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Abstract® New results on the nilpotency ofthe waveform
relaxation (WR) algorithm are presented for chains of general
linear time-invariant circuits. Strictly dissipative impedance
coupling is used in the WR method to decouple the cascaded
parts. Three relaxation schemes: Gaus3acobi, GaussSeidel
and relaxation by forward and reverse sweepng implement
the WR iterations. The analysis of theoperator matrices in the
Fourier domain leads tothe characterization of the nilpotent
WR operator for the three relaxation schemes.

Index Term$ Waveform relaxation, impedance coupling,
transmission conditions iteration matrix, nilpotent operators,
transient simulation.

|. INTRODUCTION

WAVEFORM RLAXATION (WR) techniques [1][7]

were introduced in the early 1980s as an alternative to
direct time-stepping algorithms used by circuit simulators
for solving ordinary differential equations. The concept of
WR is based on partitioning the original circuit into
subcircuits that are solved independermtfyeach other on
the entire time interval of ietest. Coupling effects among
individual subcircuits are represented by tidwmain
sources that are initially assumed to be known. Circuit
response is reached iteratively through repeated estimations
of these coupling effects. The main steps of WR circuit
computing can be found i8]

Several techniques were proposed in the literature to
improve the efficiency of WR analysis including dynamic
partitioning, scheduling, and time windowirse€9, Ch. 8,
pp. 4£123 and references thereirHowever, therate of
convergence remains a major challenge facing WR
techniques and linsttheir applicability. To obtain fast
convergence, it is necessary that partitioning the original
circuit is done in such a way that the coupling among the
individual subcircuits § weak. A requirementvhich is
difficult to fulfill in general in longitudinal partitioning
schems (LP).

The idea of opmal WR convergencavas broughtto
circuit problemsdn [23] andled to the emergence of a class
of WR-LP methods called optimized WR. These methods
are suitable for strongly coupled serial circuitbey attain
a faster and more uniform convergendbrough the
exchange ofappropriate combinatien of current and
voltage waveforms betweedjacentsubcircuits instead of
just a current or a voltage, as in classical 128.

Such information exchangsasimplemented in the so
called transmission condition§T'C) equations[23, eq.

(2.5)],[30, egns. (17),(18)] for oneode overlap and [24,
egn. (2.9)] for twenode overlap. Optimal convergence
requires nonlocal operators in the TC equations and
therefore is expensive4]. To avoidthis obstacle, constant
andfirst-degreepolynomial approximationsf the optimal
operatorswvere calculatedfor RC ladder circuitn [24] and

in sequel works25]-[27], for one lumped RLCG line type
circuit [28],[29], and for the PEEC circuiB[).

The WR-LP algorithrirs in the earlyand intuitive work
[10],[11] and later in [12]16] arenot classicAccording to
[32, Sec II.B], they executd what was defined later as
transmission condition§23, eq. (2.5)] on the line

| f Y. ? by inserting a neutral series connection of
three resistances 'Y , ¢Y ,and Y ,Y m between
every channel or TL and its terminatiorighe algorithm
[31] also executé conditions[23, eq. (2.5)]on region
a. fA.: | A Y Ry by replacing insertions

Y, c¢Y ,and Y [10]-[13] with Y ,'Y 'Y,
and 'Y where'yY and'y are different in generallThe
WR-LP [31] relies on a numericabptimization stepto
calculatenearto-optimal valuegor its coupling resistances
The replacement of coupling resistances by strictly
dissipative impedancegsroduces a general and consistent
WR-LP algorithm [32, Lemma D.1]In the onenode
overlap case, coupling impedances represented kernels of
convolution integal operators in the companion TC
equations [32, eqns. (5),(6)]. The algorithm is optimal when
its kernels are equal to the drivipgint impedances of the
decoupled parts themselves [32, Thms. D.3,D.4]. An
optimal kernel produces a null transmission gain in the
corresponding directionand results in anull local
convergence factor.

The optimal WR-LP algorithm is not costefficient,
howeverjudicious approximatiomof its kernelsproduced
costefficientmethods at suboptimal speeds of convergence
[24],[25],[29]-[32]. In the same way, a nilpotent \AEP
algorithm isnot expected to be cosffficient either but
clever approximatios of its nilpotency condition would
also leadd efficient algorithns. Like the convergence of the
WR, the existence and possibly the characterization of the
nilpotent algorithm dependoselyon the underlying circuit
problem to be solved see [33] for instance The
characterization of the nilpotent setuld be usefulin
designing efficient approximation schemes.



This paperconcerns the application of the \AIRR [32]
for the timedomain analysis of chains of general passive
linear time-invariant (LTI) circuits [34]. It presents new
results on the nilpotenayf the WRLP methodwith respect
to three relaxations schemé&ausslacobirelaxation(GJ),
GaussSeidel relaxation (GS), andrelaxationby forward
and reversesweeling (S). Theiteration matricesof the
correspondingoperatos: GIWR, GSWR and SWR are
derived in the Fourierdomain and their nilpotency is
investigatedor positive real frequencies, . Itis shown
that nilpotentoperatorsmusthavenull local convergence
factors, but theorverse is not trudt is demonstrated that
all nilpotent SWR operators are optimal whereas there exist
nilpotent GIWR and GSWR that are not optimalThe
analysis reveals that the way forward and

nilpotent GAWR and GSWR. Finally, optimality condition
[29, Thm. 2.1],[32, Thm. D.4js relaxedand isreplaced
with two new conditions; one for chains with an odd number
of subcircuits and the other is for chains with an even
number of subcircuits.

The rest of the paper is organized as follotvseview of
impedance coupling32] is presentedn section Il.A and
the implementation of G}WR, GSWR and SWR are
briefly explainedin sectionll.B. The iteration matrices of
thethreeWR-LP operatosare constructed in section dhd
their nilpotency is examined in section I\Numerical
experimentsare presentedn section Vto validate the
theoretical results.

Il. PRELIMINARIES

A. Strictly dissipative impedance couplifi2]

Impedance couplingpplies on any two parts and0 in
a circuit that are connected in an ogeop configuration
either directly or via a strictly dissipative elemeit (Fig.
1). Impedance coupling is realized by insertiageutral
series connection of thrémpedances — ,— and - at
the glit node betwee® and0 . Coupling impedances
and - are strictly dissipative, ie i and- i are two
strictly positivereal complex functions of the complex
frequency i , @, ,h va a,1 is the real
frequency and Q@ p. The twoterminal circuit —
represents the createdoverlap fom insertion

- hh - Overlap - - - for a direct
connectionand - - & inthe presence @b (Fig.
1).

Two possible circuit realizatiaof impedancecoupling
are presented in Fi@ andin Fig. 3. In the first interface,
coupling impedances, — and their additive inverses —
and - are realizedccording to the procedure explained
in [32, Sec II.C] The relaxation algorithm exchanges nodal
voltages at the two extremities-efin 0 and0 in order to
implement the iteration regardless of the type-oand—

(Fig. 2)
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Fig. 1 Parts0 and 0 are connected in an opésop
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Fig. 2 First circuitrepresentation of impedance coupling.
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Fig. 3 Second (compact) circuit representatioringbedance
coupling.
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Fig. 4 Chain connection of parts

Parametet 0inthe GJrelaxation and 0inthe GS case.
Lumping— and - togetheron the side 06 and- and

— togetheron the side of leads to a compact interface
(Fig. 3) Nodal wltage exchange (1),(2) is no longer
possible since node®" and ®" are not available. The
algorithm uses instead a more elaborate voltage exchange,
expressed in the Laplace space as, see [32, eqns. (3),(4)]

-j- ©)

-j- 4

Aside fromcase- _-,_" a°, where updatequations
(3) and(4) uselocal datgpointsat every time step
of 6" o _j_ oh (5)

S - -

—j- oh

on of o _ 0t _ (6)
the source update generalrequiresnonlocaloperators in
time. When kernels- and- are nonproportional complex
rational or irrational functions, it is possible to avoid the
repetitive expensive source update by also realizing the
additive inverses — and - in the firstimplementation
(Fig. 2.
B. GJ-WR,GSWRand SWRin thechain prdlem

Consider a&ascaded chain ofpartso ,p 1T . and.
o, see Fig4. To compute the WR solutiorevery two
consecutive parts ando ,p 1 p, are decoupled
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Fig. 5 Decoupled parts of the chain. First interface implementation.
ALGORITHM 1 GJ- WR ALGORITHM3 S-WR
1 lnitialize ~all relaxation sources 1 Initialize relaxation sources o of
2 O\ 1T set iteration count to zero all parts 0
3. - N f: threshold tolerance T 2: "N mset double sweep  countto zero
4. Do . 3: - N 7 : threshold tolerance ii
5 Begin 4 DO
6 Solve all parts 0 using their input 5 BEGIN
0 " and 0" 6: ™ TS’I p
7: Collect O " forall ¢ 1 & FORI p TO. p DO
. - : Sol t O
and O for all p I . p 8 ove par .
: . - 9: o
8 o B NoOh for all o 1 0 Col:v‘ect voltage (0]
o . F - 10: [ N ©
v NS M forall ¢ 1 ' EI\?DFOR O
9. Compute AOOI 00 1L ,
10: ™ Q p 12: FOR | . TO ¢ DO
11: End o 13: Solve part O
12: whie AOOT 00 14 Collect voltage O h
ALGORITHM 2 GS WR 15: o "oNg R
1: Initialize relaxation sources of odd 16: ENDFOR
All numbered parts 0 17: Compute A O O linGiOrelaxation
2 ON 1T set iteration count to zero ource
3: - N 7:threshold tolerance i ) sources
4: Do 18: END
5 Begin 19: WHILEAOOT 00
6 Solve all parts 0 using inputs is sustainedy the repetitive update of sourcés ", ¢
o N and 0 " i .,ando " ,p T . pusingeqns.(1),(2). The
7: Collect  all voltages o N threepseudocodes IALGORITHMS 1, 2 and 3ummarize
and O 3 the main steps iaxecutinghe G}WR, GSWR, and SWR
. . . for the first implementation (Fig. 2
8: 0 h NG N and P (Fig. 2)
g N@ B for all 0 [Il. CONSTRUCTION OFWR ITERATION MATRICES
9: Solve  all parts 0  using inputs Every part0 is represented with BTl reciprocal twe
. B g0 F port network For the linear initialvalue problem
v and v ) . represented by the circuit of Fif, it suffices to study the
10: Collect  all voltages o and convergence of theerror to the zero solution of the
o h subsequent homogeneous problem with zero initial
11: o R NG h and conditions represented by the circuit of F&.The two
' 5 5 terminations of the chain are replaced by their respective
o N NG D forall 0 input impedances and: . LetA" o A "o
12: Compute AOOT 00 A" o LA Mo ¢ T . p, be thedifferences
13: ™0 p betweenthe WR external variables " o,.,x "o
14:  End A OOl O x " o ,,x Mo calculated at iteratio and
15 While AOOI 0O their final waveforms at convergen¢etA" . A " |
by inserting aneutralseries connectioaf three impedances A " A " betheir respective Fourier transforms.
L at node A and The iteration matrices are obtained with respect to the
groundingnode A, see Fig.5. Coupling impedances followingg . p  perror vectorsH, "H and"H.
—~" and-" represent the total additionsaoando "H  APRAPFAPFADFERA PRA PragA PRR P
wherea® " o ando " 06,0 m aretheWR external @

variables and are realized adtage sourceslheiteration
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Fig. 6 Chain connection. Left. 8imogeneous problerRight. Frequencydomainrepresentation gfartO .
for the GIJWR, Coefficient ,p T .  p, is the forward transmission
"H Hi gain from part0 to 0 whereas®, ¢ 1 ., is the
Hig backwardor reversdransmission gain frod back to0
oy ATRARRRTRERA B ORA s Coefficients® , & , @ andd are given as
. h R
Hy ATRARRERA P RA P (19 R o 1 0
for the GSWR, and . R _ 0§ X
N l:'u © —F » 6
At _h _hog T
‘Hg APRA"FERA" FeRA P PR P e A A
; ¢ T . p
g APRATRAT fepa b h (D z - s ol
. h h oo h
for theS-WR. Subscripts , g [Jand{ stand forodd, even, ' - @~
forward and backwardhereasis the transpose operator. (13)
Noﬁte‘ thatltﬁls p955|bF!e to‘ put relag<a'f|ons sgur‘o&g 0, where: "' - T, : T and: | Qg are the
A" o, A 0,A 0 A 0,;& 0 Inany |mpedance parameters of pat, p 1 ., such that
order to formvectors- and in Hﬁ and HFi to form- . i : ,see F|g 6Every|nter|0|0 possesses two |nput
Different ordeings in vectorsyg and g lead to similar |mpedances hand: " taken atits node& andA

iteration matricesOrdering (9) considers the location of the respectively. At the extremities,” and: " represent the

primary inputs and the signal simultaneous propagations jnputimpedances of partsand0 at nodesh andA .

along both directions in a bidirectional chain. Ordering (10) Using (l),(Z),the interdependence between individual
reflects the twetime update during one GS iteration. Both errorsis expressea@s

GJWR and GSWR update their sources simultaneously on

both directions along the serial partition. TheWR AR & AR

algorithm however updates its sources successively along § § §

same one direction: from to0 (forward sweep) then from AN o A" o AP

0 back to0 (backward sweep)which justifies ordering o 1

(11). Theiterationmatrix of the SWR is not similar to those

of GFIWR and GSWR. Finally, it is worth noicing that A B GA N & AN

errors’H, "H and "H areusedonly to study convergencén R

practie, the consistentlgorithirs retain the values dheir ¢ b .p

external variablesfrom the lasttwo iterations. They AN oA F (14)

calculate their difference and ugeas an error estimate to

detect convergence parameters p andt nfor GIWR (ALGORITHM
To update the error sources (1),(2), it is necessary to 1), pfori odd,t mfori even,and mfor GS

calculate voltage®" at nodeA in0,6 " and6" at WR (ALGORITHM 2), and finally’ " pfor SWR

nodesA andA in any internal pard , and finally® " (ALGORITHM 3).

at nodeA in 0 (Fig. 6). Basic circuit analysis of the A. GIWR

decoupled parts in the frequency domain (Fig. 10), result

. . . A recurrentrelation over one iteration, is obtainedth
in the following equations

respect to vectoH

of o A" )

W m xR e AR H & 'H (15)
© i A § & A § Matrix ¢ ~ E is defined in eq. (16)

O " oA M HGAM ¢ T . p

& oA B (12)
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n NE is theiteration matrix of theGSWR.
Block matrices™ é¢n e are given in eqgns.
(21),(22) for. even and in egns. (2834)for. odd.

A. SWR

A recurrent relation ovetwo consecutive sweefene
forward thenone backward)with respect to vectoH, is

produced

A second iteration must be performed to obtareurrent
relation forsingleerrors

“H “H a7)

Matrix € in egn.(18), represents the GJ iteration matrix
over two iterations. It will be referred to as the GJ iteration
matrix in the rest of the textlts diagonal elements

£

"H n “H (25)
, AzA fAZA R
d AAZA R A ZA
(26)
n NE is the iteration matrix of theS-WR.

Operator 2 refers to Hadamargroduct [35] and i~
is the involutory backward identity matrix.
i

E

MatricesA h i

,’A h

,Ah 6 andA h o

w e A.p | p, are the locatatesof the WR are lower triangulaof order .  p .
for the chain partition. NS
. m hQ Q
A. GSWR ! o FQ Q 7)
A recurrent relation over one iteration with respect to n fia Q
vectorH, is produced
i v e (28)
"H i “H (19) w hQ Q
OO M OOl M om
T O OO T | 1T O
T OOlda T O&|EE
OO T M HO|d T EE
OO T M OHOOd m E E E E
Tt mT|od mn OO|EE E E
g E E|E E |EE| E E E E
E E|E E |EE| E E E E
E E EE|®O & Tt T SIA) T T
E E EE T O O | @ T T O
EE m (AR N AR m m O
EE|d & n m O O OO m
o m 13 O O | O m
T m AR 13 T O @ |(18)
T OOl OO O® T
T O[O ORN|ODd T
E E|E ElE E
E E|IE E|E E
A E EE E|E E
E E|E E|E E
E E|E E E E
E E|E E E E
1 O ® ® | (21)




WO | moom
DO O[O G| T T
T T OO OO 0D o
E E E E |EE
¢ E_E E E |EE
E E |EE E E
E E |EE E E
EE E E E E
EE E E E E
T T O O B O 0
O O O O ®w_ ®|(22)
T 00|00 OO|Od T
T O[O0 OO OGO =
E E|E EEE
E E|E EEE
A E EEEE E
E EEE|E E
EEIE E E E
EEIE E E E
TG O [0 & & & [0 @ T
T O |0 & & & |0 @ T
Tt O © |Od o d & (23
E E | E ElEE
E E | E EIEE
¢ E E|EE E E
E EIEEE E
EE E E E E
EE E E E E
T T O O | O & |(24)
. s UQ jQ
° fio @ (29) o & ) & (32)
h
Tt FQ Q
) In the next section, nilpotency is examined for the three
0 o o o (30) allgc.)rithms.Matricesé. (18) an.dr'] (29) are similar. Th(_a
similarity transformation matrix P is the permutation
- defined by'EH "H. The nilpotency analysis itherefore
where p "@Q . p. Note In all products b 8 limited to the GJ relaxation
throughout the textakeb 8 pwhend 0. Matrix
products A zA A ZA fih 0 and 1 Az IV. NILPOTENCY ANALYSIS
A i A 2A h v -aredefinedas Let us define a necessary condition for the existence of
. nilpotent algorithmsFirst, forthe GFWR and GSWR.
b O & & & (31) Theorem IV.1 Nilpotent GJWR and GSWR algorithms

possessiull local convergence factors



& & n forallp E . p (33)

Proof. If complex matrix ¢  (18) is nilpotent, then its
traceB A A mat every frequency poirst  1[36].
A requirementmet when A A nforallp E . p.
Same condition appliesto r; (20) since trace is invariant
under a similarity transformatidB6]. &

Next,a similar conditioris presentedor the SWR. This
necessarycondition is also sufficient according tothe
following result

Theorem IV.2A S'WR algorithmis nilpotentif and only if
all its transmission gains satisfy
OO T

forallp / R (34)

Moreover,all nilpotent SWR algorithns convergeexactly

in two roundsindependently of initial waveforms. One
round isone forward sweefollowed by one backward
sweep

Proof. Products A 27A | A 2’A { (31) andn A 2

A QA z2A (32)have sametracedd B O ®

B &6 @ & , which must be zero if matrig

(¢ ®is nilpotent. A requirement met when condition (34) is
satisfied. Conversely, a close look at expressions (31) and
(32) shows that all entries  mando nt if condition
(34) is satisfied. Henag is the only nilpotent iteration
matrix. At the end of round one, all relaxation sources attain
zero DC waveforms together for the first tim@ne
additional roundwill bring all systemvariables to the zero
solution of the homogeneous problem with zerdiah
conditions. t

ThenilpotentS-WR algorithrs of Thm. V.2 areoptimal
in the sense that faster convergence is not possiblike
condition (34)which characterizes the nilpotent-\8R,
condition (33) is not sufficientThere exists GWR and
GS'WR algorithmswith null local convergenctactors yet
theyare not nilpotent according to the following result.

Theorem IV.3
@ Letd & E & & E mwhile®, &,
O,H, éH , 0 are not equal to zerdrhe

resulting GJWR and GSWR algorithms are not
nilpotent for any chain of at least three subcircuits,
.

Let w» © O E o A E n
while®d, ®», o, % ,8,d ,® ,8 are not equal to
zera The resultingsJWR andGS-WR algorithms are

not nilpotent for any chain of at least four subcircuits,
T.

(b)

Proof. Caseqa) and (byaredemonstrated by inspection. A
proof for case(a) is presented. A similar approach is used
for (b).

Let us start with matri¥ in eqn.(35)where®& &
1. The column vectors of are linearly independent in
general. Matrixé is nonsingular and cannot be nilpotent.
Next, let usexaminematrixé in eqn.(36)wheredd @
® m.If & and0: denote the characteristic polynomials
of matriceg andé ,thend: @ @ G w,®N E. Matrix €

[0 & o0 0
. 0 0 0 O
€ S 0 0 0 (39)
00 & 0
0 & 0 0 0 O
0 0 0 & 0 O
g ® 0 0 0 0 O
0 0 & 0 0 o (36)
0 0 & 0 0 &
0 0 0 0 0 O
0 @0 0 00 0 O
00 0 @ 0
® 0 0 0 . 0O 8
) 0 & € 6 &
8 0 0 0 ®
0 & 0 0 O
00000 0O & O
[0 ®@ o 0 o 0 0 O O O
00 0 0
® 0 0 & 0 & 5
0 @ € o <
) LB o ¢ o & €
EégOé’oo o 6 (38)
> . & O 0 O 0
e e o  u 5
~ 0 é o . w
e 5+ e o
0 w w
|00 0 0 0 0 0 0 0 0O

shareghe same nozero eigenvaluesf ¢ and thereforés
not nilpotent. In the same wag close look at matricésin
egn.(37)wherecd & & & mandé in eqn.(38)
whered & @@ & @ 1 shows thathe column
vector of¢ arelinearly independergincet &0 & & T
Matrix € is thereforenonsingular. As witté andé¢ , the
characteristic polynomialo: and0: of ¢ andg satisly
0 ® o0& o.Matrixé cannot be nilpoten
In general, any twsuccessivenatrices where®

® E & ® mandég where® & E

@ @ @ n with characteristic polynomials
0: and 0. , satisfy the following: 1) The column
vectors of theta td& matrix &€ are linearly
independent since&y® ®® W o & ¢a p. 2)
Matrices £ and £ have the same nexero
eigenvalues sincé; O 00 @. Both ¢ and
€ are not nilpotent 4

Theconditions ofThm. VI.3 do not satisfy conditio(83)
and hence produagortnilpotent SWR. These algorithms
are not uniquen generalsetting gains to zero according to
the following alternating fashien

®w W E & m

» » E & T,
®» ®» E & T,
8 (39)
%) I4) E & T,
A E O T



é
suchthatp @ @ E Q E . andi o leadto
nonnilpotent GIWR, GSWR and SWR methodsSimilar

patterrs to (39) are also constructed starting fromverse
gain® . It is key to notice that pattesii39) satisy (33) but
not the much stronger condition (3Zherefore the search
for nilpotent GJWR and GSWR algorithmswill be based
ontwo nonalternating patterns. In the firene, eitherall

forward gainstd  m or all reverse gaing m In the
second onehe firsta forward gaingy E & mand

the firsta backward gaingsy E & m where
& & . p.Astrictequality ensures all locdl &

n by making either®d m or ® n and not
simultaneously.

First, let usstartby revisiting the optimal result in 29,
Thm. 2.3,[32, Thm. D.4]. The followingheoremproposes
anew and rigorouproof of the GJ result andtroducests
GS versiorfor the first time

Theorem IV4 Let & & m p E p. The

resultingGJWR and GSWR algorithirs converge exactly
in . iterations andin .j¢ p iterations respectively

independently of initial waveforms.

Proof. Reasoning by induction is used to demonstrate the

result When all coefficientéd A A A EA m
o, it is possible to express thke. ¢ . matrix¢  in

terms oft , see eqn(40), andshowthatitsi  power,i ~
mom
. [ & 8
£ |
£ T
mn8 @ mmMoT
n8 m onimn T (40)
[ Tt
3 €1 fn
€ T[
il i
[m 8 mimim (42)
s andl  p, satisfieseqn. (41).
Vectosi 5 M E andi N E aregivenhby
Np ©E I
R (42)
Ny 'l g
Where'l nintednipt - and”l ritedTip  are
the ¢. o and c¢. ¢ unitvectosin the canonical
basis of thee-spacee . A direct computation shows
that £ for 6 & & & 1 According to

(41),(42), if € is nilpotent of index. p, thené¢  will
alsobenilpotent of index . For if there exists an integer
such thaté were nilpotent of index lessthan  p , then
this would have meantth&t  when counting backward;
a result which is not corred¥latrices¢ andn arenilpotent
ofindices. p and.jq. 8 denoteghe integer part of
a real numberOne iteration is still needed teachthe zero
solution as explained in the proof of Thm. V. 2 4

8

Optimal convergence requireall gains be zera A
stringent condition whicks relaxed inCors.IV.7 and IV.9.

The next result explosghe effect ofzeroing all factors
along one and same direction.

Theoreml V.5.

x

@ Let & & E & mor & ® E
® 1 TheresultingGJWR and GSWR algorithrrs
converge exactly ing. p iterations and in.
iterations respectively independently of initial
waveforms

(b) Let & & E & mand & & E
& Tmwherep & pand¢ E E E
E . p.Orletd & E & mand®
O E & niwherep & pandg¢ E
E E E p. The resulting GWR and GS

WR algorithms still converge exactly ing. p
iterations and in . iterations respectively,
independently of initial waveforms.

Proof. The demonstrabn of both resuls (a) and (b)

focuses oithe case wherentrieso  E &  Tin matrix

¢ (16). A similar approachs usedforco E & .
Let éx2 be the matrix constructed froén by replacing

value® ofits ¢. ohg. ¢ entry with zero. Let
Eoo Ul sl , operators is the outemproduct
[35]. Matricesé ,"E andée satisfyé éxe 'E,&E
"‘Eée E . Hencet ge foralll ¢ and.
o. Reasoning by recurrence shows that
[ Tt
1522 € | Neey
& Tt
fleen T T
| T 8 MiT|{m (43)
Vectosfag; MNE andre MNE are given
by
naey © e |
§ R (44)
neey w’l =2}
A direct computation shows thatéze Hence
é according to egns. (43),(44) and more generally

é 3 . Matrix r, is also nilpotent of
index . p, which concludes the proof of result (a).
Next, it is shown by recurrence thate

OB Qd § "I .Resut (b) follows from the
fact thaté e if and only if & 1 First,
g2 OOl § " by direct computationNext, matrix
& is calculatedusing eqns. (8),(44) for i

p. Its boc matrix &= (Thm. 1V.5(a)) and its

vectors  flas Wb OO, Hex
b6 oo 1 (recurrence hypothesis Hence,
matrix g OB 00 @ g

@l § Finally, result g

Wb Od § "I follows fromthemultiplication
of ¢ byg¢ . &



Iteration matricesn Thm. IV.5 have maximum index
¢. p [35. For a chain of length , there exist no
nilpotent GJWR algorithm that converges in more than
¢. piterationsnorthere is anilpotentGS'WR that takes
more than iterations to converg&he maximum index is
still attained for any additional zeroing of some or all
reverse (forward) gains at the exceptiomof{® ).

The following resulexplores theffect of settinghe first
& local convergence rated & m along the forward
direction and the remaining. & p ones along the
reverse direction.

Theorem IV.6 Let & & E & m and &
IR E O mp 6 ¢. The resulting GJ
WR and GSWR algorithms converge exactly ip

¢l A@d@h & p iterationsand inp | A@h a
p iterations respectively, independently of initial
waveforms.

Proof. The idea is to demonstrate th&dration matrixé
(16),is nilpotent of index, | A@h & p.

E E

E E (45)
It is shown thatits bloc matricesE ~ e ,E
E , E NE and E N
E satisfy
E E E TR oA (46)
E ‘E . )
E o n o a (47)
E E E TR . 4 p (48)
E E . )
E E n . & p (49)

Usingeqns.(46)-(49), it is shown by recurrence that matrix
€ is given by the following relation

o Ul

T E E E E 0
11 | | il
™ ]
U E E E E ]
Ue U
n p
(50)
Matrices E and 'E (Thm.
IV.5(@)). In additon,B. E E E and
B E E E only when n
¢l A@h & p,seeeqns. (4649). o

Whenlength. is odd the optimality conditionin Thm.
IV.4 is relaxedaccording to the following result.

Corollary IV. 7 The GIWR and GSWR algorithmsare
optimal for any odd number,. o, of serial parts if and

onlyifd & E @
@ T

mr

i mand & @
j
Proof. The necessity is clear fronThm. IV.1. The
sufficiency follows from applying Thm. V.6 for

a . pic o

After all forward orall revase gains are zer@Thm.
IV5(a)), it is possible to produce faster nilpotent algorithms
if zeroingof remaining gains in the opposite direction start
from first part, that i® in the forward direction and in
the backwarane

Corollary IV.8

@Lete @ 8 ® mandd® ® E & mn
such agp a p .jgforall even. 1 andp
a o pjg for all odd. u. The resulting
nilpotent GJWR and GSWR algorithms converge
exactly in ¢. ¢&a p iterationsand in . &

iterations respectively, independently of initial
waveforms.
(b)Let & & & E ® nm and & E
() nsuch asn a p ojc¢ for all odd

. L,andm & p ¢ jc for all even. .
The resulting nilpotent algorithms @GYR and GSWR
converge exactly ing. ¢d¢ o andin. a p
iterations respectively, independently of initial
waveforms.

Proof. Part (a) followsdirectlyfrom the application ofhm.
IV.6. Part (b) follows frompart (a)after takinga
a c. 4

Next, the optimality condition ithm.IV.4 is relaxed for
even numbers of parts

Corollary IV. 9 The G}IWR and GSWR algorithms are
optimal for any even number 1 of serial parts if and only
if the first. j ¢ forward transmission gaing & E

@ mand the first j ¢ reversetransmission gain&®

) E & ; m

Proof. The main steps in the proof ®hm. V.6 are again
used here to demonstrate that after taking
& .jg. Blocmatricess e ,E NE ,E

E andE ME of € , see eqgn. (45xatisfy
eqgns. (46)49) and £ is also given by eqgn. (50Matrix
E (Cor. IV.8) and E (Thm. 1V.4),
whereas B E E E and
B E E E whenn . p. H

DISCUSSION

Zeroing all transmission gains in an alternate fashion does
not produce nilpotent GWR, GSWR and SWR
algorithms despite having zero valued local rafew. a
chain of . parts, the nilpotent GIVR and GSWR
algorithims converge exactly in;.  p iterations and in
iterations respectively when all forward or all reverse gains
are set to zeroThm. IV.5). It is possible to furthereduce
theindex of the nilpotent operatdny successively zeroing
the remainingyains.Starting fromé if all direct gains are
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Fig. 7 RLC circuit.
already zero and frond if all reverse gains are already T3
zero.The number ofJiterations decreases from . o E a1l
to. p for. evenandto. ¢ for. odd(Cor.IV.8). ug i (A
Convergencas optimalat & pjc¢for. odd Cor. = 0.5¢ v, W
IV.7) and ata . g for. even(Cor.IV.9). This means . . N, o
that in part (apf Cor. V.8 for instance, it is not necessary 0 . 0 15 20 o5
~ " t (ns)

to set remaining forward gaindé ; E ® T
since the number oGJ iterations will plateau at. To
produce nilpotent algorithms, it is not necessary to
set every local raté & nby havingd & 13
(Thm.IV. 4 andCor.V.8). The best way woulteto zero
local convergence rates along two directions without
alternating Thm.IV.6, Cors. IV.7 and 1V.9)

Theindex of the nilpotent GYVR decreases by steps of
two iterations until it plateaus at One exception occurs for
even values of where the last step is one iteration only
(Thm.1V.5 andCor.1V.8). This observation agrees with the
fact that two GJ iterations aeguivalento one GS iteration.
The nilpotent set is therefore completely characterized.
Hence, condition (34) is necessary and sufficient for the
existence ofll three nilpotent algrithms. It produces one
index for allnilpotent SWR andp . j ¢ distinct indices
for all nilpotent GJWR (or GSWR).

The circuit realization of the optimal conditionsTihm.
IV.4 andin Cors. IV.7 and IV9 produce enlarged partitions
of different sizesDue tothe adjacency pattern in the chain,
makingd  m see eqgn. (13), requires corresponding kernel
- " be exactly equal to the drivirgpint impedance of the
whole segmen0 0 B 0 while & T, see eqn. (13),
requires — " be exactly equal to the drivingpint
impedance of the entire second segmeént [0 8 0
The implementation of the dptal conditionin Thm. V.4
makes all enlarged pabt,é , 0 duplicates of the original
circuit itself, that is the entire chain against only one part
0 j at the middleof the chainfor the first relaxed
condition Cor. 1V.7) and against only two parts; and
0 ; also at the middlef the chairfor the second relaxed
condition Cor. IV.9). Since cosefficiency is attained at
suboptimal speeds of convergence, the approximation of the
relaxed conditions reveatsore attractiveTheyrequire the
approximation of. p or. optimalkernels for. oddor
evenagainstg . p optimal kernels according tdhm.
IV.4. Moreover, the remaining. p or . ¢ kernels
can for instance be set apriori to decrease the complexity of

Fig. 8 Voltage at node 6 and current thouigh

the approximation problem and keep the size of the enlarged
parts minimal This way, decreasinthe costs oboth the
approximatiorstepand WR iteration

The amount of work required &zhieve nilpotency shows
that sweeping back and forth produces the best nilpotent
algorithm. Every internal part is solvéalr times whilethe
two partsat the extremitieare solvedwice, independently
of t he c halntheGIWR ardcGWR, all parts
are practically solved times.In [9, sec. 8.3.2, pp. 58], it
was observedumericallythat it might be best to iterate by
scheduling subcircuits alternatively in the forward and
backward directiondor bidirectional chains of subcircuits
when primary inputs are present at the extremitidse
present analysis confirms mathematically the {standing
observation.

In the following sectiona numerical example is produced
to checkthe correctness of théheoreticalresultsin section
V.

V. NUMERICAL EXPERIMENTS

The RLC circuitof Fig. 7 is consideed. The driving current
signalQis a trapezoidal stefunction of rise timemi &nd
of magnitudep! . At the far end, load is ac vBn&apacite.
The modelinitial-value problem (IVP) of this circuitis a
first-orderODE systenfhe 6 £t 0 0 0,0 T with
respect to pmop unknowrs  vector e
oD AIAQRQRQ whereo o,..,0 o0 are
voltages at nodesp,..,p and 'Q o,.., 'Q o are currents
through inductorsd ,..,0 . Matrix Ah A ~ a is
diagonaland ¢ h Cj v 2 is symmetric Nonzero
elements ofA are

Ar o Ay & Ay o
Aq 0 Ap 0 Ay
whereas upper triangular nonzero elements arfe

Ay &

0 A j 0 (51)
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Py/3 (af #0)

P,/3(a; = a3=10)
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Fig. 9 Threesubcircuit partition of the noenilpotent WR (Thm. IV.3(a))

0 0 ms 0
°e A oo s ...' :
o0 L] ° . YY)
5 .E:.; el 10 &Q 5 ° o::. :
10 ®ee .o .o. 20 -u‘- oo ....
0 5 10 0 10 20 0 5
nz = 30 nz = 65 nz = 24
Fig. 10 Sparsity pattern ofnatrices ¢ Aj E of enlarged
parts Left.0 y . Middle.O ¢ . Right.0 ¢ .. Thm. IV.3(a).
Crh Y Ci Y Y o Y  Cr Y
Cn Y Cn Y Ci Cr CGi Cs P
Ci Cih Ci Cr P (52)

ThelVP is solvednumericallywith backward Euler method
ontd.,4 cb O
Its solution e Q pE ¢ ANE ¢ Q pE
AN Ee E , O w’, is calculated orpoints 0 Hr, B B8
with stepsizeE 4j ¢ . The voltageat node 6and current
through inductot areplotted in Fig.8.

To apply the WR algorithms of section IV to the solution
of the same RLC circuit, oneode overlap longitudinal

error

0 100 200 300 400

nbr. iter.

€rror

400

nbr. iter.

Fig. 11 Error decayLeft G}WR. Right. SWR. Top..  ©. Bottom..

partitioning splits thecircuit, first into three subcircuits
0j.,0j,0; ,theninto four subcircuits0 ; ,0; ,0; ,

0 , andfinally into five subcircuits0 ; ,0 ,0; ,0; ,

0; , see Fig.7. The current source is included in the first
subcircuitwhile the load capacitor in the last one.

In every partition, subcircuits are appended with the
circuit realizationsof the WR kernels and their additive
inverses. Fst, all nonoptimal kernels are given a value of
p T tg ensure corresponding gains (forward and reverse) are
not zero.Next, the onegort circuit realization of every
optimal kernel is constructed by duplicating the enlarged
part built around the corresponding subcircuit, after setting
its primary inputs and/or relaxation sources to z&wery
enlarged part is modeled witan IVP whose initial
conditions are compatible witthe main IVP and solved
with backward Euler using same timesgep 4j ¢

To monitor convergenceyror is estimated by calculating
the infinite norm ofthe difference between thguccessive
waveformsof the relaxation sources from the last two
iterations.To ensure simulation results are rohustery
algorithm is runu mt . Each time, relaxations sources are
initialized with random DC values imip . In each round
of simulation, the numbeof iterationsor sweepsretaken

nbr. round

10*15 I I I I
0 20 40 60 80

nbr. round

T. (Thm. IV.3).
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Fig. 12 Four subcircuit partition of the nilpotent algorithm. @) & @ 1 (Thm. IV.5): (b) Replacement paiis; ,0; : ®
O O & 1(CorlV.6 (b)).
0 to a quantity close to ordermt  of the roundoff errarlf
IR the WR is nilpotentthenits index corresponds to tleeunt
st °%%es o value of thefirst iteration or round at which the error is
°te % practically zero Starting from tk index value, the
10 numericalerror shouldevel off.
0 5 10 o 10 0 10 20 0 5 10
nz =28 nz =95 ne = 9L me A0 Let us start with the algorithm of Thm. IM8r .  oft.
Fig. 13 Sparsity pattern ofnatrices ¢ A E of enlargec Fig. 9 represents the threaigmentegartso ; ,0; , 0 |
parts Left to right0 7 ,07,07,07 . (Thm IV.5). with their coupling circuitriesKernels- " and- " are both
sufficiently large in order to bring thdouble precision optimal while-" -"  p m Matrices¢ A E ofo; ,
floating point value of the numerical errdownto zero up 0;,0; are of orderp ¢ mand g respectively Their
Fig. 14 Error decay. Left GWR. Right SWR. Top.. odd & TmBottom. TtDO & & 1 (Thm.IV.5).



