m th power, m ∈

ℕ and m ≥ 1, satisfies eqn. (41).  

Vectors 𝐔N,m ∈ ℂ2(N−1)×1 and 𝐕N,m ∈ ℂ1×2(N−1) are given by 

𝐔N,m = 𝑏N
−(𝐉N)m−1𝐮2N−2

2N−2 
(42) 

𝐕N,m = 𝑏N
+𝐮2N−2

2N−3𝑻
(𝐉N)m−1 

Where 𝐮2N−2
2N−3 = (0,0, . . ,0,1,0)𝑇 and 𝐮2N−2

2N−2 = (0,0, . . ,0,1)𝑇 are 

the (2N − 3)th and (2N − 2)th unit vectors in the canonical 

basis of the ℂ-space ℂ2(N−1). A direct computation shows 

that (𝐉3)
2 = 𝟎 for 𝑎1

+ = 𝑎2
− = 𝑎2

+ = 𝑎3
− = 0. According to 

(41),(42), if 𝐉N is nilpotent of index (N − 1), then 𝐉N+1 will 

also be nilpotent of index N. For if there exists an integer N0 

such that 𝐉N0
 were nilpotent of index less than (N0 − 1), then 

this would have meant that 𝐉3 = 𝟎 when counting backward; 

a result which is not correct. Matrices 𝐉N and 𝐒N are nilpotent 

of indices (N − 1) and [N 2⁄ ]. [. ] denotes the integer part of 

a real number. One iteration is still needed to reach the zero 

solution, as explained in the proof of Thm. IV. 2               ∎                                                                                                                                                                                                                                                                                                                                                                                                                      

Optimal convergence requires all gains be zero. A 

stringent condition which is relaxed in Cors. IV.7 and IV.9.  

The next result explores the effect of zeroing all factors 

along one and same direction.  

Theorem IV.5.  

(a) Let 𝑎1
+ = 𝑎2

+ = ⋯ = 𝑎N−1
+ = 0 or 𝑎N

− = 𝑎N−1
− = ⋯ =

𝑎2
− = 0. The resulting GJ-WR and GS-WR algorithms 

converge exactly in (2N − 1) iterations and in N 

iterations respectively, independently of initial 

waveforms.  

(b) Let 𝑎1
+ = 𝑎2

+ = ⋯ = 𝑎N−1
+ = 0 and 𝑎k1

− = 𝑎k2

− = ⋯ =

𝑎k𝑙

− = 0 where 1 ≤ 𝑙 ≤ N − 1 and 2 ≤ k𝑙 < k𝑙−1 < ⋯ <

k1 ≤ N − 1. Or, let 𝑎N
− = 𝑎N−1

− = ⋯ = 𝑎2
+ = 0 and 𝑎k1

+ =

𝑎k2

+ = ⋯ = 𝑎k𝑚

+ = 0 where 1 ≤ 𝑚 ≤ N − 1 and 2 ≤ k1 <

k2 < ⋯ < k𝑚 ≤ N − 1. The resulting GJ-WR and GS-

WR algorithms still converge exactly in (2N − 1) 

iterations and in N iterations respectively, 

independently of initial waveforms. 

Proof.   The demonstration of both results (a) and (b), 

focuses on the case where entries 𝑎N
− = ⋯ = 𝑎2

− = 0 in matrix 

𝐉N (16). A similar approach is used for 𝑎1
+ = ⋯ = 𝑎N−1

+ = 0.  
Let 𝐉′N be the matrix constructed from 𝐉N by replacing 

value 𝑎N−1
+  of its (2N − 3, 2N − 2)th entry with zero. Let 

𝐐N = 𝑎N−1
+ 𝐮2N−2

2N−3 ⊗ 𝐮2N−2
2N−2, operator ⊗ is the outer product 

[35]. Matrices 𝐉N, 𝐐N and 𝐉′N satisfy 𝐉N = 𝐉′N + 𝐐N, 𝐉′N𝐐N =

𝐐N𝐉′N = 𝐐N
2 = 𝟎. Hence 𝐉N

m = 𝐉′N
m

 for all m ≥ 2 and N ≥

3. Reasoning by recurrence shows that      

Vectors 𝐔′N,2m ∈ ℂ2(N−1)×1 and 𝐕′N,2m ∈ ℂ1×2(N−1) are given 

by 

𝐔′N,2m = 𝑏N
−(𝐉′N)2m−1𝐮2N−2

2N−2 
(44) 

𝐕′N,2m = 𝑏N
+𝐮2N−2

2N−3𝑻
(𝐉′N)2m−1 

A direct computation shows that (𝐉′3)
4 = 𝟎. Hence 

(𝐉′4)
6 = 𝟎 according to eqns. (43),(44) and more generally 

(𝐉′N)2N−2 = (𝐉N)2N−2 = 𝟎. Matrix 𝐒N is also nilpotent of 

index (N − 1), which concludes the proof of result (a).  

Next, it is shown by recurrence that 𝐉′N
2N−3

=

(𝑎1
+ ∏ 𝑏𝑘

−𝑏𝑘
+N−1

𝑘=2 )𝐮2N−2
2N−3 ⊗ 𝐮2N−2

2N−2. Result (b) follows from the 

fact that 𝐉N
2N−3 = 𝐉′N

2N−3
≠ 𝟎 if and only if 𝑎1

+ ≠ 0. First, 

𝐉′3
3

= 𝑎1
+𝑏2

−𝑏2
+𝐮4

3 ⊗ 𝐮4
4 by direct computation. Next, matrix 

(𝐉′N+1)
2N−2 is calculated using eqns. (43),(44) for m = N −

1. Its bloc matrix (𝐉′N)2N−2 = 𝟎 (Thm. IV.5(a)) and its 

vectors 𝐔′N,2N−2 = 𝑏N
−𝑎1

+ ∏ 𝑏𝑘
−𝑏𝑘

+N−1
𝑘=2 𝐮2N−2

2N−3, 𝐕′N,2N−2 =

𝑏N
+𝑎1

+ ∏ 𝑏𝑘
−𝑏𝑘

+N−1
𝑘=2 𝐮2N−2

2N−2𝑻
 (recurrence hypothesis). Hence, 

matrix (𝐉N+1)
2N−2 = 𝑎1

+ ∏ 𝑏𝑘
−𝑏𝑘

+(𝑏N
+𝐮2N

2N−1 ⊗ 𝐮2N
2N−2 +N−1

𝑘=2

𝑏N
−𝐮2N

2N−3 ⊗ 𝐮2N
2N). Finally, result 𝐉N+1

2N−1 =

(𝑎1
+ ∏ 𝑏𝑘

−𝑏𝑘
+N

𝑘=2 )𝐮2N
2N−1 ⊗ 𝐮2N

2N follows from the multiplication 

of (𝐉N+1
′ )2N−2 by 𝐉N+1

′ .                                                               ∎                                                                                                                                                                                                                                                    

     0   

   (𝐉′N)2m  ⋮ 𝐔′N,2m  
(𝐉′N+1)

2m =     0   

   𝐕′N,2m  0 0  

 0  … 0 0 0        (43) 

 

     0 0  

  
𝐉N 

 ⋮ ⋮  
𝐉N+1 =   0 0  

     0 𝑏N
−  

 0 … 𝑏N
+ 0 0 0  

 0 … 0 0 0 0 (40) 
 

     0   

   (𝐉N)m  ⋮ 𝐔N,m  
(𝐉N+1)

m =     0   

   𝐕N,m  0 0  

 0  … 0 0 0 (41) 
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Iteration matrices in Thm. IV.5 have maximum index 

2(N − 1) [35]. For a chain of length N, there exist no 

nilpotent GJ-WR algorithm that converges in more than 

2N − 1 iterations nor there is a nilpotent GS-WR that takes 

more than N iterations to converge. The maximum index is 

still attained for any additional zeroing of some or all 

reverse (forward) gains at the exception of 𝑎N
− (𝑎1

+).  

The following result explores the effect of setting the first 

𝑚 local convergence rates 𝑎j
+𝑎j+1

− = 0 along the forward 

direction and the remaining (N − 𝑚 − 1)  ones along the 

reverse direction.  

Theorem IV.6 Let 𝑎1
+ = 𝑎2

+ = ⋯ = 𝑎𝑚
+ = 0, and 𝑎N

− =

𝑎N−1
− = ⋯ = 𝑎𝑚+2

− = 0, 1 ≤ 𝑚 ≤ N − 2. The resulting GJ-

WR and GS-WR algorithms converge exactly in 1 +

2 max(𝑚,N − 𝑚 − 1) iterations and in 1 + max(𝑚, N − 𝑚 −

1) iterations respectively, independently of initial 

waveforms.   

Proof. The idea is to demonstrate that iteration matrix 𝐉N 

(16), is nilpotent of index 2 max(𝑚, N − 𝑚 − 1).    

𝐉N = [
𝐌11 𝐌12

𝐌21 𝐌22
] (45) 

It is shown that its bloc matrices 𝐌11 ∈ ℂ2𝑚×2𝑚, 𝐌12 ∈

ℂ2𝑚×2(N−𝑚−1), 𝐌21 ∈ ℂ2(N−𝑚−1)×2𝑚 and 𝐌22 ∈

ℂ2(N−𝑚−1)×2(N−𝑚−1) satisfy  

𝐌21(𝐌11)
𝑝𝐌12 = 𝟎 0 ≤ 𝑝 < 𝑚 (46) 

(𝐌11)
𝑝𝐌12 = 𝟎 

𝑝 ≥ 𝑚 (47) 
𝐌21(𝐌11)

𝑝 = 𝟎 

𝐌12(𝐌22)
𝑝𝐌21 = 𝟎 0 ≤ 𝑝 < N − 𝑚 − 1 (48) 

(𝐌22)
𝑝𝐌21 = 𝟎 

𝑝 ≥ N − 𝑚 − 1 (49) 
𝐌12(𝐌22)

𝑝 = 𝟎 

Using eqns. (46)-(49), it is shown by recurrence that matrix 
(𝐉N)𝑝 is given by the following relation 

(𝐉N)𝑝 = 

[
 
 
 
 
 

(𝐌11)
𝑝 ∑(𝐌11)

𝑘𝐌12(𝐌22)
𝑝−1−𝑘

𝒑−𝟏

𝒌=𝟎

∑(𝐌22)
𝑘𝐌21(𝐌11)

𝑝−1−𝑘

𝒑−𝟏

𝒌=𝟎

(𝐌22)
𝑝

]
 
 
 
 
 

 

(𝑝 ≥ 1) 

(50) 

Matrices (𝐌11)
2𝑚 = 𝟎 and (𝐌22)

2(N−𝑚−1) = 𝟎 (Thm. 

IV.5(a)). In addition, ∑ (𝐌11)
𝑘𝐌12(𝐌22)

𝑝−1−𝑘𝑝−1
𝑘=0 = 𝟎 and 

∑ (𝐌22)
𝑘𝐌21(𝐌11)

𝑝−1−𝑘𝑝−1
𝑘=0 = 𝟎 only when 𝑝 ≥

2 max(𝑚,N − 𝑚 − 1), see eqns. (46)-(49).                         ∎                                                                                                                              

When length N is odd, the optimality condition in Thm. 

IV.4 is relaxed according to the following result. 

Corollary IV.7 The GJ-WR and GS-WR algorithms are 

optimal for any odd number N, N ≥ 3, of serial parts if and 

only if 𝑎1
+ = 𝑎2

+ = ⋯ = 𝑎(N−1) 2⁄
+ = 0 and 𝑎N

− = 𝑎N−1
− = ⋯ =

𝑎(N+3) 2⁄
− = 0.    

Proof. The necessity is clear from Thm. IV.1. The 

sufficiency follows from applying Thm. IV.6 for 

𝑚 = (N − 1) 2⁄ .                                                                  ∎              

After all forward or all reverse gains are zero (Thm. 

IV5(a)), it is possible to produce faster nilpotent algorithms 

if zeroing of remaining gains in the opposite direction starts 

from first part, that is P1 in the forward direction and PN in 

the backward one. 

Corollary IV.8  

(a) Let 𝑎N
− = 𝑎N−1

− … = 𝑎2
− = 0 and 𝑎1

+ = 𝑎2
+ = ⋯ = 𝑎m

+ = 0 

such as 1 ≤ 𝑚 ≤ −1 + N 2⁄  for all even N ≥ 4 and 1 ≤

𝑚 ≤ −1 + (N − 1) 2⁄  for all odd N ≥ 5. The resulting 

nilpotent GJ-WR and GS-WR algorithms converge 

exactly in (2N − 2𝑚 − 1) iterations and in (N − 𝑚) 

iterations respectively, independently of initial 

waveforms.   

(b) Let 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = ⋯ = 𝑎N−1

+ = 0 and 𝑎N
− = ⋯ =

𝑎N−𝑚
− = 0 such as 0 ≤ 𝑚 ≤ −1 + (N − 3) 2⁄  for all odd 

N ≥ 5, and 0 ≤ 𝑚 ≤ −1 + (N − 2) 2⁄  for all even N ≥ 4. 

The resulting nilpotent algorithms GJ-WR and GS-WR 

converge exactly in (2N − 2𝑚 − 3) and in (N − 𝑚 − 1) 

iterations respectively, independently of initial 

waveforms.  

Proof. Part (a) follows directly from the application of Thm. 

IV.6. Part (b) follows from part (a) after taking 𝑚′ = N −

𝑚 − 2.                                                                                 ∎                                              

Next, the optimality condition in Thm. IV.4 is relaxed for 

even numbers N of parts. 

Corollary IV.9 The GJ-WR and GS-WR algorithms are 

optimal for any even number N ≥ 4 of serial parts if and only 

if the first N 2⁄  forward transmission gains 𝑎1
+ = 𝑎2

+ = ⋯ =

𝑎N 2⁄
+ = 0 and the first N 2⁄  reverse transmission gains 𝑎N

− =

𝑎N−1
− = ⋯ = 𝑎1+N 2⁄

− = 0.                                                     

 Proof. The main steps in the proof of Thm. IV.6 are again 

used here to demonstrate that 𝐉N
N−1 = 𝟎 after taking 

𝑚 = N 2⁄ . Bloc matrices 𝐌11 ∈ ℂN×N, 𝐌12 ∈ ℂN×(N−2), 𝐌21 ∈

ℂ(N−2)×N and 𝐌22 ∈ ℂ(N−2)×(N−2) of 𝐉N, see eqn. (45), satisfy 

eqns. (46)-(49) and (𝐉N)𝑝 is also given by eqn. (50). Matrix 

𝐌11
N−2 = 𝟎 (Cor. IV.8) and 𝐌22

N−2 = 𝟎 (Thm. IV.4), 

whereas ∑ (𝐌11)
𝑘𝐌12(𝐌22)

𝑝−1−𝑘𝑝−1
𝑘=0 = 𝟎 and 

∑ (𝐌22)
𝑘𝐌21(𝐌11)

𝑝−1−𝑘𝑝−1
𝑘=0 = 𝟎 when 𝑝 ≥ N − 1.                ∎ 

DISCUSSION 

Zeroing all transmission gains in an alternate fashion does 

not produce nilpotent GJ-WR, GS-WR and S-WR 

algorithms despite having zero valued local rates. For a 

chain of N parts, the nilpotent GJ-WR and GS-WR 

algorithms converge exactly in (2N − 1) iterations and in N 

iterations respectively when all forward or all reverse gains 

are set to zero (Thm. IV.5). It is possible to further reduce 
the index of the nilpotent operator by successively zeroing 

the remaining gains. Starting from 𝑎N
− if all direct gains are 
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already zero and from 𝑎1
+ if all reverse gains are already 

zero. The number of GJ iterations decreases from (2N − 3) 

to (N + 1) for N even and to (N + 2) for N odd (Cor. IV.8). 
Convergence is optimal at 𝑚 = (N − 1) 2⁄  for N odd (Cor. 

IV.7) and at 𝑚 = N 2⁄  for N even (Cor. IV.9). This means 

that in part (a) of Cor. IV.8 for instance, it is not necessary 

to set remaining forward gains 𝑎(N+1) 2⁄
+ = ⋯ = 𝑎N−1

+ = 0 

since the number of GJ iterations will plateau at N. To 
produce nilpotent algorithms, it is not necessary to 
set every local rate 𝑎n

+𝑎n+1
− = 0 by having 𝑎n

+ = 𝑎n+1
− = 0 

(Thm. IV. 4 and Cor. IV.8). The best way would be to zero 

local convergence rates along two directions without 

alternating (Thm. IV.6, Cors. IV.7 and IV.9). 

The index of the nilpotent GJ-WR decreases by steps of 

two iterations until it plateaus at N. One exception occurs for 

even values of N where the last step is one iteration only 

(Thm. IV.5 and Cor. IV.8). This observation agrees with the 

fact that two GJ iterations are equivalent to one GS iteration. 

The nilpotent set is therefore completely characterized. 

Hence, condition (34) is necessary and sufficient for the 

existence of all three nilpotent algorithms. It produces one 

index for all nilpotent S-WR and 1 + [N 2⁄ ] distinct indices 

for all nilpotent GJ-WR (or GS-WR).  

The circuit realization of the optimal conditions in Thm. 

IV.4 and in Cors. IV.7 and IV.9 produce enlarged partitions 

of different sizes. Due to the adjacency pattern in the chain, 

making 𝑎n
+ = 0, see eqn. (13), requires corresponding kernel 

𝜁n
n,n+1 be exactly equal to the driving-point impedance of the 

whole segment {Pn, Pn−1, … , P1} while 𝑎n+1
− = 0, see eqn. (13), 

requires 𝜁n+1
n,n+1 be exactly equal to the driving-point 

impedance of the entire second segment {Pn+1, Pn+2, … , PN}. 

The implementation of the optimal condition in Thm. IV.4 

makes all enlarged part P1,…, PN duplicates of the original 

circuit itself, that is the entire chain against only one part 

P(N+1) 2⁄  at the middle of the chain for the first relaxed 

condition (Cor. IV.7) and against only two parts PN 2⁄  and 
P1+N 2⁄  also at the middle of the chain for the second relaxed 

condition (Cor. IV.9). Since cost-efficiency is attained at 

suboptimal speeds of convergence, the approximation of the 

relaxed conditions reveals more attractive. They require the 

approximation of (N − 1) or N optimal kernels for N odd or 

even against 2(N − 1) optimal kernels according to Thm. 

IV.4. Moreover, the remaining (N − 1) or (N − 2) kernels 

can for instance be set apriori to decrease the complexity of 

the approximation problem and keep the size of the enlarged 

parts minimal. This way, decreasing the costs of both the 

approximation step and WR iteration. 

The amount of work required to achieve nilpotency shows 

that sweeping back and forth produces the best nilpotent 

algorithm. Every internal part is solved four times while the 

two parts at the extremities are solved twice, independently 

of the chain’s length N. In the GJ-WR and GS-WR, all parts 

are practically solved N times. In [9, sec. 8.3.2, pp. 58], it 

was observed numerically that it might be best to iterate by 

scheduling subcircuits alternatively in the forward and 

backward directions for bidirectional chains of subcircuits 

when primary inputs are present at the extremities. The 

present analysis confirms mathematically the long-standing 

observation. 

In the following section, a numerical example is produced 

to check the correctness of the theoretical results in section 

IV. 

V. NUMERICAL EXPERIMENTS  

The RLC circuit of Fig. 7 is considered. The driving current 

signal 𝑖𝑠 is a trapezoidal step function of rise time 0.1ns and 

of magnitude 1A. At the far end, load 𝑐𝐿 is a 350pF capacitor. 

The model initial-value problem (IVP) of this circuit is a 

first-order ODE system 𝐃𝒙̇(𝑡) + 𝐆𝒙(𝑡) = 𝒖(𝑡)̇ , 𝒙(0) = 𝟎 with 

respect to 10 × 1 unknowns vector 𝒙 =

(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑖𝐿1
, 𝑖𝐿2

, 𝑖𝐿3
, 𝑖𝐿4

)
𝑇
 where 𝑣1(𝑡),.., 𝑣6(𝑡) are 

voltages at nodes 1,..,6 and 𝑖𝐿1
(𝑡),.., 𝑖𝐿4

(𝑡) are currents 

through inductors 𝐿1,..,𝐿4. Matrix 𝐃 ≔ (di,j) ∈ ℝ10×10 is 

diagonal and 𝐆 ≔ (gi,j) ∈ ℝ10×10 is symmetric. Nonzero 

elements of 𝐃 are      
d2,2 = 𝑐1 d3,3 = 𝑐2 d5,5 = 𝑐3 d6,6 = 𝑐𝐿  

d7,7 = −𝐿1 d8,8 = −𝐿2 d9,9 = −𝐿1 d10,10 = −𝐿4 (51) 

whereas upper triangular nonzero elements of 𝐆 are 

 
Fig. 7 RLC circuit. 

 

 

Fig. 8 Voltage at node 6 and current though 𝐿1.   
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g1,1 = 𝑅𝑠
−1 g3,3 = 𝑅1

−1 + 𝑅2
−1 g3,4 = −𝑅2

−1 g4,4 = 𝑅2
−1 

g5,5 = 𝑅3
−1 g6,6 = 𝑅4

−1 g1,7 = g2,8 = g4,9 = g5,10 = 1 

g2,7 = g3,8 = g5,9 = g6,10 = −1    (52) 

The IVP is solved numerically with backward Euler method 

on [0, T], T = 25ns.  

Its solution 𝒙((𝑘 + 1)h) = (𝐆 + 𝐃 h⁄ )−𝟏 (𝒖((𝑘 + 1)h) +

𝐃 h⁄ 𝒙(𝑘h)), 𝑘 ∈ ℕ∗, is calculated on points t = h, 2h, 3h, … 

with stepsize h = T 212⁄ . The voltage at node 6 and current 

through inductor 𝐿1 are plotted in Fig. 8.  

To apply the WR algorithms of section IV to the solution 

of the same RLC circuit, one-node overlap longitudinal 

partitioning splits the circuit, first into three subcircuits: 

P1 3⁄ , P2 3⁄ , P3 3⁄ , then into four subcircuits: P1 4⁄ , P2 4⁄ , P3 4⁄ , 
P4 4⁄ , and finally into five subcircuits: P1 5⁄ , P2 5⁄ , P3 5⁄ , P4 5⁄ , 
P5 5⁄ , see Fig. 7. The current source is included in the first 

subcircuit while the load capacitor in the last one. 

In every partition, subcircuits are appended with the 

circuit realizations of the WR kernels and their additive 

inverses. First, all non-optimal kernels are given a value of 

10Ω to ensure corresponding gains (forward and reverse) are 

not zero. Next, the one-port circuit realization of every 

optimal kernel is constructed by duplicating the enlarged 

part built around the corresponding subcircuit, after setting 

its primary inputs and/or relaxation sources to zero. Every 

enlarged part is modeled with an IVP whose initial 

conditions are compatible with the main IVP and solved 

with backward Euler using same timestep h = T 212⁄ .  

To monitor convergence, error is estimated by calculating 

the infinite norm of the difference between the successive 

waveforms of the relaxation sources from the last two 

iterations. To ensure simulation results are robust, every 

algorithm is run 500 ×. Each time, relaxations sources are 

initialized with random DC values in [0,1].  In each round 

of simulation, the numbers of iterations or sweeps are taken 

 
Fig. 9 Three-subcircuit partition of the non-nilpotent WR (Thm. IV.3(a))  

 

  

  
Fig. 11 Error decay. Left GJ-WR. Right. S-WR. Top. N = 3. Bottom. N = 4. (Thm. IV.3). 

 

 

Fig. 10 Sparsity pattern of matrices (𝐆 + 𝐃 h⁄ ) of enlarged 

parts. Left. P1/3. Middle. P2/3. Right. P3/3.. Thm. IV.3(a). 
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sufficiently large in order to bring the double precision 

floating point value of the numerical error down to zero up 

to a quantity close to order 10−15 of the roundoff error. If 

the WR is nilpotent, then its index corresponds to the count 

value of the first iteration or round at which the error is 

practically zero. Starting from the index value, the 

numerical error should level off.  

Let us start with the algorithm of Thm. IV3 for N = 3, 4. 
Fig. 9 represents the three augmented parts P1 3⁄ , P2 3⁄ , P3 3⁄  

with their coupling circuitries. Kernels 𝜁2
1,2

 and 𝜁2
2,3

 are both 

optimal while 𝜁1
1,2 = 𝜁3

2,3 = 10Ω. Matrices (𝐆 + 𝐃 h⁄ ) of P1 3⁄ , 
P2 3⁄ , P3 3⁄  are of order 10, 20 and 8 respectively. Their 

 

  
(a) (b) 

Fig. 12 Four subcircuit partition of the nilpotent algorithm. (a) 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = 0 (Thm. IV.5): (b) Replacement parts P3 4⁄ , P4 4⁄  : 𝑎1

+ =

𝑎2
+ = 𝑎3

+ = 𝑎4
− = 0 (Cor. IV.6 (b)).    

 

 
Fig. 13 Sparsity pattern of matrices (𝐆 + 𝐃 h⁄ ) of enlarged 

parts. Left to right. P1/4, P2/4, P3/4, P4/4. (Thm. IV.5). 

 

  

  
Fig. 14 Error decay. Left GJ-WR. Right S-WR. Top. N = 3: 𝑎3

− = 𝑎2
− = 0. Bottom N = 4 ∶ 𝑎1

+ = 𝑎2
+ = 𝑎3

+ = 0. (Thm. IV.5).  
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sparsity patterns are shown in Fig. 10 in accordance with the 

enumeration of nodal voltages and inductor currents of Fig. 

9. In the same way, parts P1 4⁄ , P2 4⁄ , P3 4⁄ , P4 4⁄  are 

augmented with the circuit realizations of optimal kernels 

𝜁1
1,2, 𝜁3

2,3 and 𝜁3
3,4 while 𝜁2

1,2 = 𝜁2
2,3 = 𝜁4

3,4 = 10Ω. The error 

evolution in Fig. 11 shows that both GJ-WR and S-WR are 

non-nilpotent for the two partitions. 

Next, the partitions of the algorithm of Thm. IV5 are 

constructed by making the following kernels optimal: 𝜁2
1,2 

and 𝜁3
2,3 for N = 3, and 𝜁1

1,2, 𝜁2
2,3 and 𝜁3

3,4 for N = 4. Fig. 12a 

shows the resulting partition for N = 4. Matrices (𝐆 + 𝐃 h⁄ ) 
of parts P1 4⁄ , P2 4⁄ , P3 4⁄ , P4 4⁄  are of order 9, 17, 26 and 12. 
Their sparsity patterns are shown on Fig. 13 in accordance 

with the enumeration of nodal voltages and inductor 

currents of Fig. 12a. The error evolution in Fig. 14 shows 

that S-WR converges in 2 rounds for N = 3, 4. The GJ-WR 

however converges in 5 iterations for N = 3 and in 7 
iterations for N = 4 as predicted by theory. 

With all forward gains 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = 0 for N = 4, reverse 

gains 𝑎4
− and 𝑎3

− are successively set to zero. The partition 

of Fig. 12a corresponds to case 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = 𝑎4

− = 0 after 

parts P3 4⁄  and P4 4⁄  are replaced by their circuits in Fig. 12b. 

This time, the error decay in Fig. 15 shows that the GJ-WR 

converges in 5 iterations instead of 7 in accordance with the 

result of Cor. IV8b when 𝑚 = 0. When 𝑎4
− = 𝑎3

− = 0, the 

algorithm is optimal, it converges in 4 iterations in 

accordance with the result of Cor. IV.9 (Fig. 15). The S-WR 

algorithms still converges in 2 rounds since all previous 

dispositions satisfy condition (34).  
Finally, the partitions of the algorithm of Cor. IV.7 are 

constructed for N = 5 and 𝑚 ∈ {3,2}. The evolution of the 

error in Fig. 16, shows that the GJ-WR converges in 7 
iterations when its gains 𝑎1

+ = 𝑎2
+ = 𝑎3

+ = 𝑎5
− = 0 (𝑚 = 3) 

and in 5 iterations when 𝑎1
+ = 𝑎2

+ = 𝑎5
− = 𝑎4

− = 0 (𝑚 = 2). 

The last result also confirms the relaxed optimal condition 

of Cor. IV.7 for N = 5.    

VI. CONCLUSION  

The characterization of the sets of nilpotent GJ-WR, GS-

WR and S-WR algorithms have been presented for chains 

of general passive circuits. It was shown that the way local 

convergence rates are set to zero affects the nilpotency index 

  

  
Fig. 15 Error decay. N = 4. Left. GJ-WR. Right. S-WR. Top. 𝑎1

+ = 𝑎2
+ = 𝑎3

+ = 0 and 𝑎4
− = 0. Bottom.  𝑎1

+ = 𝑎2
+ = 𝑎3

+ = 0 and 𝑎4
− =

𝑎3
− = 0. (Cor. IV.8). 

  

Fig. 16 Error decay. N = 5. GJ-WR. Left. 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = 0 and 𝑎5

− = 0 (Thm.IV.6). Right. 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = 0 and 𝑎4

− = 𝑎3
− = 0. 

(Cor. IV.7). 
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of the method and can even lead to non-nilpotency. It is now 

possible to make informed decisions on the set of optimal 

kernels to approximate in order to construct cost efficient 

methods at suboptimal speeds of convergence.  
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