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ABSTRACT 14 

In wind engineering, to accurately estimate the nonlinear dynamic response of structures while considering 15 

uncertainties of hurricanes, a suite of wind records representing the hurricane hazards of a given location is 16 

of great interest. Such a suite generally consists of a large number of hurricane wind records, which may 17 

lead to highly computational cost for structural analysis. To reduce the computational demand while still 18 

preserving the accuracy of the uncertainty quantification process, this paper proposes a machine learning 19 

approach to select a representative subset of all collected hurricane wind records for a location. First, 20 

hurricane wind records, which are expressed as time series with information that includes both wind speed 21 

and direction, are collected from a synthetic hurricane catalog. The high-dimensional hurricane wind 22 
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records are then compressed into a set of low-dimensional latent feature vectors using an artificial neural 23 

network, designated as an autoencoder. The latent feature vectors represent the important patterns of wind 24 

records such as duration, magnitude and the changing of wind speeds and directions over time. The wind 25 

records are then clustered by applying the k-means algorithm on the latent features, and a subset of records 26 

is selected from each cluster. The wind records selected from each cluster are those whose latent feature 27 

points are closest to the centroid of all latent feature points in that cluster. In order to do regional analysis 28 

while taking into account that the hurricane wind records are site-specific, this paper suggests that a region 29 

can be discretized into a set of grids, with the proposed hurricane selection approach applied to each grid. 30 

This procedure is demonstrated using Massachusetts as a testbed. 31 

Keywords: hurricane selection, time series clustering, autoencoder, k-means, uncertainty quantification, 32 

regional analysis, wind direction 33 

Introduction 34 

Nonlinear dynamic analysis is increasingly being considered in wind design of buildings and other 35 

structures as performance-based design becomes an increasingly popular option (ASCE 2019), where 36 

controlled inelastic deformations are allowed under strong winds (Wang and Wu 2022). In the fully 37 

probabilistic performance-based hurricane engineering framework (Barbato et al. 2013), fragility curves of 38 

structures are commonly adopted to do probabilistic damage assessment. Strength limit states of structures 39 

usually involve nonlinear behavior that is then integrated into the predictions of likelihood of damage that 40 

is offered through fragility analysis. Fragility functions are defined as the failure probability of a structure 41 

conditional on the intensity measure of hazards, including hurricanes in this work. If only the failure 42 

probability or fragility is of interest for a hurricane event (i.e., at the end of the loading time history) instead 43 

of for a certain time interval within the hurricane duration, the uncertainties in the loading time histories 44 

can be accounted for through running a series of nonlinear dynamic analysis with a suite of hurricane wind 45 

records. The hurricane wind records should include time histories that incorporate the wind directions as 46 

well as wind speeds, because the changing of wind directions during hurricanes has significant effects on 47 
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the structural response. Consequently, the wind records in this research are time series of both wind speed 48 

and direction. To develop accurate fragility curves, the structures should be analyzed with a suite of 49 

hurricane wind records that can cover the record-to-record uncertainties in the changing of wind speeds and 50 

directions within the hurricane durations. A large amount of hurricane wind records can be collected for a 51 

location considering the existing historical and synthetic hurricanes (ASCE 2016b; Vickery et al. 2010; 52 

Vickery et al. 2009b; Vickery et al. 2009c). However, it is challenging to run nonlinear dynamic analysis 53 

for all of the collected hurricane records due to the high computational demand of finite element analysis 54 

of structures; thus, a minimum number of hurricane records should be selected to represent the uncertainties 55 

in all of the collected hurricane records. 56 

In prior work, Li (2005) and Li and Ellingwood (2006) developed hurricane fragility curves for wood-frame 57 

residential construction with a simplified limit state function, where the nonlinear and dynamic effects are 58 

neglected. Cui and Caracoglia (2015) carried out fragility analysis on tall buildings only for the 59 

serviceability limit state, so frequency domain analysis is adopted, and duration and nonstationary effects 60 

of hurricanes cannot be considered. In order to avoid performing structural analysis for long durations of 61 

windstorms, the dynamic shakedown method was utilized by researchers to model the inelastic behavior of 62 

buildings (Chuang and Spence 2019, 2020; Tabbuso et al. 2016). Other researchers tried to develop 63 

hurricane fragility curves using nonlinear dynamic analysis only for a fixed time interval with a constant 64 

wind direction. For example, Hallowell et al. (2018) used wind records with 1-hour time intervals, while 65 

Ma et al. (2021) used wind records with 2-minute time intervals. The fragility developed for this certain 66 

time interval cannot represent the fragility for a whole hurricane because of dynamic effects, yielding and 67 

changes in wind speeds and directions. Of course, one can discretize the hurricane duration into a series of 68 

short time intervals and apply the developed fragility curves to each short time interval; however, the failure 69 

probabilities within those short time intervals are correlated (Der Kiureghian 2005; Kim et al. 2019; Straub 70 

et al. 2020). This correlation is difficult to quantify from the view of time-variant reliability and is not 71 

considered by the above authors. Given the limitations of the previous research, this paper considers the 72 
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failure probability for a hurricane event instead of a certain time interval during a hurricane and tries to 73 

select hurricane wind records that can account for the record-to-record uncertainties in hurricanes. The 74 

selected wind records can be used to estimate failure probabilities of structures with nonlinear time history 75 

analysis. Through this way it is no longer needed to estimate the correlations of failure probabilities in the 76 

short time intervals within a hurricane. 77 

In performance-based earthquake engineering (Moehle and Deierlein 2004), a probabilistic framework has 78 

been proposed to integrate seismic hazard analysis and structural damage analysis, where a suite of ground 79 

motions are adopted to represent the uncertainties in earthquake ground motions. Ground motion selection 80 

has been widely studied in the literature (Baker and Lee 2018; Bojórquez et al. 2013; Du and Padgett 2021; 81 

Jayaram et al. 2011; Naeim et al. 2004). Some generally used ground motions suites are the SAC 82 

(Somerville et al. 1997) records, LMSR (Krawinkler et al. 2003) records, and FEMA-P695 records (FEMA 83 

2009). Recently, machine learning approaches have also been introduced to ground motion selection, where 84 

a reduced number of ground motions are obtained through clustering of a large number of ground motions 85 

(Bond et al. 2022; Kim et al. 2021; Zhang et al. 2020). However, there is no similar research in the literature 86 

for selection of hurricane wind records. There are two instances of prior research that consider uncertainties 87 

in hurricane wind hazards using a set of wind records, but they do not use a selection procedure. Vickery 88 

et al. (2006) studied hurricane fragility curves for building envelope components that were developed in 89 

the Hazus-MH software by comparing the wind pressure demand and the capacity of the envelope 90 

components. The record-to-record uncertainties of hurricane wind speeds were accounted for through the 91 

use of a 20,000-year simulation of hurricanes created by employing the hurricane model described by 92 

Vickery et al. (2000a) and Vickery et al. (2000b). The simulated hurricanes inherently incorporated many 93 

of the duration effects associated with the changes in wind speed and direction which accompany hurricane 94 

winds. Joyner and Sasani (2018) developed fragility curves for the windborne debris damage of building 95 

glazing, where eight hurricanes that made landfall in the U.S. in the last 10 years were adopted. 96 

Uncertainties in the record-to-record variability for different hurricanes were accounted for by employing 97 



5 

 

the eight hurricane records in the damage analysis. Vickery et al. (2006) used all hurricanes in the 20,000-98 

year simulation, which may address the uncertainties in hurricanes, but is not suitable for nonlinear dynamic 99 

analysis considering the computational demand. On the contrary, Joyner and Sasani (2018) only used eight 100 

hurricanes without an analysis of the hazard uncertainties, which may not be able to represent the 101 

uncertainties in hurricanes for a specific location. 102 

This paper proposes a procedure to select a suite of hurricane wind records that can be used for performance-103 

based design and fragility analysis. The wind speed and direction records for a location are collected from 104 

a synthetic hurricane catalog (Liu 2014) with some preprocessing, after which the collected wind records 105 

have durations that are short enough to make a nonlinear time history analysis feasible. The collected wind 106 

records are then compressed into low-dimensional latent feature vectors using a neural network designated 107 

as an autoencoder (Aggarwal 2018), so that it is easier to measure similarity of different wind records and 108 

apply the standard clustering algorithms such as the k-means algorithm (Aggarwal et al. 2001; Shalev-109 

Shwartz and Ben-David 2014). Autoencoder is an artificial neural network in which the input and output 110 

layers have the same number of neurons, while the number of neurons in the middle is constricted. The 111 

training algorithm tries to reconstruct the input data in the output layer; however, this reconstruction is not 112 

exact because the neurons in the middle only carry a reduced representation of the input data. The data held 113 

by the neurons in the middle (i.e., the low dimensional vectors compared to the input and output layer) are 114 

called latent features, to which the clustering algorithm is applied. This means that only important 115 

information in the wind records is preserved for clustering. The latent features representing hurricane wind 116 

records are then clustered into several groups using the conventional k-means algorithm (Shalev-Shwartz 117 

and Ben-David 2014). Finally, only a few hurricane wind records are selected from each cluster for fragility 118 

development or design checks, which significantly reduces the number of required time history analyses, 119 

while still ensuring that the uncertainties of different hurricanes are covered with a limited number of wind 120 

records. Since the properties of hurricanes for different locations have significant differences, a hazard map 121 

can be developed for hurricane wind records so that users are able to choose appropriate records for their 122 
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locations of interest. As an example, the Commonwealth of Massachusetts has been divided into 92 grids 123 

and a suite of hurricane wind records has been selected for each grid using the proposed hurricane selection 124 

approach. To demonstrate the usefulness and effectiveness of the selected wind records, they have been 125 

adopted to develop fragility curves for electrical transmissions towers in Massachusetts, which can be found 126 

in Du et al. (2022) and Du and Hajjar (2022). 127 

Hurricane simulation 128 

Synthetic hurricanes are widely used for risk analysis and structural design in wind engineering, which 129 

evolved from the single site probabilistic model (Russell 1971) to Vickery’s hurricane track model (Vickery 130 

et al. 2000a). For example, ASCE 7 has adopted the hurricane track model when generating the wind hazard 131 

maps (ASCE 2016b). This research also uses a 10,000 year synthetic hurricane catalog developed by Liu 132 

(2014) for the Atlantic basin based on Vickery’s hurricane track model, which consists of a hurricane 133 

genesis model, a track model, an central pressure model, a decay model and a boundary layer model. The 134 

temporal and spatial evolution of thousands of hurricanes from emergence to dissipation was modeled using 135 

the Monte Carlo method. The HURDAT database (Jarvinen et al. 1984) for historical storms was adopted 136 

for building the hurricane model through regression and calibrating the simulated results. In this simulation, 137 

the state of a hurricane can be determined with 7 parameters: the hurricane eye’s latitude and longitude, 138 

storm translation speed, storm heading angle, storm central pressure, radius to maximum winds (describing 139 

storm size), and Holland’s radial pressure profile parameter (i.e., the Holland B parameter (Holland 1980)). 140 

These parameters are updated at each 6-hour point. As suggested by Vickery et al. (2000a), linear 141 

interpolation is performed within each 6-hour interval, which results in 10-min updates of the parameters 142 

as used in Vickery et al. (2009c). Examples of the simulated hurricane tracks are shown in Fig. 1. In this 143 

research, the gradient wind speeds are calculated by employing Georgiou’s model (Georgiou 1985), which 144 

gives the 10-min sustained wind speeds at 500 m to 2000 m above the ground surface (Cui and Caracoglia 145 

2019; Pei et al. 2014, 2018). An example of the calculated gradient wind field is shown in Fig. 2. 146 
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 147 
Fig. 1. Examples of the simulated hurricane tracks 148 

 149 
Fig. 2. Example of hurricane gradient wind field (m/s) 150 

The obtained hurricane gradient wind speeds 𝑉𝑉𝑔𝑔 need to be converted to surface wind speeds 𝑉𝑉10 (10 m 151 

above the ground or water) for wind force calculation on structures. The reduction factor 𝑉𝑉𝑔𝑔 𝑉𝑉10⁄  over water 152 

proposed by Batts et al. is used in this research (Batts et al. 1980; Vickery et al. 2009a). A sea-land transition 153 

factor obtained from the model given in Simiu and Scanlan (1996) is then utilized to calculate the surface 154 

wind over land (open terrain with surface roughness 𝑧𝑧0 = 0.03 𝑚𝑚) from the surface wind over water (𝑧𝑧0 =155 

0.0013 𝑚𝑚 ). In addition, the surface wind speed over land approaches the fully transitioned value 156 

asymptotically over a fetch distance as the wind moves from sea to land; therefore, the transition function 157 

proposed in Vickery et al. (2009b) is employed here, which defines the percentage of the sea-land transition 158 
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as a function of the fetch distance. With the methods discussed in this section, the time series of the 10-min 159 

sustained wind speeds at 10 m height and the corresponding wind directions at a location of interest 160 

(assuming open terrain) during a hurricane may be obtained. 161 

Hurricane wind records collection and preprocess 162 

ASCE 7 wind hazard maps display wind speeds with a certain mean recurrence interval (MRI) for the entire 163 

U.S., including hurricane prone regions (ASCE 2016b). However, much information regarding hurricane 164 

winds is omitted in the ASCE 7 wind hazard maps, such as the variation of wind speeds and directions 165 

during a hurricane, and the durations of hurricane winds. This kind of information, which are contained in 166 

the time series of hurricane wind speeds and directions, are critical for structural response estimation and 167 

risk analysis. Thus, in this section, a number of hurricane wind speed and direction records are collected 168 

for a location of interest. In order to collect hurricane wind records for a region, the region is first discretized 169 

into a series of grids and then hurricane wind records are collected for each grid. 170 

Wind records for a location of interest 171 

A location in Massachusetts with latitude 41.7 and longitude -70.1 is used as an example in this section. 172 

Wind records are collected for this specific location from 10,000-year synthetic hurricanes developed by 173 

Liu (2014). Examples of the collected 10-min sustained wind speed and wind direction records at the 174 

location of interest are shown in Fig. 3 to Fig. 5 with the corresponding hurricane tracks. It is seen in Fig. 175 

3(a), Fig. 4(a) and Fig. 5(a) that the hurricane eye usually moves thousands of miles from a hurricane’s 176 

genesis to dissipation. It is reasonable to assume that the wind speed induced by a hurricane that is very far 177 

away is relatively small and can be neglected. Therefore, as suggested by Vickery et al. (2009c), hurricane 178 

winds are considered only when the location of interest is within 250 km of the hurricane eye (see the blue 179 

circles in Fig. 3 to Fig. 5). This limit on distance also provides a limit for the durations of the hurricane 180 

wind records. Figure 3(c), Fig. 4(c) and Fig. 5(c) illustrate the absolute values of the wind speeds and the 181 

wind directions in a polar coordinate system, while Fig. 3(d), Fig. 4(d) and Fig. 5(d) illustrate the hurricane 182 

wind speeds in the North and East directions in a Cartesian coordinate system. Note that the wind direction 183 
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in the polar coordinate system is clockwise positive from the North direction. It is seen that the pattern of 184 

wind speed and direction records are different for different hurricanes, which depends on a number of 185 

factors, including the 7 parameters defining the hurricane eye tracks and wind fields. While the impacts of 186 

the hurricane wind field as shown in Fig. 2 on the wind records is complex, a qualitative analysis of the 187 

impact of hurricane eye tracks on the wind records provides examples of the range of loading developed 188 

during hurricanes. Specifically, when the location of interest is very close to the hurricane eye track, the 189 

record of the absolute values of the wind speeds usually has two peaks and the drop of the wind speed in 190 

the middle is due to the near zero wind speed in the hurricane eye (see Fig. 3(c)). On the contrary, if the 191 

location of interest is further from the hurricane eye track, the record of the absolute values of the wind 192 

speeds will typically only have one peak (see Fig. 4(c) and Fig. 5(c)). The difference between Fig. 4 and 193 

Fig. 5 is that the hurricane eye passes by the West or East side of the location of interest, which dominates 194 

the variation of the wind directions as presented in these two figures. 195 

 196 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 197 
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 198 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 199 

 200 
(c) Wind speed and direction records 201 

 202 
(d) Wind speed records in the North and East directions 203 

Fig. 3. An example of hurricanes going through the location of interest 204 
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 205 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 206 

 207 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 208 

 209 
(c) Wind speed and direction records 210 
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 211 
(d) Wind speed records in the North and East directions 212 

Fig. 4. An example of hurricanes passing by the West side of the location of interest 213 

 214 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 215 

 216 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 217 
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 218 
(c) Wind speed and direction records 219 

 220 
(d) Wind speed records in the North and East directions 221 

Fig. 5. An example of hurricanes passing by the East side of the location of interest 222 

Wind records are first collected through applying the 250 km distance limit between the hurricane eye and 223 

the location of interest. Hurricanes with very low wind speeds are then filtered out through a strategy that 224 

only hurricanes whose maximum wind speeds at the location of interest are greater than the 50-year MRI 225 

wind speed at the same location are considered. The 50-year MRI wind speed obtained from the ASCE 7 226 

Hazard Tool (ASCE 2016a, b) is a 3-second gust wind speed at 10 m above ground (47 m/s for this location), 227 

which is then converted to 10-min sustained wind speed at 10 m above ground (32.4 m/s for this location) 228 

following the approach proposed by Simiu and Scanlan (Simiu and Scanlan 1996). This 50-year MRI 10-229 

min sustained wind speed is used as the threshold for comparison with the collected hurricane wind records 230 

to get rid of those with small maximum wind speeds. Thus, a total of 162 hurricane wind records are 231 

collected from the 10,000-year synthetic hurricanes, of which 160 records are shown in Fig. 6 within a 232 

Cartesian coordinate system and are used in the following sections for clustering. Only 160 records are 233 

included because 162 cannot be divided by the batch size (i.e., 16) employed in the training process of the 234 
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autoencoder, as will be introduced in the following sections. In addition, Fig. 7 presents the histogram of 235 

the durations of all of the collected hurricanes with a mean duration of 12.4 hours. To avoid the impulse 236 

effects, a 1-hour linear ramp-up and a 1-hour linear ramp-down are attached to the beginning and the end 237 

of the collected wind records, respectively, as recommended in the Prestandard for Performance-Based 238 

Wind Design (ASCE 2019). To be consistent with the hurricane wind records with 10-min intervals, the 239 

ramp is added as six 10-min steps with a constant wind direction. Note that the ramps are not included in 240 

Fig. 3 to Fig. 5 but included in Fig. 6 and Fig. 7. Moreover, as will be discussed in the following sections, 241 

the collected wind records may have different durations, but the autoencoder needs the same size for the 242 

input data of each record. Therefore, to facilitate training the autoencoder, zero paddings are added to the 243 

beginning and the end of the records that are shorter than the longest one. Consequently, all records after 244 

preprocess have the same length as the longest one. For each record, zero paddings at the beginning and the 245 

end have the same length, which means all records after preprocessing have a midpoint that is usually 246 

recorded when the hurricane eye is closest to the location of interest. 247 

 248 
Fig. 6. The 160 collected hurricane wind records resolved in two directions 249 
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 250 
Fig. 7. Histogram of the durations of the collected hurricane wind records 251 

Wind records for a region 252 

Hurricane wind records for different locations have different patterns. Consequently, it is appropriate to 253 

select site-specific wind records instead of generic wind records for all locations. Compared to generic wind 254 

records, site-specific wind records have lower uncertainties and thus can be used to predict responses of 255 

structures at a given location more accurately. To collect and select site-specific hurricane wind records for 256 

a region of interest, this research proposes that this region can be discretized into a set of grids and the 257 

centroid of each grid is used to represent the whole grid for recording wind speeds and directions. Thus, 258 

hurricane wind records can be collected for all centroids of the grids. To demonstrate this idea, Fig. 8 shows 259 

Massachusetts as a testbed, which is divided into 0.2° by 0.2° grids. In Fig. 8, the red dots represent the 260 

centroids of the grids that are not associated with Massachusetts, while the 92 blue dots represent the 261 

centroids of the grids that are associated with Massachusetts. The hurricane wind records collection 262 

procedure proposed in the previous sections is then run for all 92 grids. Note that when generating the wind 263 

records, the percentage of the sea-land transition is calculated for the centroid of each grid based on its fetch 264 

distance. In addition, the 50-year MRI wind speeds for the centroids of some grids cannot be obtained from 265 

the ASCE 7 Hazard Tool because these centroids are over the ocean (see Fig. 8); therefore, for these cases, 266 
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locations within the same grids but on the land are used to find the 50-year MRI wind speeds. Figure 9 267 

presents the histogram of the number of hurricanes collected for all 92 grids, with a mean value of 202.   268 

 269 
Fig. 8. Massachusetts is discretized into grids 270 

 271 
Fig. 9. Histogram of the number of collected hurricanes for the 92 grids 272 

Wind records clustering and selection 273 

The approximately 200 collected hurricane wind records for each grid are still too many for design checks 274 

and fragility development, especially considering the long durations of the wind records. Incremental 275 

dynamic analysis (IDA) may be used to estimate collapse probability of structures under hurricanes (Du et 276 

al. 2022; Vamvatsikos and Cornell 2002). This approach is computationally intensive because direct 277 

integration of the nonlinear dynamic governing equations is required over the entire duration of the 278 

hurricane wind records and this nonlinear time history analysis needs to be run multiple times with scaled 279 
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wind records. As such, it is important to limit the number of records used. Therefore, in this research, the 280 

collected wind records for each grid are first clustered using a machine learning approach and then 281 

approximately 1/10 of the wind records in each cluster are selected, which are combined together to create 282 

approximately 20 selected wind records for each grid. This significantly reduces the number of nonlinear 283 

time history analyses required, while still preserving the uncertainties in the collected records. This 284 

procedure is similar to stratified sampling in statistics. Sampling is the process of selecting a subset from a 285 

population so that the characteristics of the whole population can be estimated using this subset, while 286 

stratified sampling is used by dividing the population into subpopulations (i.e., clusters in this paper), where 287 

the elements within each subpopulation are similar, and performing sampling on each subpopulation. 288 

Stratified sampling may improve the precision of the sample because sampling variability within each 289 

subpopulation is smaller than the sampling variability on the entire population (Botev and Ridder 2017; 290 

Parsons 2014). Specifically, the selected wind records can cover a spread of properties such as durations, 291 

patterns of wind speed records, and patterns of wind direction records, because the collected wind records 292 

are divided into clusters based on these properties. 293 

Fully connected autoencoder 294 

Since the collected hurricane wind records are time series of both wind speed and direction with different 295 

durations, it is challenging to cluster the records directly. To facilitate the clustering process, the high 296 

dimensional wind records are first transformed into low dimensional latent features using an artificial neural 297 

network named autoencoder (Aggarwal 2018; Bond et al. 2022; Tavakoli et al. 2020). The architecture of 298 

the autoencoder for wind records at the location of interest given in the previous section is presented in Fig. 299 

10. It is seen that the input matrix is the original wind speed records in the Cartesian system, which has two 300 

columns with each column representing wind speed time histories in the North and East directions, 301 

respectively. The input matrix is first flattened into a vector as the input layer of the fully connected 302 

autoencoder and then passed through other hidden layers to reconstruct the data as another vector in the 303 

output layer, which is finally reshaped to a matrix as the reconstructed wind speed records in the Cartesian 304 
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system. Even though the two columns of the input matrix are correlated time series of wind speeds in two 305 

directions, this “flatten” and “reshape” process is reasonable because the correlations are considered in the 306 

flattened vectors (input and output layers) through the weights of the fully connected layers. In another 307 

word, “flatten” and “reshape” only change the appearance of the data while retaining the relationships and 308 

correlations of the elements within the data. A fully connected autoencoder means that all the neurons in 309 

one layer are connected to all the neurons in the next layer. The autoencoder architecture consists of two 310 

parts: the encoder that compresses the high dimensional input data into the small-size latent feature vector, 311 

and the decoder that utilizes the latent features to reconstruct the input data. In this example, the flattened 312 

wind speeds in the input layer are transformed into 5 latent features through the encoder process, which are 313 

then expanded to form the reconstructed but still flattened wind records in the output layer through the 314 

decoder process. The hidden layers with a nonlinear activation function (Tanh) are included to enhance the 315 

power of this autoencoder so that it can map the input data into much smaller dimensional spaces. Here 316 

Tanh is adopted because it has better performance than other activation functions based on numerical tests 317 

in this research. This autoencoder architecture requires that all input matrices have the same size; thus, the 318 

size of the longest wind record is used as the size of the input matrices and zero padding is added to the 319 

beginning and the end of all other shorter wind records. This strategy retains all information in the wind 320 

records. In this example, the longest record has 156 data points (including the ramp-up and ramp-down) 321 

with 10-min intervals, so the number of rows of the input matrices is 156. 322 
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 323 
Fig. 10. The proposed autoencoder architecture 324 

The training of this autoencoder is conducted by minimizing the error between the reconstructed data in the 325 

output layer and the input data, which ensures that the latent features can represent the important patterns 326 

of the wind records. The Adaptive Moment Estimation (Adam) algorithm is adopted for stochastic 327 

optimization and batch normalization is added to some hidden layers as shown in Fig. 10 to address the 328 

exploding and vanishing gradient problems (Aggarwal 2018). Since the chosen batch size is 16, only 160 329 

of the collected 162 wind records are used for the training process. In addition, Fig. 11 illustrates the 330 

reconstructed 160 wind records in the North and East directions after training the proposed autoencoder 331 

neural network. The histogram of the reconstruction error between the original and the reconstructed wind 332 

records is shown in Fig. 12, which demonstrates that the reconstructed records match well with the original 333 

ones and the latent features hold the most important characteristics of the wind records. It should be noted 334 

that since the 312 data points in the input layer is compressed into only 5 latent features, there must be some 335 

loss of information in this process and the discrepancies between the original and the reconstructed records 336 

are inevitable. However, these discrepancies are usually induced by noise or other nonsignificant factors; 337 
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therefore, the low dimensional latent features should be adequate for clustering because the important 338 

information has been extracted through the autoencoder. 339 

 340 
Fig. 11. The 160 reconstructed wind records in two directions for the location of interest 341 

 342 
Fig. 12. Histogram of the reconstruction error 343 

 344 

 345 
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Clustering and selection based on latent features 346 

The location of interest studied in the previous sections is used here as an example. After the training 347 

process, all wind speed time series are converted into latent feature vectors, on which the k-means algorithm 348 

is applied for clustering. The goal of clustering is to maximize the similarity of data within each cluster and 349 

maximize the dissimilarity of data in distinct clusters. Therefore, one can take a subset of the data in a 350 

cluster to represent all data in that cluster, the accuracy of which depends on the number of clusters used. 351 

Here, the elbow rule is adopted to find an optimal number of clusters (Thorndike 1953). To do so, the k-352 

means algorithm has been run multiple times on the latent features with different number of clusters ranging 353 

from 2 to 20. For this example, when the number of clusters k equals 8, the Within-Cluster-Sum of Squared 354 

Errors (WSS) curve reaches its elbow as shown in Fig. 13. Therefore, the 160 hurricane wind records are 355 

divided into 8 clusters. Since it is difficult to show the 5 latent features on a 2D or 3D figure, principal 356 

component analysis is performed on the latent features and the first 3 principal components are plotted in 357 

Fig. 14 to demonstrate the results of the k-means clustering. This is acceptable because the first 3 principal 358 

components possess 82% of the variation of the 5 latent features and it is believed that the 5 latent features 359 

must show better performance than the 3 principal components if they can be plotted in a figure. In Fig. 14, 360 

the first 3 principal components are presented using 8 different colors for the 8 clusters, from which it may 361 

be seen that the hurricane wind records are clustered well because the principal components of different 362 

clusters have rare overlaps and the principal components of each cluster are gathered closely around their 363 

centroid. 364 
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 365 
Fig. 13. The WSS for different number of clusters 366 

 367 
Fig. 14. Principal components of the latent features for the 8 clusters 368 

To demonstrate the effectiveness of the proposed clustering approach, Fig. 15 to Fig. 22 illustrate the 369 

hurricane wind speeds and tracks of the 8 clusters. It is seen that the clustering results are successful, 370 

because hurricane wind speeds and durations within each cluster have similar patterns. Specifically, 371 
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Clusters 2 and 7 have hurricanes whose tracks pass by the East side of the location of interest, while other 372 

clusters have hurricanes whose tracks pass by the West side of the location of interest. The number of 373 

hurricanes in each cluster from Cluster 1 to Cluster 8 are 31, 17, 31, 13, 20, 12, 19 and 17, respectively. So 374 

much more hurricanes pass by the West side of the location of interest than the East side. The main 375 

difference between Cluster 2 and Cluster 7 is that the durations of hurricanes in Cluster 7 is longer. For the 376 

clusters passing by the West side of the location of interest, Cluster 3 and Cluster 4 has the shortest and the 377 

longest durations, respectively, while Clusters 1, 5, 6 and 8 have durations in the middle. Clusters 6 and 8 378 

have very similar durations, but they are divided into two clusters because they have different shapes for 379 

the profile of the wind speed time histories. There are outliers in some clusters such as the one with abrupt 380 

changing of the storm heading direction as seen in the figure of hurricane tracks of Cluster 2. This can be 381 

expected because the k-means algorithm cannot eliminate all outliers, but instead assigns outliers to their 382 

closest cluster. Usually, outliers are rare and their latent feature points are far from the centroid of all points 383 

in a cluster. Therefore, the outlier commonly will not be included to the final suite of wind records 384 

considering the selection strategy within a cluster that will be introduced below. The wind field shown in 385 

Fig. 2 also has impacts on the clustering results, which cannot be explained explicitly here because its 386 

information is included in the latent features through the operations on the wind records during the training 387 

of the autoencoder. 388 

Considering the computational demand of nonlinear time-history analyses that these wind records will be 389 

used to perform, approximately 1/10 of the hurricanes in each cluster are selected and combined together 390 

as the final suite of hurricane wind records. The number of records selected from each cluster is proportional 391 

to the total number of records in each cluster, which results in 3, 2, 3, 1, 2, 1, 2 and 2 records from each 392 

cluster, respectively. This strategy is used to make sure the proportions of different patterns of wind records 393 

are similar in the selected 16 hurricanes and the original 160 ones. It is also reasonable to make sure the 394 

selected records from each cluster are the most representative ones. To achieve this goal, the clustering 395 

results of the latent features are used, and for each cluster it is recommended to select those records whose 396 
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latent feature points are the closest to the centroid of all latent feature points in that cluster. The selected 397 

records for each cluster are highlighted in bold solid lines as shown in Fig. 15(a) to Fig. 22(a), which is a 398 

demonstration of the validity of this selection strategy within a cluster. In Fig. 15(a) to Fig. 22(a), all wind 399 

records are shown in different colors and curves resolved from the same record are shown in the same color 400 

in the upper subplot and lower subplot. It is seen that the selected records are representative, as they are 401 

near the middle of all the records. The total of 16 selected hurricanes can be employed to represent 402 

uncertainties in wind loading for design check and fragility development for structures at the location of 403 

interest. Note that these selected wind records are only time series of 10-min mean wind speed at 10 meters 404 

height. If one wants to use them for structural dynamic analysis, the fluctuating wind speeds and the 405 

atmospheric boundary layer should be considered. 406 

 407 
(a) Wind records of Cluster 1 408 
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 409 
(b) Hurricane eye tracks of Cluster 1 410 

Fig. 15. Hurricanes in Cluster 1 411 

 412 
(a) Wind records of Cluster 2 413 

 414 
(b) Hurricane eye tracks of Cluster 2 415 

Fig. 16. Hurricanes in Cluster 2 416 
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 417 
(a) Wind records of Cluster 3 418 

 419 
(b) Hurricane eye tracks of Cluster 3 420 

Fig. 17. Hurricanes in Cluster 3 421 
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 422 
(a) Wind records of Cluster 4 423 

 424 
(b) Hurricane eye tracks of Cluster 4 425 

Fig. 18. Hurricanes in Cluster 4 426 
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 427 
(a) Wind records of Cluster 5 428 

 429 
(b) Hurricane eye tracks of Cluster 5 430 

Fig. 19. Hurricanes in Cluster 5 431 
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 432 
(a) Wind records of Cluster 6 433 

 434 
(b) Hurricane eye tracks of Cluster 6 435 

Fig. 20. Hurricanes in Cluster 6 436 
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 437 
(a) Wind records of Cluster 7 438 

 439 
(b) Hurricane eye tracks of Cluster 7 440 

Fig. 21. Hurricanes in Cluster 7 441 
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 442 
(a) Wind records of Cluster 8 443 

 444 
(b) Hurricane eye tracks of Cluster 8 445 

Fig. 22. Hurricanes in Cluster 8 446 

Wind records selection for a region 447 

As a case study for regional analysis, Massachusetts has been divided into 92 girds and wind records has 448 

been collected for each grid. Here the procedures for wind records clustering and selection introduced in 449 

the previous sections are applied to all 92 grids. The same autoencoder architecture is used for all grids 450 

except for the slightly different sizes of the input vectors for different grids, which is because the maximum 451 

duration of the collected records for different grids may be different. The same k-means algorithm is also 452 

adopted for clustering on the latent features; however, the number of clusters may vary for different grids 453 

because it is dynamically determined using the elbow rule. The histogram of the number of clusters for all 454 
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grids is presented in Fig. 23 with a mean value of 5.65. Since approximately 200 hurricane wind records 455 

are collected for each grid, then approximately 20 records are selected for each grid according to the method 456 

introduced in the previous sections. Finally, a wind map is generated so that a suite of hurricane wind speed 457 

and direction records can be provided for any locations in Massachusetts. For example, Fig. 24(a) gives 16 458 

wind records selected from 8 clusters for a grid whose centroid has a latitude of 41.7 and a longitude of -459 

70.1 (this location is used in the previous sections), while Fig. 24(b) gives 19 wind records selected from 4 460 

clusters for a grid whose centroid has a latitude of 42.1 and a longitude of -72.5. Here the wind records 461 

selected from the same cluster are shown in the same color, and it is seen that wind records within the same 462 

cluster have similar characteristics in terms of wind speeds, directions, and durations. This approach 463 

provides an alternative to the ASCE 7 wind map. The ASCE 7 wind map can only provide a wind speed 464 

without any information of variation of the wind speed and direction during a hurricane. This methodology 465 

can be generalized to any other regions besides Massachusetts. 466 

 467 
Fig. 23. Histogram of the number of clusters for all grids 468 
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 469 
(a) For a grid whose centroid has a latitude of 41.7 and a longitude of -70.1 470 

 471 
(b) For a grid whose centroid has a latitude of 42.1 and a longitude of -72.5 472 

Fig. 24. Examples of selected hurricane wind records 473 

Conclusions 474 

This paper presents a machine learning approach for collecting and selecting hurricane wind speed and 475 

direction records for a location and a region, which can be used for efficiently developing fragility curves 476 

or assessing probabilistic behaviors of structures considering uncertainties in hurricanes. The selected 477 

hurricane wind records are supposed to address the uncertainties in hurricanes because 1) they are selected 478 
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from 10,000-year synthetic hurricanes and 2) the collected records with similar properties are first divided 479 

into clusters and then the most representative ones are selected from each cluster. The preprocess of the 480 

wind records is also important since it can remove hurricanes with very small wind speeds and limit the 481 

durations of the records to a relatively short time. The proposed autoencoder architecture is shown to be 482 

able to reconstruct the wind speed time series and compress them into low dimensional latent features. The 483 

clustering results based on the latent features using the k-means algorithm are successful, because the points 484 

in the latent space are divided clearly into several clusters, and the wind records in the same cluster exhibit 485 

similar properties in duration, hurricane track, and changing of wind speed and directions. A method is also 486 

proposed to select the most representative records from each cluster based on the clustering results of latent 487 

features. This hurricane selection procedure is demonstrated using wind records from both a location and a 488 

region. For the regional hurricane selection, Massachusetts is used as a testbed, and it is discretized into a 489 

set of grids with performing the proposed hurricane selection procedure on each grid. Usually, approximate 490 

20 wind records are selected for a location, which make the nonlinear structural analysis feasible for 491 

uncertainty propagation simulation under hurricanes. 492 
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