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Abstract—Models of Gene Regulatory Networks (GRNs) cap-
ture the dynamics of the regulatory processes that occur within
the cell as a means to understand the variability observed
in gene expression between different conditions. Arguably
the simplest mathematical construct used for modeling is the
Boolean network, which dictates a set of logical rules for
transition between states described as Boolean vectors. Due
to the complexity of gene regulation and the limitations of
experimental technologies, in most cases knowledge about reg-
ulatory interactions and Boolean states is partial. In addition,
the logical rules themselves are not known a-priori. Our goal
in this work is to present a methodology for inferring this
information from the data, and to provide a measure for com-
paring network states under different biological conditions. We
present a novel methodology for integrating experimental data
and performing a search for the optimal consistent structure
via optimization of a linear objective function under a set
of linear constraints. We also present a statistical approach
for testing the similarity of inferred network states under
different conditions. Finally, we extend our methodology into a
heuristic that can handle large datasets that are generated by
single-cell RNA-Sequencing(scRNA-Seq). We demonstrate the
effectiveness of these tools using a public scRNA-Seq dataset
and the GRN that is associated with it. Our methodology will
enable researchers to obtain a better understanding of the
dynamics of gene regulatory networks and their biological role.

1. Introduction

2. Introduction

Maintenance of cellular functions requires the orches-
tration of many interleaving processes over time and space.
A Gene Regulatory Network (GRN) is a set of genes such
that the present state of their expression trajectory can be
predicted from past states via the regulatory relationships
between the genes. As a model that can display complex
behaviour and at the same time is straightforward to specify,
GRNs have been used to describe the regulation of processe
as different as cell differentiation, circadian clocks and
diauxic shift [3], [11], [18]. Consequently, many methods
for reconstructing GRNs from experimental data at varying

levels of detail have been proposed [5], [7], [17]. Arguably
the most basic formulation, the Boolean network, describes
gene expression states as Boolean values and changes in
those levels as Boolean functions [9]. While the simplicity
of this model imposes a certain level of abstraction, it also
makes it applicable to a broader range of datasets and simpli-
fies its analysis. Interestingly, despite the relative simplicity
of Boolean networks, fitting a Boolean network to a gene
expression dataset given a set of regulatory relationships is
an NP-Hard problem [8]. In practice the exact regulatory
relationships are not known, which can result in redundant
regulators after fitting. A possible remedy to this problem is
impose non-redundant logic as a requirement in the solution
of the fitting problem [7], [16]. However, this approach
contradicts the widely accepted principle that a simpler
model that provides the same degree of fit to the data is
preferable to a more complex one [1], [12], [15]. In this
paper we present a novel algorithm for fitting a Boolean
network to a gene expression dataset that addresses the
problem of redundant regulators. In addition, we provide a
method to compute the statistical significance of difference
between network states under different conditions. We apply
our methodology to a gene expression dataset of single-cell
RNA Sequencing from mouse embryonic midbrain.

3. Methods

Optimal Fit of Boolean Networks

A gene expression dataset consists of a N × M matrix
where N corresponds to the number of genes whose expres-
sion level was measured and M corresponds to the number
of experiments. In a typical dataset N� M. The expression
values in the matrix can be discrete or continuous, depending
on the experimental technology that was used for generating
the data, but higher values always represent a higher expres-
sion level. In order to map these values to Boolean values
one needs to label each observation as belonging to a state
of low or high expression. Since the proposed methodology
is independent of the choice of a mapping, in the rest of this
section we will assume that the mapping has already been
applied to the data.

A trajectory of a Boolean network is a sequence of
states such that each state except for the first state in the
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sequence is derived from the previous state using a set of
Boolean functions. Each Boolean function determines the
value of exactly one gene, and its inputs are the states of
any number of genes in the network. Usually, it is assumed
that the number of inputs is small compared to the total
number of genes. The regulatory relationships of a Boolean
network can be illustrated as edges from inputs to outputs
in a directed graph, called a regulation graph. A gene that
has an outgoing edge to another gene is referred to as a
regulator, and a gene with an incoming edge as a target
(a gene can be both a regulator and a target). A steady
state is a state that repeats itself in a trajectory indefinitely
unless perturbed by external signals, i.e. signals that are not
part of the network. In a typical gene expression dataset
the experiments correspond to a single time point, and
therefore the network is assumed to be in a steady state in
each experiment. For simplicity of description we assume
in the rest of this section that the network is in steady state,
however the algorithm presented here is applicable to any
type of data.

Discrepancies between a dataset and a network model
occur when the Boolean values in an experimental dataset
do not agree with any network trajectory due to experimental
noise. This presents a difficulty if the network model is not
known a-priori, since enumerating all possible networks is
infeasible. Formally, let Cgi,j denote the Boolean value of
gene gi in experiment j, and let eg1,g2 denote a directed
edge between genes g1 and g2. We say that the data contains
a discrepancy if for some gene g and two experiments i1
and i2, Cgj ,i1 = Cgj ,i2 for all genes gj such that an edge
egj ,g exists, but Cg,i1 6= Cg,i2 . It follows from the network’s
determinism that at least one of the experiments i1 or i2 does
not agree with any network trajectory.

Assuming that P 6= NP , there does not exist a poly-
nomial time algorithm for resolving all the discrepancies
with the minimal number of changes. Therefore, either a
heuristic that finds a local optimum or an algorithm that
may not terminate in a reasonable amount of time must
be used instead. Another difficulty is that a strict subset of
the regulation graph may provide a solution with the same
number of changes to the expression dataset, and so the
structure of the network itself needs to be considered in the
search for the optimal solution. This brings another level of
complexity to the already difficult problem.

An Algorithm for the Optimal Minimal Network

The in-degree of nodes in the regulation graph is usually
assumed to be small compared to the number of genes or the
number of experiments. If we assume that it is a constant
value in terms of computational complexity, we can define
a set of constraints on the values that have to be changed
in order to remove all discrepancies from the data. Let Ci,j

denote the Boolean input value of gene i at experiment j,
and let Bgi,j equal 1 if the value of gene gi in experiment
j was flipped in the solution, and otherwise 0. Then for
every experiment j and for every gene gk+1 with regulators
g1, g2, ..., gk and for every Boolean vector (w1, w2, ..., wk)

, wj ∈ {0, 1} , if the output of the Boolean function that
determines the value of gk+1, I(w1, w2, ..., wk), is 1, the
following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (1)

+(1− Crj) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+Ck+1,j ·Bgk+1,j + (1− Ck+1,j) · (1−Bgk+1,j)

< (2− I(w1, w2, ..., wk)) · (k + 1)

This constraint means that if the output variable
I(w1, w2, ..., wk) was set to 1, whenever the inputs
w1, w2, ..., wk appear in the solution the output (the value
of gk+1) must be 1. Similarly, if I(w1, w2, ..., wk) is set to
0 the following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (2)

+(1− Crj) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+Ck+1,j · (1−Bgk+1,j) + (1− Ck+1,j) ·Bgk+1,j

< (I(w1, w2, ..., wk) + 1) · (k + 1)

By requiring that under these constraints the following
sum is minimized: ∑

i∈1,..,N

j∈1,..,MBij

we can use a branch and bound algorithm for 0/1 integer 
programming to find a solution that fits the data with a minimal 
number of changes and construct a new dataset with values Dij 
= ((Cij + Bij ) mod 2), i ∈ 1..N , j ∈ 1..M . However, this 
formulation still ignores the possible existence of multiple 

optimal solutions that correspond to different network 
structures, for if after resolution of the discrep-ancies only a 

strict subset of inputs uniquely determines a function’s output 
then the edges in the regulation graph that correspond 

to the rest of the inputs can be removed. In order to choose the 
solution that results in the smallest network, for every gene gi 

and each one of its targets gj , we create another Boolean 
variable Rij , that is constrained to be greater equal than 

every difference between regulatory outputs where the truth 
table rows are identical in all inputs except gi .  Since other 

inputs can be removed as well, we add constraints on Rij 
even for rows where other inputs change, and we add the  R 

variables of the changing inputs with a minus sign to the right 
hand side.  If they change and have been removed, Rij will 

still be subjected to the same constraint.  If the new 
constraints can be satisfied without setting Rij to 1, then the edge 

from gi to gj in the regulation graph is redundant, because 
regulatory output are identical when the only change is gi . 
Using the Rij variables, we can also weigh the size of the logic 
tables they contribute to, by defining a new type of variable VRk 

that sum the number of Rij variables. For example for a gene 
with 3 regulators, VR3 is a Boolean variable which is greater 

equal the sum of the three regulator variables of the gene divided
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by 3, minus 2/3, VR2
is a Boolean variable which is greater

or equal any sum of two regulator variables of the gene
divided by 2 minus 1/2, and VR1

is a Boolean variable
greater or equal any single regulator variable of the gene.
The weights of these variables in the objective function are
2 for VR1

, 22 − 2 for VR2
and 23 − 22 for VR3

. If VR3

i equal 1 so do the other two variables, and therefore the
objective function is added with the size of a Boolean table
of 3 regulators. Similarly, if VR2

is equal 1, so is Vr1 , and
so the addition to the objective function is 22. If a single
regulator is chosen, then the size of the logic table is 2 and
that is the addition to the objective function. The number of
variables in the resulting 0/1 integer linear programming is
M ·N+

∑N
i=1[2

indegree(gi)+ indegree(gi)]+ |E|. Then the
algorithm will minimize the size of the true network that
generated the data plus the size of a network that generated
the noise, the latter being almost always not significantly
shorter than the input noise itself.

Comparing Groups of Inferred Network States

Given the optimal network and its inferred states, we
now wish to compute the probability of seeing the observed
difference between two groups of states, referred to as cases
and controls, by chance. In order to do that, we compute
the difference between the expected between-group state
distance and the expected within-group state distance, where
the two groups are cases and controls. A distance between
two binary states is simply the sum of non-identical entries.∑M

i=1

∑M
j=1,j 6=i

∑N
k=1 |Dki −Dkj |

M · (M − 1)
− (3)∑

i∈group1
∑

j∈group1,j 6=i

∑N
k=1 |Dki −Dkj |

|group1| · |group1− 1| · 2
−∑

i∈group2
∑

j∈group2,j 6=i

∑N
k=1 |Dki −Dkj |

|group2| · |group2− 1| · 2
In order to generate a value from the null distribution we

sample a number of random states equal to the number of
states in the data and apply the network logic to find steady
states. We then compute the same statistic (3) by randomly
assigning the patient and healthy labels from the data to
these states.

A Heuristic for Single Cell Datasets

We propose the following heuristic for scRNA-Seq
data:
1. Cluster the input states into K clusters.
2. Solve the problem exactly for the set of cluster centers,
where fractional values in the centers are rounded to the
closer bit, to obtain a solution H∗. Set the set of regulators
E to the one derived from H∗.
3. Initialize the full solution H to the empty set. For input
state i ∈ 1..M , add it to H∗ and if it conflicts with a state
in H∗ with respect to E, change it incrementally to match

the entries of the state in H∗ that is closest to it, until all
discrepancies are resolved, and add it to the full solution
H . Otherwise, if it does not conflict add it to H and H∗

without change.
4. Return H

Since H∗ is optimal, it is free from discrepancies. H
is built incrementally such that after every addition of a
state it is free from discrepancies, and therefore it is also
free of discrepancies. Similarly, step 3 preserves the set
of regulators inferred in step 2, and therefore it does not
increase the number of regulators. This heuristic is designed
with the nature of single-cell data in mind, where clusters of
cells will have a similar network state, and thus it is likely
that a close state to the one that is present in the optimal
solution will already be included in H∗. Note that the order
by which changes are applied to the conflicting state in
step 3 may vary. For example, one may wish to order the
changes according to the number of discrepancies that they
resolve after the last change, or to choose the order based on
the network structure. Similar considerations can be applied
to the order by which states are selected for addition, for
example, by the number of discrepancies with states that
have not been added yet.

Results

Analysis of the Gene Regulatory Network for Mid-
brain Dopaminergic Neurons

In order to test our algorithm we use the mouse embryo
scRNA dataset of LaManno et al. [10] and the midbrain
dopaminergic (mDA) neuron developmental GRN that was
described by [2]. To obtain the gene counts we used the
scRNA R package [13]. We used the R package Seurat
[14] to inspect the data and to screen cells that had less than
500 or more than 4,000 features. After filtering, the dataset
contained 1,631 cells (experiments). We applied SAVER
[6] to impute expression values for the network genes. To
obtain Boolean values, we map values smaller or equal to
the median expression value to Boolean 0, and all other
counts to 1. The number of clusters K used in the heuristic
was set to 50. The clustering algorithm that we used was
k-means as implemented in R, with all other parameters at
their default values. For solving the ILP problem we used
Gurobi [4] The optimal solution flips 5,997 Boolean values,
which corresponds to a noise level of approximately 17.5%
of the input values. The observed number of discrepancies
with respect to the original network structure is 8,331,
approximately 24.3% of the input values.

Minimal Network Structure and Logic

Figure 1 shows a multidimensional scaling of the sam-
ples using the binary distance between them after network
fitting. Each circle corresponds to a distinct network state.
The circles form several clusters which correspond to states
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that are close to one another in the state space. Using a null
distribution generated using 1,000 sampled network steady-
state sets, we obtain a p-value of less than 10−3 when com-
paring every pair of adjacent clusters using the hypothesis
test described in Methods. We propose that each cluster
corresponds to a distinct network function, and cells in the
same cluster thus share a phenotype induced by the network.
Using the inferred logic, perturbations to drive the network
to each of these states could be derived, and phenotypic
differences under these perturbations could be further stud-
ied. Examination of the optimized network structure shows
that fitting has resulted in a sparser network structure, as
illustrated in Figure 2. After fitting, only 43 of the original
51 edges remained in the network, indicating that some
of the interactions do not take place under the conditions
induced in the experiment. Figure 3 shows the original
network, where edges that were removed after fitting are
highlighted in gold. In order to characterize the complexity
of the regulatory logic, we examined for all genes the corre-
lation between the number of expressed regulators and the
expression of the target. The number of expressed regulators
was far from perfectly correlated with the regulatory logic’s
output when the genes had multiple regulators affecting its
value, reflected by low absolute values for the Kendall’s tau
statistic, with a median of 0.13 and a mean of 0.24. Pitx3
had the highest correlation value (0.57) among genes that
had more than 2 regulators. These results suggest that the
network’s logic is not a monotone function of the number
of regulators.

Noise Distribution Across Network Nodes

The noise level of different genes in the model is of
interest since assumptions about this parameter are often
made in models of gene expression. Therefore, we examined
for each gene the number of input values of each type
(Boolean 0 and 1) that were flipped in the optimal fit.
The distribution of noise across the genes was non-uniform
(Fig. 4, Kolmogorov-Smirnov p-value 1.2 · 10−8) and was
not associated with an expressed state (Boolean 1) or non-
expressed state(Boolean 0). This suggests that modeling
assumptions that assign an equal level of noise for all genes
may lead to wrong conclusions. Further research into the
nature of the differences in noise levels between the different
genes in this type of data could provide the basis for further
improvement of modeling methods.

Conclusion

We propose a new algorithm for fitting a Boolean
network model to gene expression data that improves on
previous approaches by minimizing the size of the network
that fits the data optimally. We further present a heurisitic
that allows the analysis of large datasets, which is imperative
for the analysis of large datasets such as single-cell RNA
sequencing data. Using a known network structure and a
dataset of scRNA-Seq measurements, we demonstrated our
algorithm by inferring the network structure and its state in

different cells. Inspection of the structural properties of the
inferred network show that fitting prunes redundant regula-
tors, which stresses the importance of sparsity constraints
in the search algorithm. Furthermore, the inferred logic was
diverse and showed that constraints on the logic functions
should be avoided. By sampling random states and applying
the inferred network logic we found that different groups of
cells are likely to arise from distinct regulatory trajectories.
The regulatory relationships between transcription factors
and their targets as given by combining the model and
expression data can enabled the selection of targets for
perturbation experiments to validate phenotypes induced by
the network.
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Figure 1. Multidimensional scaling of network states
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