
Computing Minimal Boolean Models of Gene Regulatory Networks

Guy Karlebach
The Jackson Laboratory for Genomic Medicine

Farmington, Connecticut 06032, USA
Email: guy.karlebach@jax.org

Peter N Robinson
The Jackson Laboratory for Genomic Medicine

Farmington, Connecticut 06032, USA
Email: peter.robinson@jax.org

Abstract—Models of Gene Regulatory Networks (GRNs) cap-
ture the dynamics of the regulatory processes that occur within
the cell as a means to understand the variability observed
in gene expression between different conditions. Arguably
the simplest mathematical construct used for modeling is
the Boolean network, which dictates a set of logical rules
for transition between states described as Boolean vectors.
Due to the complexity of gene regulation and the limita-
tions of experimental technologies, in most cases knowledge
about regulatory interactions and Boolean states is partial.
In addition, the logical rules themselves are not known a-
priori. Our goal in this work is to create an algorithm that
finds the network that fits the data optimally, and identify
the network states that correspond to the noise-free data. We
present a novel methodology for integrating experimental data
and performing a search for the optimal consistent structure
via optimization of a linear objective function under a set of
linear constraints. In addition, we extend our methodology into
a heuristic that alleviates the computational complexity of the
problem for datasets that are generated by single-cell RNA-
Sequencing(scRNA-Seq). We demonstrate the effectiveness of
these tools using simulated data, and in addition a publicly
available scRNA-Seq dataset and the GRN that is associated
with it. Our methodology will enable researchers to obtain
a better understanding of the dynamics of gene regulatory
networks and their biological role.

1. Introduction

Maintenance of cellular functions requires the orches-
tration of many interleaving processes over time and space.
A Gene Regulatory Network (GRN) is a set of genes such
that the present state of their expression trajectory can be
predicted from past states via the regulatory relationships
between the genes. As a model that can display complex
behavior and at the same time is straightforward to specify,
GRNs have been used to describe the regulation of process
as different as cell differentiation, circadian clocks and
diauxic shift [3], [11], [18]. Consequently, many methods
for reconstructing GRNs from experimental data at varying
levels of detail have been proposed [5], [7], [17]. Arguably
the most basic formulation, the Boolean network, describes
gene expression states as Boolean values and changes in

those levels as Boolean functions [9]. While the simplicity
of this model imposes a certain level of abstraction, it also
makes it applicable to a broader range of datasets and simpli-
fies its analysis. Interestingly, despite the relative simplicity
of Boolean networks, fitting a Boolean network to a gene
expression dataset given a set of regulatory relationships
is an NP-Hard problem [8]. In practice the regulatory
interactions that occurs in a given dataset are not known,
which can result in redundant regulators after fitting. Not
surprisingly, an algorithm for optimal fitting that takes into
account the complexity of network structure has not been
proposed to-date [1], [12], [15]. In this paper we present
a novel algorithm for finding the optimal Boolean network
structure with respect to its fit to a dataset, and for de-
noising the data. We show that minimizing the encoding of
the noise and the network structure can be formulated as
a 0/1 Integer Linear Programming problem (ILP), and thus
solved using powerful branch and bound methods that exist
for ILP. In addition, we provide heuristic that alleviates the
computational complexity of the problem, and can be used
to solve the problem or as a subroutine for finding bounds
for the 0/1 ILP solution. We demonstrate the effectiveness of
our methodology on a gene expression dataset of single-cell
RNA Sequencing from mouse embryonic midbrain.

2. Methods

Optimal Fit of Boolean Networks

A gene expression dataset consists of a N × M matrix,
where N corresponds to the number of genes whose expres-
sion level was measured, and M corresponds to the number
of experiments. The expression values in the matrix can
be discrete or continuous, depending on the experimental
technology that was used for generating the data, and in
both cases captures the variation in transcriptional regulation
and contains noise. In order to map these values to Boolean
values one needs to label each observation as belonging to a
state of low or high expression. The mapping does not need
to be perfect, since any analysis method should be able to
account for some degree of incorrect mappings as a result
of noise. As the methodology proposed in this section is
independent of the choice of a mapping, in the rest of this
section we will assume that the mapping has already been

applied to the data. In the Results section we demonstrate
the process using an experimental dataset.

A trajectory of a Boolean network is a sequence of states
such that each state except for the first state in the sequence
is derived from the previous state using a set of Boolean
functions, also known as logic tables. Each Boolean function
determines the value of exactly one gene, and its inputs are
the Boolean values of any number of genes in the network.
Usually, it is assumed that the number of inputs is small
compared to the total number of genes. The regulatory rela-
tionships of a Boolean network can be illustrated as edges
from inputs to outputs in a directed graph, called a regulation
graph. A gene that has an outgoing edge to another gene
is referred to as a regulator, and a gene with an incoming
edge as a target (a gene can be both a regulator and a target
in the same network). A steady state is a state that repeats
itself in a trajectory indefinitely unless perturbed by external
signals, i.e. signals that are not part of the network. In a
typical gene expression dataset the experiments correspond
to a single time point, and therefore the network is assumed
to be in a steady state in each experiment. For simplicity
of description we assume in the rest of this section that the
network is in steady state, however the algorithm presented
here is applicable to time-series as well. This is easy to
see if we convert the trajectory to an undirected regulation
graph, where each data point corresponds to a node/gene,
and a node/gene in time t is regulated by the nodes at time
t-1 that correspond to its regulators in the original regulation
graph. Then the same variables describe the logic tables and
regulators of all the copies of the same gene, i.e. the nodes
that correspond to it in different time points. We demonstrate
the use of time-series data in the results section.

Discrepancies between a dataset and a network model
occur when the Boolean values in an experimental dataset
do not agree with any network trajectory due to experimental
noise. This presents a difficulty if the network model is not
known a-priori, since enumerating all possible networks is
infeasible. Formally, let gi denote the integer index of the ith

gene in the list of genes, let Cgi,j denote the Boolean value
of gene gi in experiment j, and let eg1,g2 denote a directed
edge between genes g1 and g2. We say that the data contains
a discrepancy if for some gene index g and two experiments
i1 and i2, Cgj ,i1 = Cgj ,i2 for all genes gj such that an edge
egj ,g exists, but Cg,i1 6= Cg,i2 . It follows from the network’s
determinism that at least one of the experiments i1 or i2
does not agree with any network trajectory. To simplify the
notation, we will refer to a gene by its name or index in the
list of genes interchangeably. The number of regulators of
a gene g will be denoted as indegree(g).

Assuming that P 6= NP , there does not exist a poly-
nomial time algorithm for resolving all the discrepancies
with the minimal number of changes. Therefore, either a
heuristic that finds a local optimum or an algorithm that
may not terminate in a reasonable amount of time must be
used instead. Another difficulty is that a strict subset of the
regulation graph may provide a better fit to the data, as not
all the interactions occur under every condition, and so the
structure of the network itself needs to be considered in

the search for the optimal solution. If every binary string
encodes a network, then every additional bit used for net-
work encoding doubles the number of possible networks.
Similarly, every unedited bit in the input data doubles the
number of random strings that correspond to these bits. In
order to choose a solution that is a-priori as likely to add a
network bit as it is to edit a bit of input, we would like to
assign the same cost to every network/edit bit. As it turns
out, the problem can be approximately formulated as 0/1
ILP, as described in the next subsection.

An Algorithm for the Optimal Minimal Network

The in-degree of nodes in the regulation graph is usually
assumed to be small compared to the number of genes or the
number of experiments. If we assume that it is a constant
value in terms of computational complexity, we can define
a set of constraints on the values that have to be changed
in order to remove all discrepancies from the data. Let Ci,j

denote the Boolean input value of gene i at experiment j,
and let Bgi,j equal 1 if the value of gene gi in experiment
j was flipped in the solution (i.e. did not fit the trajecto-
ries of the inferred network), and otherwise 0. Then for
every experiment j and for every gene gk+1 with regulators
g1, g2, ..., gk and for every Boolean vector (w1, w2, ..., wk)
, wj ∈ {0, 1} , if the output of the Boolean function that
determines the value of gk+1, I(w1, w2, ..., wk), is 1, the
following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (1)

+(1− Crj) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+Ck+1,j ·Bgk+1,j + (1− Ck+1,j) · (1−Bgk+1,j)

< (2− I(w1, w2, ..., wk)) · (k + 1)

This constraint means that if the output variable
I(w1, w2, ..., wk) was set to 1, whenever the inputs
w1, w2, ..., wk appear in the solution, the output (the value
of gk+1) must be 1. Similarly, if I(w1, w2, ..., wk) is set to
0 the following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (2)

+(1− Crj) · ((1− wr) + (2 · wr − 1) ·Bgr,j))

+Ck+1,j · (1−Bgk+1,j) + (1− Ck+1,j) ·Bgk+1,j

< (I(w1, w2, ..., wk) + 1) · (k + 1)

By requiring that under these constraints the following
sum is minimized: ∑

i∈1,..,N
j∈1,..,MBij

we can use a branch and bound algorithm for 0/1 integer
programming to find a solution that fits the data with a min-
imal number of changes , and construct a new dataset with
values Dij = ((Cij +Bij) mod 2), i ∈ 1..N, j ∈ 1..M .
However, this formulation assumes that all regulatory inter-
actions take effect in the data, which is rarely the case in
practice. In order to choose the solution that also minimizes
the network structure, for every gene gi and each one of
its targets gj , we create another Boolean variable Rij , that
is constrained to be greater equal than every difference
between regulatory outputs (the I variables) where pairs
of logic table rows are identical in all inputs except gi.
If the regulatory output changes when only the regulator
gi changes its value, it will be constrained to equal 1.
Since other inputs can be removed as well, we add the
same constraints to Rij even for pairs of rows where other
inputs change, and we add the R variables of the changing
inputs with a minus sign to the right hand side, i.e subtract
them from the difference between the I variables. If the
other variables that change have been removed, Rij will
still be subjected to the same constraint, and will be set
to 1 if the output changes. If the new constraints can be
satisfied without setting Rij to 1, then the edge from gi to
gj in the regulation graph is redundant, because it does not
explain any change that is not explained by other edges.
Using the Rij variables, we can also weigh the size of the
logic tables they contribute to, by defining a new type of
variable VRk

: k ∈ 1..indegree(g) that sums the number
of Rij variables of a gene g (the gene index is removed
from the variable name for simplicity). This variable will
be constrained to 1 if at least R of the variables if gene
g are set to 1. For example, for a gene with 3 regulators,
VR3

is a Boolean variable which is greater or equal the
mean of the three regulator variables minus 2/indegree(g),
so it is only constrained to equal 1 if all three regulators
of the gene are kept. Similarly, VR2

is a Boolean variable
which is greater or equal than the mean of the regulator
variables of the gene minus 1/indegree(g), and VR1

is
a Boolean variable greater or equal than the mean of the
regulator variables minus 0.5/indegree(g). The weights of
these variables in the objective function are 1 for VR1

, 22−1
for VR2

and 23 − 22 for VR3
. If VR3

is equal 1, so do the
other two variables, and therefore the objective function is
added with the size of a Boolean table of 3 regulators, i.e
23. Similarly, if VR3

is 0 but VR2
is equal 1, so is Vr1 ,

and so the addition to the objective function is 22. If a
single regulator is chosen, only one bit is needed to represent
the logic table, and that is the addition to the objective
function. This example is trivially generalized to any number
of regulators greater than 1, by requiring that the ith V
variable be greater or equal to the difference between the
mean of the R variables and (i−1)/indegree(g), and setting
the weight to the difference between the corresponding size
of the truth table and that size for i-1 regulators. The number
of variables in the resulting 0/1 integer linear programming
is M ·N +

∑N
i=1[2

indegree(gi)] + 2 ∗ |E|. We observe that
the first regulator added to a gene has N possible choices,

and thus is equivalent to adding log2(N) bits to the network
representation. The second regulator adds log2(N − 1), bits
and so on with log2(N − i) bits for the ith regulator. The
sum of these weights can be added through addition to
the respective V variable weights. A truth table with one
regulator adds a factor of two to the number of networks
(activation or repression), and therefore adds 1 bit to the
representation. A truth table with two regulators add approx-
imately 4 bits, a truth table with 3 regulators approximately
8 bits and so on, and therefore we add 2i to the weight
of a gene’s Vi variable, and apply telescopic cancellation as
previously discussed. Finally, since each bit of noise reduces
the number of noise-free inputs by a factor of 2, we set the
weights of the B variables to 1. All other variables have
weight 0. Minimization of the objective will then minimize
the edit distance from a state of an empty network and noise,
as desired.

A Heuristic for Single Cell Datasets

Speeding up the solution for computationally hard
problems has been an active topic of Bioinformatics
research of scRNA-Seq [19], [20]. A heuristic for solving
the fitting problem would enable fitting for hard instances,
and could also be used for improving the upper bound
during the 0/1 ILP search. Therefore, we propose the
following heuristic for scRNA-Seq data:
1. Cluster the input states into K clusters.
2. Solve the problem for the set of cluster centers, where
fractional values in the centers are rounded to the closer bit,
to obtain the set of regulators E , then find the de-noised
states using the fixed set E as described in the previous
section, to obtain a de-noised set of states H∗.
3. Initialize the full solution H to the empty set. For input
state i ∈ 1..M , add it to H∗ and if it conflicts with a state
in H∗ with respect to E, change it incrementally to match
the entries of the state in H∗ that is closest to it, until
all discrepancies are resolved, and then add it to the full
solution H as well. Otherwise, if it does not conflict add it
to H and H∗ without change.
4. Return H

By the construction of H∗, it is free from discrepancies.
H is built incrementally such that after every addition of a
state it is free from discrepancies, and therefore it is also
free of discrepancies. It is easy to see that when step 3 is
completed, either a new state that is free of discrepancies
or an existing state, that by the loop invariant is free of
discrepancies, is added to H and H∗. Similarly, step 3 pre-
serves the set of regulators inferred in step 2, and therefore
it does not increase the number of regulators. In single-
cell data, clusters of cells will have a similar network state,
and thus it is likely that a close state to the one that is
present in the optimal solution will already be included in
H∗. This will provide an upper bound for the number of
changes applied to each state. Note that the optimal order
by which changes are applied to the conflicting state in step
3 may depend on the input. For example, one may wish to

order the changes according to the number of discrepancies
that they resolve after the last change, or to choose the
order based on the network structure. Similar considerations
can be applied to the order by which states are selected
for addition, for example, by the number of discrepancies
with states that have not been added yet. The weight of a
discrepancy in step 1 can be set to the number of states
in its cluster, as each cluster represents a set of states
that are fitted to the network’s trajectories. Then, step 2
can be performed using an ILP solver and the formulation
described in the previous section. In principle, this step can
also be performed recursively until a set of consistent states
is obtained, but this can result in a poor approximation of
the optimal solution.

Results

Simulation

In order to compare the algorithm to other Boolean net-
work inference methods, we generated 100 random Boolean
networks and time series data using the BoolNet R package
[23]. Each network had 5 genes, 2 regulators per gene, 10
time series and 20 time points per series. In addition, for
each gene we randomly added an edge that does not belong
to the true structure, and added Bernoulli noise to the time
series with p=0.1. Gurobi [4] was used to solve using
our method and the BESTFIT [?] method in the BoolNet
package was used as comparison. The implementation of the
REVEAL [22] method in the same package did not support
noisy data. Figure 1 1 shows boxplots of the number of true
positives and the number of false positives for both tools.
As can be seen in the figure, our method (denoted MEDSI
for Minimum Edit Distance from a State of Ignorance) has a
higher rate of true positives and lower rate of false positives.
In fact, it seldom chooses wrong edges.

Analysis of the Gene Regulatory Network for Mid-
brain Dopaminergic Neurons

In order to test our algorithm we use the mouse embryo
scRNA dataset of LaManno et al. [10] and the midbrain
dopaminergic (mDA) neuron developmental GRN that was
described by [2]. To obtain the gene counts we used the
scRNA R package [13]. The R package Seurat [14] pro-
vides functions to inspect the data and determine the thresh-
old for screening out cells with an unusually high or low
number of features, leading to lower and upper thresholds
of 500 and 4,000 features for this dataset, respectively. After
filtering, the dataset contained 1,631 cells (experiments).
Since scRNA-Seq data contains a high number of 0 counts,
we applied SAVER [6] to impute expression values for the
network genes. To obtain Boolean values, we map values
smaller or equal to the median expression value to Boolean
0, and all other counts to 1. The number of clusters K used
in the heuristic was set to 50. The clustering algorithm that
we used was k-means as implemented in R, with all other

parameters at their default values. For solving the 0/1 ILP
problem we used Gurobi [4]. We then generated an EBNF
description of the network and used the R package BoolNet
to analyze the network properties [23]. For comparison to
the inferred network, we generated 1,000 random networks
with the same number of genes and the same mean number
of inputs of a regulation function, using the ’generateRan-
domNKNetwork’ function with the parameter ’topology’ set
to ’homogeneous’. Only 17 out of 1,000 networks had an
equal or greater number of steady states than the inferred
network, corresponding to a p-value of 0.017. We interpret
this results as indicating that the inferred network structure
is adapted to supporting a large number of differentiation
states. Out of 32 steady states, 28 appeared in the dataset of
LaManno et al., suggesting the existence of unobserved phe-
notypes that may be triggered under similar conditions, or
possibly networks states that lead to apoptosis and are there-
fore not observed in the experiment. The similarity between
the observed and unobserved steady states is illustrated in
figure 2. States are mapped into a two-dimensional space
using multidimensional scaling. There are four clusters of
network states, all of them containing observed states (light
blue) and three of them containing unobserved (dark blue)
states. Examining the activation of genes in the unobserved
steady states showed that they mostly belong to several
subnetworks based on the division of Arenas et al. [2].
These states are shown in figure 3, where an active gene
(Boolean 1) is colored red and an inactive gene (Boolean
0) is colored blue. This could potentially indicate that these
states correspond to yet unexplored differentiation pathways
that can be triggered by external stimuli without modifying
the network components. Next we examined whether the
knockout or over-expression of a single gene can generate
a new repertoire of steady states that is not observed in
the wild type network. Since knocking down a gene sets
its activation value to inactive (Boolean 0), we counted the
number of steady states in the perturbed network that differ
from each wild type steady state by at least one other gene
value. For single-gene knockouts, Ferd3l and Shh generated
16 new steady states, Hes1 and Msx1 generated 12 new
steady states, Neurog2 generated 6 new steady states, and
Lmx1b generated 4 new steady states. Knockout of any other
gene did not generate steady states that differ from wild
type steady states by genes that were not knocked down.
A similar experiment with gene over-expression resulted
in a similar behavior, except that Msx1 generated only 4
new steady states 4. These findings suggests that while
the network is generally robust to perturbations, there is a
subset of genes are potential targets for generating behavior
that differs from that of the wild type network. Our in-
silico experiments could be repeated in the wet lab in order
to further elucidate the connection between network steady
states and phenotype.

Conclusion

We propose a new algorithm for fitting a Boolean net-
work model to gene expression data that finds an optimal

solution with respect to network structure and fit to the data.
We further present a heurisitic that alleviates the computa-
tional complexity of the problem and therefore provides a
practical solution for cases in which an exact solution cannot
be obtained due to limited computational resources. Using
known regulatory relationships and a dataset of scRNA-
Seq measurements, we demonstrated the usefulness of our
algorithm by inferring the network structure and its state in
different cells. Inspection of the dynamic properties of the
inferred network show that only a subnetwork is responsible
for generating the observed steady states, and that the dataset
only represents a subset of the possible steady states under
the experimental conditions. By examining the de-noised
data we found that distinct regulatory trajectories could po-
tentially give rise to different types of cells. Single gene per-
turbations change the steady state behavior significantly only
when the targets are a small subset of the network’s genes,
suggesting targets for wet lab experiment to explore novel
phenotypes. The method presented in this paper provides
a novel approach to using regulatory relationships between
transcription factors and their targets for the interpretation
of gene expression assays and for exploring unobserved
regulatory trajectories in-silico.

References

[1] Hirotogu Akaike. Information theory and an extension of the maximum
likelihood principle. In Springer Series in Statistics, pages 199–213.
Springer New York, 1998.

[2] Ernest Arenas, Mark Denham, and J. Carlos Villaescusa. How to make
a midbrain dopaminergic neuron. Development, 142(11):1918–1936,
June 2015.

[3] L. Geistlinger, G. Csaba, S. Dirmeier, R. Kuffner, and R. Zimmer.
A comprehensive gene regulatory network for the diauxic shift in
saccharomyces cerevisiae. Nucleic Acids Research, 41(18):8452–8463,
July 2013.

[4] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[5] R. F. Hashimoto, S. Kim, I. Shmulevich, W. Zhang, M. L. Bittner,
and E. R. Dougherty. Growing genetic regulatory networks from seed
genes. Bioinformatics, 20(8):1241–1247, February 2004.

[6] Mo Huang, Jingshu Wang, Eduardo Torre, Hannah Dueck, Sydney
Shaffer, Roberto Bonasio, John I Murray, Arjun Raj, Mingyao Li, and
Nancy R Zhang. Saver: gene expression recovery for single-cell rna
sequencing. Nature Methods, 15(7):539–542, 2018.

[7] Guy Karlebach and Ron Shamir. Modelling and analysis of gene reg-
ulatory networks. Nature Reviews Molecular Cell Biology, 9(10):770–
780, September 2008.

[8] Guy Karlebach and Ron Shamir. Constructing logical models of gene
regulatory networks by integrating transcription factor dna interactions
with expression data: An entropy-based approach. Journal of Compu-
tational Biology, 19(1):30–41, January 2012.

[9] S.A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22(3):437–467,
March 1969.

[10] Gioele La Manno, Daniel Gyllborg, Simone Codeluppi, Kaneyasu
Nishimura, Carmen Salto, Amit Zeisel, Lars E. Borm, Simon R.W.
Stott, Enrique M. Toledo, J. Carlos Villaescusa, Peter Lönnerberg,
Jesper Ryge, Roger A. Barker, Ernest Arenas, and Sten Linnarsson.
Molecular diversity of midbrain development in mouse, human, and
stem cells. Cell, 167(2):566–580.e19, October 2016.

[11] Takayuki Ohara, Timothy J. Hearn, Alex A.R. Webb, and Akiko
Satake. Gene regulatory network models in response to sugars in the
plant circadian system. Journal of Theoretical Biology, 457:137–151,
November 2018.

[12] Jorma Rissanen. A universal prior for integers and estimation by
minimum description length. The Annals of Statistics, 11(2), June
1983.

[13] Davide Risso and Michael Cole. scRNAseq: Collection of Public
Single-Cell RNA-Seq Datasets, 2020. R package version 2.4.0.

[14] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier,
and Aviv Regev. Spatial reconstruction of single-cell gene expression
data. Nature Biotechnology, 33:495–502, 2015.

[15] Gideon Schwarz. Estimating the dimension of a model. The Annals
of Statistics, 6(2), March 1978.

[16] Roded Sharan and Richard M. Karp. Reconstructing boolean models
of signaling. Journal of Computational Biology, 20(3):249–257, March
2013.

[17] Yoli Shavit, Boyan Yordanov, Sara-Jane Dunn, Christoph M. Win-
tersteiger, Tomoki Otani, Youssef Hamadi, Frederick J. Livesey, and
Hillel Kugler. Automated synthesis and analysis of switching gene
regulatory networks. Biosystems, 146:26–34, August 2016.

[18] Simon N Willis and Stephen L Nutt. New players in the gene
regulatory network controlling late b cell differentiation. Current
Opinion in Immunology, 58:68–74, June 2019.

[19] Soumita Seth , Saurav Mallik , Tapas Bhadra , Zhongming Zhao
Dimensionality Reduction and Louvain Agglomerative Hierarchical
Clustering for Cluster-Specified Frequent Biomarker Discovery in
Single-Cell Sequencing Data Frontiers in Genetics, 13,2022

[20] Zehua Liu , Huazhe Lou , Kaikun Xie , Hao Wang , Ning Chen , Oscar
M. Aparicio , Michael Q. Zhang , Rui Jiang , Ting Chen Reconstructing
cell cycle pseudo time-series via single-cell transcriptome data Nature
Communications 8:1,2017

[21] Laehdesmaeki2003) H. Laehdesmaeki, I. Shmulevich and O. Yli-
Harja On Learning Gene-Regulatory Networks Under the Boolean
Network Model Machine Learning 52:147–167 ,2003

[22] S. Liang, S. Fuhrman and R. Somogyi REVEAL, a general reverse
engineering algorithm for inference of genetic network architectures
Pacific Symposium on Biocomputing 3:18–29,1998

[23] Christoph Mussel, Martin Hopfensitz and Hans A. Kestler BoolNet
– an R package for generation, reconstruction and analysis of Boolean
networks Bioinformatics 26(10):1378-1380, 2010

0

1

2

3

4

5

BESTFIT MEDSI
Method

F
P

Method BESTFIT MEDSI

0.0

2.5

5.0

7.5

10.0

BESTFIT MEDSI
Method

T
P

Method BESTFIT MEDSI

Figure 1. Boxplots of True Positives and False Positives

−1.0

−0.5

0.0

0.5

1.0

−1 0 1
Dim1

D
im

2

Figure 2. Multidimensional Scaling of Observed and Unobserved Network States

Lm
x1a

W
nt5a

M
sx1

N
r1h3

F
gf8

G
bx2

O
tx2

W
nt1

S
hh

F
oxa2

N
kx2

Lm
x1b

H
es1

G
li1

F
erd3l

N
kx6

A
scl1

N
eurog2

P
itx3

N
r4a2

Attr27.1

Attr20.1

Attr14.1

Attr22.1

Figure 3. Clustering of Inferred Network States

0

5

10

15

Asc
l1

Fe
rd

3l
Fgf

8

Fo
xa

2
Gbx

2
Gli1

Hes
1

Lm
x1

a

Lm
x1

b
M

sx
1

Neu
ro

g2
Nkx

2
Nkx

6

Nr4
a2

Otx2
Pitx

3
Shh

W
nt

1

W
nt

5a

Nr1
h3

Gene

#N
ew

 S
ta

te
s

Type KO OE

Figure 4. The Number of New Network States after Single Gene Overexpression and Knockout

