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Abstract: Models of Gene Regulatory Networks (GRNs) capture

the dynamics of the regulatory processes that occur within the cell as

a means to understanding the variability observed in gene expression

between different conditions. Arguably the simplest mathematical

construct used for modeling is the Boolean network, which dictates a

set of logical rules for transition between states described as Boolean

vectors. Due to the complexity of gene regulation and the limita-

tions of experimental technologies, in most cases knowledge about

regulatory interactions and Boolean states is partial. In addition,

the logical rules themselves are not known a-priori. Our goal in this

work is to create an algorithm that finds the network that fits the

data optimally, and identify the network states that correspond to

the noise-free data. We present a novel methodology for integrating
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experimental data and performing a search for the optimal consistent

structure via optimization of a linear objective function under a set

of linear constraints. In addition, we extend our methodology into a

heuristic that alleviates the computational complexity of the prob-

lem for datasets that are generated by single-cell RNA-Sequencing

(scRNA-Seq). We demonstrate the effectiveness of these tools us-

ing simulated data, and in addition a publicly available scRNA-Seq

dataset and the GRN that is associated with it. Our methodol-

ogy will enable researchers to obtain a better understanding of the

dynamics of gene regulatory networks and their biological role.

1 Introduction

Maintenance of cellular functions requires the orchestration of many interleaving

processes over time and space. A Gene Regulatory Network (GRN) is a set of

genes such that the present state of their expression trajectory can be predicted

from past states via the regulatory relationships between the genes. As a model

that can display complex behavior and at the same time is straightforward to

specify, GRNs have been used to describe the regulation of process as different

as cell differentiation, circadian clocks and diauxic shift (Geistlinger et al., 2013;

Ohara et al., 2018; Willis and Nutt, 2019). Consequently, many methods for

reconstructing GRNs from experimental data at varying levels of detail have

been proposed (Karlebach and Shamir, 2008; Shavit et al., 2016; Hashimoto

et al., 2004). Arguably the most basic formulation, the Boolean network, de-

scribes gene expression states as Boolean values and changes in those levels as

Boolean functions (Kauffman, 1969). While the simplicity of this model imposes

a certain level of abstraction, it also makes it applicable to a broader range of

datasets and simplifies its analysis. Interestingly, despite the relative simplicity
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of Boolean networks, fitting a Boolean network to a gene expression dataset

given a set of regulatory relationships is an NP-Hard problem (Karlebach and

Shamir, 2012). Furthermore, while individual regulatory interactions may be

available from previous studies, the interactions that occur in a given dataset

are not known in advance, which can result in redundant regulators after fitting.

Therefore, an algorithm that selects the optimal Boolean network with respect

to the input data while taking into account the computational complexity of

the problem is needed(Schwarz, 1978; Akaike, 1998; Rissanen, 1983). Laehdes-

maeki et al. proposed an algorithm for selecting Boolean functions that fit the

data with minimum error (Lähdesmäki, 2003). In this approach functions are

selected independently and the goal is to minimize the error of individual func-

tions using the available regulators. Liang et al. suggested an approach that

addresses the same objective, and uses mutual information between regulators

and target in order to select the regulators of a gene (Liang et al., 1998). Akutsu

et al. examined the problem of learning regulation functions when only partial

experimental data are available, and showed that it is NP-complete (Akutsu

et al., 2009). Barman et al. used a genetic algorithm to search for regulatory

functions that preserve a steady-state (Barman and Kwon, 2018). Han et al. for-

mulated the network inference problems as a Bayesian model inference problem

and suggested a Markov Chain Monte Carlo algorithm for finding the posterior

given data (Han et al., 2014). Karlebach and Shamir proposed a method to

find a model that fits the observed noisy Boolean trajectories that minimizes

the conditional entropy of the gene targets given their regulators (Karlebach

and Shamir, 2012). In this paper, we combine the problems of edge selection,

logic optimization and data de-noising in a single objective function. We further

present a novel algorithm for optimizing this objective, i.e. finding the optimal

Boolean network with respect to its fit to a dataset and de-noising the data. We
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show that the optimal structure conforms with a minimal encoding and noise

representation which we refer to as minimal edit distance from a state of igno-

rance. Our approach addresses the computational complexity of the problem by

formulating it as 0/1 Integer Linear Programming. Thus, it can be solved using

powerful branch and bound methods that were developed for ILP. In addition,

we provide a heuristic that can be used to solve the problem or as a subroutine

for finding bounds for the 0/1 ILP solution. We demonstrate the effectiveness

of our methodology on a gene expression dataset of single-cell RNA Sequencing

from mouse embryonic midbrain.

2 Methods

Optimal Fit of Boolean Networks

A gene expression dataset consists of a N × M matrix, where N corresponds to

the number of genes whose expression level was measured, and M corresponds

to the number of experiments. The expression values in the matrix can be dis-

crete or continuous, depending on the experimental technology that was used

for generating the data, and in both cases captures the variation in transcrip-

tional regulation and contains noise. In order to map these values to Boolean

values one needs to label each observation as belonging to a state of low or high

expression. The mapping does not need to be perfect, since any analysis method

should be able to account for some degree of incorrect mappings as a result of

noise. As the methodology proposed in this section is independent of the choice

of a mapping, in the rest of this section we will assume that the mapping has

already been applied to the data. In the Results section we demonstrate the

process using an experimental dataset.

A trajectory of a Boolean network is a sequence of states such that each
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state except for the first state in the sequence is derived from the previous

state using a set of Boolean functions, also known as logic tables. Each Boolean

function determines the value of exactly one gene, and its inputs are the Boolean

values of any number of genes in the network. Usually, it is assumed that the

number of inputs is small compared to the total number of genes. The regulatory

relationships of a Boolean network can be illustrated as edges from inputs to

outputs in a directed graph, called a regulation graph. A gene that has an

outgoing edge to another gene is referred to as a regulator, and a gene with

an incoming edge as a target (a gene can be both a regulator and a target in

the same network). A steady state is a state that repeats itself in a trajectory

indefinitely unless perturbed by external signals, i.e. signals that are not part of

the network. In a typical gene expression dataset the experiments correspond

to a single time point, and therefore the network is assumed to be in a steady

state in each experiment. For simplicity of description we assume in the rest of

this section that the network is in steady state, however the algorithm presented

here is applicable to time-series as well. This is easy to see if we convert the

trajectory to an undirected regulation graph, where each data point corresponds

to a node/gene, and a node/gene in time t is regulated by the nodes at time

t-1 that correspond to its regulators in the original regulation graph. Then the

same variables describe the logic tables and regulators of all the copies of the

same gene, i.e. the nodes that correspond to it in different time points. We

demonstrate the use of time-series data in the results section.

Discrepancies between a dataset and a network model occur when the Boolean

values in an experimental dataset do not agree with any network trajectory due

to experimental noise. This presents a difficulty if the network model is not

known a-priori, since enumerating all possible networks is infeasible. Formally,

let gi denote the integer index of the ith gene in the list of genes, let Cgi,j denote
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the Boolean value of gene gi in experiment j, and let eg1,g2 denote a directed

edge between genes g1 and g2. We say that the data contains a discrepancy

if for some gene index g and two experiments i1 and i2, Cgj ,i1 = Cgj ,i2 for all

genes gj such that an edge egj ,g exists, but Cg,i1 6= Cg,i2 . It follows from the

network’s determinism that at least one of the experiments i1 or i2 does not

agree with any network trajectory. To simplify the notation, we will refer to a

gene by its name or index in the list of genes interchangeably. The number of

regulators of a gene g will be denoted as indegree(g).

Assuming that P 6= NP , there does not exist a polynomial time algorithm

for resolving all the discrepancies with the minimal number of changes. There-

fore, either a heuristic that finds a local optimum or an algorithm that may

not terminate in a reasonable amount of time must be used instead. Another

difficulty is that a strict subset of the regulation graph may provide a better

fit to the data, as not all the interactions occur under every condition, and so

the structure of the network itself needs to be considered in the search for the

optimal solution. If every binary string encodes a network, then every addi-

tional bit used for network encoding doubles the number of possible networks.

Similarly, every bit of input that we allow a mismatch in doubles the number

of trajectories the networks can match. In order to choose a solution that is

a-priori as likely to add a network bit as it is to edit a bit of input, we would like

to assign the same cost to every network/edit bit. As it turns out, the problem

can be formulated as 0/1 ILP, as described in the next subsection.

An Algorithm for the Optimal Minimal Network

The in-degree of nodes in the regulation graph is usually assumed to be small

compared to the number of genes or the number of experiments. If we assume

that it is a constant value in terms of computational complexity, we can define
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a set of constraints on the values that have to be changed in order to remove

all discrepancies from the data. Whenever input values are observed to equal

a line in the logic table whose output is 1, or otherwise mapped to such a

line by correcting noise, the observed output, or corrected output, should also

be 1. If the observed output is not 1, then either the observed value that

matched the line were affected by noise, or their mapping to that line should

be changed. The case of logic table lines whose output was determined to be

0 can be handled similarly. We define these constraints as follows: . Let Ci,j

denote the Boolean input value of gene i at experiment j, and let Bgi,j equal

1 if the value of gene gi in experiment j was flipped in the solution (i.e. did

not fit the trajectories of the inferred network), and otherwise 0. Then for

every experiment j and for every gene gk+1 with regulators g1, g2, ..., gk and for

every Boolean vector (w1, w2, ..., wk) , wj ∈ {0, 1} , if the output of the Boolean

function that determines the value of gk+1, I(w1, w2, ..., wk), is 1, the following

constraint must hold:

k∑
r=1

(Cr,j · (wr + (1− 2 · wr) ·Bgr,j) (1)

+ (1− Cr,j) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+ Ck+1,j ·Bgk+1,j + (1− Ck+1,j) · (1−Bgk+1,j)

< (2− I(w1, w2, ..., wk)) · (k + 1)

This constraint means that if the output variable I(w1, w2, ..., wk) was set to 1,

whenever the inputs w1, w2, ..., wk appear in the solution, the output (the value

of gk+1) must be 1. The values w1, w2, ..., wk are the values of the regulators in

the line of the logic table that is considered in the constraint. They would have

as many values as the logic table can have rows, in other words 2indegree(gk+1),
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and for each such assignment of values we will create one constraint. Similarly,

if I(w1, w2, ..., wk) is set to 0 the following constraint must hold:

k∑
r=1

(Cr,j · (wr + (1− 2 · wr) ·Bgr,j) (2)

+ (1− Crj) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+ Ck+1,j · (1−Bgk+1,j) + (1− Ck+1,j) ·Bgk+1,j

< (I(w1, w2, ..., wk) + 1) · (k + 1)

By requiring that under these constraints the following sum is minimized:

∑
i∈1,..,N
j∈1,..,MBij

we can use a branch and bound algorithm for 0/1 integer programming

to find a solution that fits the data with a minimal number of changes, and

construct a new dataset with values Dij = ((Cij + Bij) mod 2), i ∈ 1..N, j ∈

1..M .

However, this formulation assumes that all regulatory interactions take effect in

the data, which is rarely the case in practice. In order to choose the solution

that also minimizes the network structure, for every gene gi and each one of

its targets gj , we create another Boolean variable Rij , that is constrained to be

greater equal than every difference between regulatory outputs (the I variables)

where pairs of logic table rows are identical in all inputs except gi. If the

regulatory output changes when only the regulator gi changes its value, it will

be constrained to equal 1. Since other inputs can be removed as well, we add

the same constraints to Rij even for pairs of rows where other inputs change,
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and we add the R variables of the changing inputs with a minus sign to the

right hand side, i.e subtract them from the difference between the I variables.

If the other variables that change have been removed, Rij will still be subjected

to the same constraint, and will be set to 1 if the output changes. If the new

constraints can be satisfied without setting Rij to 1, then the edge from gi

to gj in the regulation graph is redundant, because it does not explain any

change that is not explained by other edges. Intuitively, whenever a change

in output occurs between two lines of the logic table, at least one regulator

that changes values between those lines should explain the difference. If there

is a change, then one line’s output is 1 and the other is 0, and so one of the

differences between the outputs will be equal 1. If we rearrange the terms in

the constraint such that all R variables are on the left hand side and all I

variables on the right hand side, we see that the sum of R variable is greater

than the difference between the first I variable and the second I variable in one

constraint, and the sum of R variables is greater than the difference between the

second I variable and the first I variable in another constraint. This equivalent

formulation matches the intuitive notion of explaining differences between logic

table lines. Hence in total, one constraint is added for each pair of rows of a logic

table. Using the Rij variables, we can also account for the size of the logic tables

they contribute to, by defining a new type of variable VRk
: k ∈ 1..indegree(g)

that sums the number of Rij variables of a gene g (the gene index is removed

from the variable name for simplicity). This variable will be constrained to 1 if

at least R of the variables if gene g are set to 1. For example, for a gene with

3 regulators, VR3 is a Boolean variable which is greater or equal the mean of

the three regulator variables minus 2/indegree(g), so it is only constrained to

equal 1 if all three regulators of the gene are kept. Similarly, VR2 is a Boolean

variable which is greater or equal than the mean of the regulator variables of
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the gene minus 1/indegree(g), and VR1 is a Boolean variable greater or equal

than the mean of the regulator variables minus 0.5/indegree(g). The weights

of these variables in the objective function are 1 for VR1
, 22 − 1 for VR2

and

23−22 for VR3 . If VR3 is equal 1, so do the other two variables, and therefore the

objective function is added with the size of a Boolean table of 3 regulators, i.e

23. Similarly, if VR3
is 0 but VR2

is equal 1, so is Vr1 , and so the addition to the

objective function is 22. If a single regulator is chosen, only one bit is needed

to represent the logic table, and that is the addition to the objective function.

This example is trivially generalized to any number of regulators greater than

1, by requiring that the ith V variable be greater or equal to the difference

between the mean of the R variables and (i − 1)/indegree(g), and setting the

weight to the difference between the corresponding size of the truth table and

that size for i-1 regulators. The number of variables in the resulting 0/1 integer

linear programming is M ·N +
∑N

i=1[2indegree(gi)]+2∗ |E|. We observe that the

first regulator added to a gene has N possible choices, and thus is equivalent to

adding log2(N) bits to the network representation. The second regulator adds

log2((N−1)/2), bits and so on with log2((N−i+1)/i) bits for the ith regulator.

The sum of these weights can be added through addition to the respective V

variable weights. A truth table with one regulator adds a factor of two to the

number of networks (activation or repression), and therefore adds 1 bit to the

representation. A truth table with two regulators add approximately 4 bits

(since some tables correspond to less than two regulators), a truth table with

3 regulators approximately 8 bits and so on, and therefore we add ∼ 2i to the

weight of a gene’s Vi variable, and apply telescopic cancellation by subtracting

the weight of the previous V variable, as discussed earlier. Finally, since each

bit of noise reduces the number of noise-free inputs by a factor of 2, we set the

weights of the B variables to 1. All other variables have weight 0. Minimization
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of the objective will then minimize the edit distance from a state of an empty

network and noise, as desired.

Every optimal solution remains optimal for the same input with reduced

noise. Suppose that network of k > 0 bits is the optimal solution with r mis-

matches. Now we flip one of the mismatches, and assume towards contradiction

that there is another network that becomes the optimal solution. This means

that the new network matches a trajectory that is identical to the previous one

except for one place, and the sum of its encoding bits and mismatches is strictly

smaller than k+r-1. Therefore, the same network would have fit the original

trajectory, which only differs in one bit, by at most k+r-1, which contradicts

the assumption that the optimal solution fits with cost k+r. This argument can

be applied repeatedly to generate 2r trajectories that an optimal solution must

fit. Consequently, there cannot be more than 2L−r solutions that use k network

bits and r noise bits, where L is the length of the input. So if k << L− r, the

fit to the data would not be random(Kolmogorov, 1968).

A Heuristic for Single Cell Datasets

Speeding up the solution for computationally hard problems has been an active

topic of Bioinformatics research of scRNA-Seq (Seth et al., 2022; Liu et al.,

2017). A heuristic for solving the fitting problem would enable fitting for hard

instances, and could also be used for improving the upper bound during the 0/1

ILP search. Therefore, we propose the following heuristic for scRNA-Seq data:

1. Cluster the input states into K clusters.

2. Solve the problem for the set of cluster centers, where fractional values in the

centers are rounded to the closer bit, to obtain the set of regulators E, and find

the de-noised states using the fixed set E as described in the previous section,

to obtain a de-noised set of states H∗.
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3. Initialize the full solution H to the empty set. For input state i ∈ 1..M ,

add it to H∗ and if it conflicts with a state in H∗ with respect to E, change it

incrementally to match the entries of the state in H∗ that is closest to it, until

all discrepancies are resolved, and then add it to the full solution H as well.

Otherwise, if it does not conflict add it to H and H∗ without change.

4. Return H

By the construction of H∗, it is free from discrepancies. H is built incre-

mentally such that after every addition of a state it is free from discrepancies,

and therefore it is also free of discrepancies. It is easy to see that when step

3 is completed, either a new state that is free of discrepancies or an existing

state, that by the loop invariant is free of discrepancies, is added to H and H∗.

Similarly, step 3 preserves the set of regulators inferred in step 2, and therefore

it does not increase the number of regulators. In single-cell data, clusters of

cells will have a similar network state, and thus it is likely that a close state

to the one that is present in the optimal solution will already be included in

H∗. This will provide an upper bound for the number of changes applied to

each state. Note that the optimal order by which changes are applied to the

conflicting state in step 3 may depend on the input. For example, one may wish

to order the changes according to the number of discrepancies that they resolve

after the last change, or to choose the order based on the network structure.

Similar considerations can be applied to the order by which states are selected

for addition, for example, by the number of discrepancies with states that have

not been added yet. The weight of a discrepancy in step 1 can be set to the

number of states in its cluster, as each cluster represents a set of states that are

fitted to the network’s trajectories. Then, step 2 can be performed using an ILP

solver and the formulation described in the previous section. In principle, this
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step can also be performed recursively until a set of consistent states, with re-

spect to the input set of regulators, is obtained. The clustering in each recursive

call will decrease the number of states, and so in the worst case the recursion

will halt when we reach a single state, because it does not contain discrepan-

cies. If the heuristic is using trajectories as input, a single trajectory can be

rid of discrepancies by flipping the bits that generate them from the latest time

points backwards. Regulators whose removal would cause discrepancies after

step 4 are then kept, and the rest removed, for example by backward selection.

Note. however, that the recursive approach with an arbitrary implementation

can result in a poor approximation of the optimal solution.

Results

Simulation

The algorithm described in the previous section finds the structure and de-

noising that correspond to the minimal edit distance from a state of ignorance

criterion, and addresses the computational complexity of this problem. The

following section examines the quality of the optimal solution compared to so-

lutions that are not optimal with respect to this criterion. To this end, we used

the function ’generateRandomNKnetworks’ in the R package BoolNet (Müssel

et al., 2010) to generate random Boolean networks and their noisy trajecto-

ries. BoolNet also provides implementations of two network inference methods

, BESTFIT (Lähdesmäki, 2003) and REVEAL (Liang et al., 1998) , to compare

the optimal solution to. generated 100 random Boolean networks and time series

data using the BoolNet R package. Each network had 5 genes, 2 regulators per

gene, 10 time series and 20 time points per series. In addition, for each gene we

randomly added an edge that does not belong to the true structure, and added
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Bernoulli noise to the time series with p=0.1. Gurobi (Gurobi Optimization,

LLC, 2023) was used to solve using our method and the BESTFIT method

in the BoolNet package was used as comparison. The implementation of the

REVEAL method in the same package did not support noisy data. Figure 1

shows boxplots of the number of true positives and the number of false positives

for both tools. As can be seen in the figure, our method (denoted MEDSI for

Minimum Edit Distance from a State of Ignorance) has a higher rate of true pos-

itives and lower rate of false positives. In fact, it seldom chooses wrong edges.

We repeated this analysis with different parameters for the random datasets -

increasing the noise to 0.15 and decreasing the dataset size to 5 time-series of 10

time points each, the median number of true positives predicted by BESTFIT

is 7, and the median number of false positives is 4. Since a third of the edges

that can be selected are false positives, this performance is not better than ran-

domly choosing edges. In contrast, the median number of true positives of our

algorithm was 4.5, and the median number of false positives was 0. This test

shows that when the dataset is smaller and noisier, our algorithm is still able

to provide reliable predictions. When using 10 genes, 5 series of 10 time points

each, and the parameter topology set to ’scale free’, both method predicted a

median of 11 true edges, but BESTFIT had a twice as large number of false

positives (median of 2 edges vs. 1 edge for our algorithm). We conclude that

our algorithm maintains its advantage for different edge distributions as well.

Analysis of the Gene Regulatory Network for Midbrain

Dopaminergic Neurons

In order to test our algorithm we use the mouse embryo scRNA dataset of

LaManno et al. (Manno et al., 2016) and the midbrain dopaminergic (mDA)

neuron developmental GRN that was described by (Arenas et al., 2015). To
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obtain the gene counts we used the scRNA R package (Davide Risso, Michael

Cole, 2017). The R package Seurat (Satija et al., 2015) provides functions to

inspect the data and determine the threshold for screening out cells with an

unusually high or low number of features. Specifically, the parameter ’min.cells’

of the function ’CreateSeuratObject’ was set to 3, removing features that were

detected in less than 3 cells. The parameter ’min.features’ of this function was

set to 200, excluding cells in which less than 200 features were detected. Using

the function ’VlnPlot’, we next identified outlier cells with respect to a high

(4,000 or more) or low (500 or less) number of features, and removed them

as well. Using the ’saver’ function from the R package SAVER (Huang et al.,

2018) with default parameters, we then imputed the network genes. saver has

a built-in default normalization, however normalization using the Seurat func-

tion ’NormalizeData’ with default settings resulted in the same Boolean ma-

trix. After filtering, the dataset contained 1,631 cells (experiments). To obtain

Boolean values, for each gene we compute the median expression value, and

map values smaller or equal to the median expression value to Boolean 0, and

all other counts to 1. The number of clusters K used in the heuristic was set

to 50. The clustering algorithm that we used was k-means as implemented in

R, with all other parameters at their default values. For solving the 0/1 ILP

problem we used Gurobi (Gurobi Optimization, LLC, 2023). We then gener-

ated an EBNF description of the network and used the R package BoolNet to

analyze the network properties (Müssel et al., 2010). A network whose pur-

pose is to induce multiple different cell states would normally have a higher

number of steady states than would be expected from a random network with

the same topological properties. In order to test if this is the case for the in-

ferred network, we generated 1,000 random networks with the same number

of genes and a scale-free distribution of inputs of a regulation function, using
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the ’generateRandomNKNetwork’ function with the parameter ’topology’ set to

’scale free’ and ’gamma’ set to 0.5. Even when considering networks that had

at least one steady state, out of 1,000 networks, none had an equal or greater

number of steady states than the inferred network, corresponding to a p-value

smaller than 0.001. We interpret this result as indicating that the inferred

network structure is adapted to supporting a large number of differentiation

states. Out of 32 steady states, 28 appeared in the dataset of LaManno et al.,

suggesting the existence of unobserved phenotypes that may be triggered under

similar conditions, or possibly networks states that lead to apoptosis and are

therefore not observed in the experiment. The similarity between the observed

and unobserved steady states is illustrated in figure 2. States are mapped into

a two-dimensional space using multidimensional scaling. There are four clusters

of network states, all of them containing observed states (light blue) and three

of them containing unobserved (dark blue) states. Each axis corresponds to one

coordinate in the 2-dimensional space to which the states are mapped. Mul-

tidimensional scaling was performed using the R function ’cmdscale’, with the

’dist’ function for creating the distance matrix between states. Both functions

were called with their default parameters. Examining the activation of genes in

the unobserved steady states showed that they mostly belong to several subnet-

works based on the division of Arenas et al. (Arenas et al., 2015). These states

are shown in figure 3, where an active gene (Boolean 1) is colored red and an

inactive gene (Boolean 0) is colored blue. Each row corresponds to a differ-

ent steady state, and each column corresponds to one gene that has regulators

or targets. This could potentially indicate that these states correspond to yet

unexplored differentiation pathways that can be triggered by external stimuli

without modifying the network components. Next we examined whether the

knockout or over-expression of a single gene can generate a new repertoire of
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steady states that is not observed in the wild type network. Since knocking

down a gene sets its activation value to inactive (Boolean 0), we counted the

number of steady states in the perturbed network that differ from each wild type

steady state by at least one other gene value. For single-gene knockouts, Ferd3l

and Shh generated 16 new steady states, Hes1 and Msx1 generated 12 new

steady states, Neurog2 generated 6 new steady states, and Lmx1b generated 4

new steady states. Knockout of any other gene did not generate steady states

that differ from wild type steady states by genes that were not knocked down.

A similar experiment with gene over-expression resulted in a similar behavior,

except that Msx1 generated only 4 new steady states. Figure 4 illustrates

these results. The y-axis provides the number of new steady states that result

from knocking out (red) or over-expressing(cyan) the genes that are given in

the x-axis. These findings suggests that while the network is generally robust to

perturbations, there is a subset of genes are potential targets for generating be-

havior that differs from that of the wild type network. Our in-silico experiments

could be repeated in the wet lab in order to further elucidate the connection

between network steady states and phenotype. The genes whose perturbations

generate the largest number of new states, Shh and Ferd3l, have been identified

as potential targets for inducing remyelination and neurogenesis, respectively

(Sanchez et al., 2018; Ono et al., 2010). This may indicate that the diversity

of the new steady states may reflect an ability to divert the differentiation path

into new cell types upon perturbation. Next, we reasoned that cells that were

collected at later time points will on average undergo less differentiation than

cells collected at earlier time points, since they are more likely to have reached

their terminal differentiation states. Therefore, the network that regulates dif-

ferentiation should have a smaller number of genes that are active. In order

to test this hypothesis, we used the R function ’cor.test’ to test for correlation
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between time point and the number of network genes that are active, using

Kendall’s test statistic. The p-value was highly significant (8.3 · 10−38), with a

negative Kendall correlation of -0.24, suggesting that network activity indeed

decreases with time. We further tested whether the network’s steady states are

more divergent than would be expected by chance. Since the cell differenti-

ate into several distinct phenotypes, a larger distance between the regulatory

network states is expected. We compared the mean pairwise binary distance

between pairs of steady states of the inferred network to the mean distance be-

tween pairs of steady states of scale free random networks that had at least five

steady states. Out of 1,000 random networks, only 29 had steady states with a

larger or equal mean distance, corresponding to a p-value of 0.029.

Conclusion

We propose a new algorithm for fitting a Boolean network model to gene expres-

sion data that finds an optimal solution with respect to network structure and

fit to the data. We further present a heuristic that alleviates the computational

complexity of the problem and therefore provides a practical solution for cases

in which an exact solution cannot be obtained due to limited computational

resources. Using known regulatory relationships and a dataset of scRNA-Seq

measurements, we demonstrated the usefulness of our algorithm by inferring

the network structure and its state in different cells. Inspection of the dynamic

properties of the inferred network show that only a subnetwork is responsible

for generating the observed steady states, and that the dataset only represents

a subset of the possible steady states under the experimental conditions. By ex-

amining the de-noised data we found that distinct regulatory trajectories could

potentially give rise to different types of cells. Single gene perturbations change

the steady state behavior significantly only when the targets are a small subset
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Figure 1: Boxplots of True Positives and False Positives

of the network’s genes, suggesting targets for wet lab experiment to explore novel

phenotypes. The method presented in this paper provides a novel approach to

using regulatory relationships between transcription factors and their targets for

the interpretation of gene expression assays and for exploring unobserved regu-

latory trajectories in-silico. Since the problem described in this work belongs to

the class of NP-Complete problems, some instances require significantly more

computational resources to solve than problems that have polynomial-time al-

gorithms. The Gurobi solver implements parallelization which can be used to

trade running time for computing cores. Additionally, we provided a class of

heuristics whose integration with the ILP search to improve running time is

one of our future research goals. As discussed in the Methods section, various

choices in the implementation of the heuristic can be made and the best choices

given a dataset need to be further explored. For example, the optimal param-

eters choices for the heuristic could be different in different steps of the search.

While the Gurobi solver is constantly being improved, it is not currently opti-

mized for the network inference problem. Finally, our method currently collects

regulator-target interactions from the literature as a first step. Using a heuristic

to provide an equivalent starting point based on expression data alone is another

future goal.
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