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ABSTRACT 15 

In wind engineering, to accurately estimate the nonlinear dynamic response of structures while considering 16 

uncertainties of hurricanes, a suite of wind records representing the hurricane hazards of a given location is 17 

of great interest. Such a suite generally consists of a large number of hurricane wind records, which may 18 

lead to highly computational cost for structural analysis. To reduce the computational demand while still 19 

preserving the accuracy of the uncertainty quantification process, this paper proposes a machine learning 20 

approach to select a representative subset of all collected hurricane wind records for a location. First, 21 

hurricane wind records, which are expressed as time series with information that includes both wind speed 22 

and direction, are collected from a synthetic hurricane catalog. The high-dimensional hurricane wind 23 

records are then compressed into a set of low-dimensional latent feature vectors using an artificial neural 24 

network, designated as an autoencoder. The latent feature vectors represent the important patterns of wind 25 

records such as duration, magnitude and the changing of wind speeds and directions over time. The wind 26 

records are then clustered by applying the k-means algorithm on the latent features, and a subset of records 27 

is selected from each cluster. The wind records selected from each cluster are those whose latent feature 28 

points are closest to the centroid of all latent feature points in that cluster. In order to do regional analysis 29 
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while taking into account that the hurricane wind records are site-specific, this paper suggests that a region 30 

can be discretized into a set of grids, with the proposed hurricane selection approach applied to each grid. 31 

This procedure is demonstrated using Massachusetts as a testbed. 32 

Keywords: hurricane selection, time series clustering, autoencoder, k-means, uncertainty quantification, 33 

regional analysis, wind direction  34 
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 Introduction 35 

Nonlinear dynamic analysis is increasingly being considered in wind design of buildings and other 36 

structures as performance-based design becomes an increasingly popular option (ASCE, 2019), where 37 

controlled inelastic deformations are allowed under strong winds (Wang and Wu, 2022). In the fully 38 

probabilistic performance-based hurricane engineering framework (Barbato et al., 2013), fragility curves 39 

of structures are commonly adopted to do probabilistic damage assessment. Strength limit states of 40 

structures usually involve nonlinear behavior that is then integrated into the predictions of likelihood of 41 

damage that is offered through fragility analysis. Fragility functions are defined as the failure probability 42 

of a structure conditional on the intensity measure of hazards, including hurricanes in this work. If only the 43 

failure probability or fragility is of interest for a hurricane event (i.e., at the end of the loading time history) 44 

instead of for a certain time interval within the hurricane duration, the uncertainties in the loading time 45 

histories can be accounted for through running a series of nonlinear dynamic analysis with a suite of 46 

hurricane wind records. The hurricane wind records should include time histories that incorporate the wind 47 

directions as well as wind speeds, because the changing of wind directions during hurricanes has significant 48 

effects on the structural response. Consequently, the wind records in this research are time series of both 49 

wind speed and direction. To develop accurate fragility curves, the structures should be analyzed with a 50 

suite of hurricane wind records that can cover the record-to-record uncertainties in the changing of wind 51 

speeds and directions within the hurricane durations. A large amount of hurricane wind records can be 52 

collected for a location considering the existing historical and synthetic hurricanes (ASCE, 2016; Vickery 53 

et al., 2010; Vickery et al., 2009b; Vickery et al., 2009c). However, it is challenging to run nonlinear 54 

dynamic analysis for all of the collected hurricane records due to the high computational demand of finite 55 

element analysis of structures; thus, a minimum number of hurricane records should be selected to represent 56 

the uncertainties in all of the collected hurricane records. 57 

In prior work, Li (2005) and Li and Ellingwood (2006) developed hurricane fragility curves for wood-frame 58 

residential construction with a simplified limit state function, where the nonlinear and dynamic effects are 59 

neglected. Cui and Caracoglia (2015) carried out fragility analysis on tall buildings only for the 60 

serviceability limit state, so frequency domain analysis is adopted, and duration and nonstationary effects 61 

of hurricanes cannot be considered. In order to avoid performing structural analysis for long durations of 62 

windstorms, the dynamic shakedown method was utilized by researchers to model the inelastic behavior of 63 

buildings; however, this method assumes small displacement and deformation, so the buckling effects of 64 

structures like electrical transmission towers cannot be accounted for (Chuang and Spence, 2019, 2020; 65 

Tabbuso et al., 2016). Other researchers tried to develop hurricane fragility curves using nonlinear dynamic 66 

analysis only for a fixed time interval with a constant wind direction. For example, Hallowell et al. (2018) 67 
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used wind records with 1-hour time intervals, while Ma et al. (2021) used wind records with 2-minute time 68 

intervals. The fragility developed for this certain time interval cannot represent the fragility for a whole 69 

hurricane because of dynamic effects, yielding and changes in wind speeds and directions. Of course, one 70 

can discretize the hurricane duration into a series of short time intervals and apply the developed fragility 71 

curves to each short time interval; however, the failure probabilities within those short time intervals are 72 

correlated (Der Kiureghian, 2005; Kim et al., 2019; Straub et al., 2020). This correlation is difficult to 73 

quantify from the view of time-variant reliability and is not considered by the above authors. Given the 74 

limitations of the previous research, this paper considers the failure probability for a hurricane event instead 75 

of a certain time interval during a hurricane and tries to select hurricane wind records that can account for 76 

the record-to-record uncertainties in hurricanes. The selected wind records can be used to estimate failure 77 

probabilities of structures with nonlinear time history analysis. Through this way it is no longer needed to 78 

estimate the correlations of failure probabilities in the short time intervals within a hurricane. 79 

In performance-based earthquake engineering (Moehle and Deierlein, 2004), a probabilistic framework has 80 

been proposed to integrate seismic hazard analysis and structural damage analysis, where a suite of ground 81 

motions are adopted to represent the uncertainties in earthquake ground motions. Ground motion selection 82 

has been widely studied in the literature (Baker and Lee, 2018; Bojórquez et al., 2013; Du and Padgett, 83 

2021; Jayaram et al., 2011; Naeim et al., 2004). Some generally used ground motions suites are the SAC 84 

(Somerville et al., 1997) records, LMSR (Krawinkler et al., 2003) records, and FEMA-P695 records 85 

(FEMA, 2009). Recently, machine learning approaches have also been introduced to ground motion 86 

selection, where a reduced number of ground motions are obtained through clustering of a large number of 87 

ground motions (Bond et al., 2022; Kim et al., 2021; Zhang et al., 2020). However, there is no similar 88 

research in the literature for selection of hurricane wind records. There are two instances of prior research 89 

that consider uncertainties in hurricane wind hazards using a set of wind records, but they do not use a 90 

selection procedure. Vickery et al. (2006) studied hurricane fragility curves for building envelope 91 

components that were developed in the Hazus-MH software by comparing the wind pressure demand and 92 

the capacity of the envelope components. The record-to-record uncertainties of hurricane wind speeds were 93 

accounted for through the use of a 20,000-year simulation of hurricanes created by employing the hurricane 94 

model described by Vickery et al. (2000a) and Vickery et al. (2000b). The simulated hurricanes inherently 95 

incorporated many of the duration effects associated with the changes in wind speed and direction which 96 

accompany hurricane winds. Joyner and Sasani (2018) developed fragility curves for the windborne debris 97 

damage of building glazing, where eight hurricanes that made landfall in the U.S. in the last 10 years were 98 

adopted. Uncertainties in the record-to-record variability for different hurricanes were accounted for by 99 

employing the eight hurricane records in the damage analysis. Vickery et al. (2006) used all hurricanes in 100 
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the 20,000-year simulation, which may address the uncertainties in hurricanes, but is not suitable for 101 

nonlinear dynamic analysis considering the computational demand. On the contrary, Joyner and Sasani 102 

(2018) only used eight hurricanes without an analysis of the hazard uncertainties, which may not be able to 103 

represent the uncertainties in hurricanes for a specific location. 104 

This paper proposes a procedure to select a suite of hurricane wind records that can be used for performance-105 

based design and fragility analysis. The wind speed and direction records for a location are collected from 106 

a synthetic hurricane catalog (Liu, 2014) with some preprocessing, after which the collected wind records 107 

have durations that are short enough to make a nonlinear time history analysis feasible. The collected wind 108 

records are then compressed into low-dimensional latent feature vectors using a neural network designated 109 

as an autoencoder (Aggarwal, 2018), so that it is easier to measure similarity of different wind records and 110 

apply the standard clustering algorithms such as the k-means algorithm (Aggarwal et al., 2001; Shalev-111 

Shwartz and Ben-David, 2014). Autoencoder is an artificial neural network in which the input and output 112 

layers have the same number of neurons, while the number of neurons in the middle is constricted. The 113 

training algorithm tries to reconstruct the input data in the output layer; however, this reconstruction is not 114 

exact because the neurons in the middle only carry a reduced representation of the input data. The data held 115 

by the neurons in the middle (i.e., the low dimensional vectors compared to the input and output layer) are 116 

called latent features, to which the clustering algorithm is applied. This means that only important 117 

information in the wind records is preserved for clustering. The latent features representing hurricane wind 118 

records are then clustered into several groups using the conventional k-means algorithm (Shalev-Shwartz 119 

and Ben-David, 2014). Finally, only a few hurricane wind records are selected from each cluster for fragility 120 

development or design checks, which significantly reduces the number of required time history analyses, 121 

while still ensuring that the uncertainties of different hurricanes are covered with a limited number of wind 122 

records. Since the properties of hurricanes for different locations have significant differences, a hazard map 123 

can be developed for hurricane wind records so that users are able to choose appropriate records for their 124 

locations of interest. As an example, the Commonwealth of Massachusetts has been divided into 92 grids 125 

and a suite of hurricane wind records has been selected for each grid using the proposed hurricane selection 126 

approach. To demonstrate the usefulness and effectiveness of the selected wind records, they have been 127 

adopted to develop fragility curves for electrical transmissions towers in Massachusetts, which can be found 128 

in Du et al. (2022) and Du and Hajjar (2022). 129 

 Hurricane simulation 130 

Synthetic hurricanes are widely used for risk analysis and structural design in wind engineering, which 131 

evolved from the single site probabilistic model (Russell, 1971) to Vickery’s hurricane track model 132 
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(Vickery et al., 2000a). For example, ASCE 7 has adopted the hurricane track model when generating the 133 

wind hazard maps (ASCE, 2016). This research also uses a 10,000 year synthetic hurricane catalog 134 

developed by Liu (2014) for the Atlantic basin based on Vickery’s hurricane track model, which consists 135 

of a hurricane genesis model, a track model, an central pressure model, a decay model and a boundary layer 136 

model. The temporal and spatial evolution of thousands of hurricanes from emergence to dissipation was 137 

modeled using the Monte Carlo method. The HURDAT database (Jarvinen et al., 1984) for historical storms 138 

was adopted for building the hurricane model through regression and calibrating the simulated results. In 139 

this simulation, the state of a hurricane can be determined with 7 parameters: the hurricane eye’s latitude 140 

and longitude, storm translation speed, storm heading angle, storm central pressure, radius to maximum 141 

winds (describing storm size), and Holland’s radial pressure profile parameter (i.e., the Holland B parameter 142 

(Holland, 1980)). These parameters are updated at each 6-hour point. As suggested by Vickery et al. (2000a), 143 

linear interpolation is performed within each 6-hour interval, which results in 10-min updates of the 144 

parameters as used in Vickery et al. (2009c). Examples of the simulated hurricane tracks are shown in Fig. 145 

1. In this research, the gradient wind speeds are calculated by employing Georgiou’s model (Georgiou, 146 

1985), which gives the 10-min sustained wind speeds at 500 m to 2000 m above the ground surface (Cui 147 

and Caracoglia, 2019; Pei et al., 2014, 2018). An example of the calculated gradient wind field is shown in 148 

Fig. 2. 149 

 150 
Fig. 1. Examples of the simulated hurricane tracks 151 
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 152 
Fig. 2. Example of hurricane gradient wind field (m/s) 153 

The obtained hurricane gradient wind speeds 𝑉𝑉𝑔𝑔 need to be converted to surface wind speeds 𝑉𝑉10 (10 m 154 

above the ground or water) for wind force calculation on structures. The reduction factor 𝑉𝑉𝑔𝑔 𝑉𝑉10⁄  over water 155 

proposed by Batts et al. is used in this research (Batts et al., 1980; Vickery et al., 2009a). A sea-land 156 

transition factor obtained from the model given in Simiu and Scanlan (1996) is then utilized to calculate 157 

the surface wind over land (open terrain with surface roughness 𝑧𝑧0 = 0.03 𝑚𝑚) from the surface wind over 158 

water (𝑧𝑧0 = 0.0013 𝑚𝑚). In addition, the surface wind speed over land approaches the fully transitioned 159 

value asymptotically over a fetch distance as the wind moves from sea to land; therefore, the transition 160 

function proposed in Vickery et al. (2009b) is employed here, which defines the percentage of the sea-land 161 

transition as a function of the fetch distance. With the methods discussed in this section, the time series of 162 

the 10-min sustained wind speeds at 10 m height and the corresponding wind directions at a location of 163 

interest (assuming open terrain) during a hurricane may be obtained. 164 

 Hurricane wind records collection and preprocess 165 

ASCE 7 wind hazard maps display wind speeds with a certain mean recurrence interval (MRI) for the entire 166 

U.S., including hurricane prone regions (ASCE, 2016). However, much information regarding hurricane 167 

winds is omitted in the ASCE 7 wind hazard maps, such as the variation of wind speeds and directions 168 

during a hurricane, and the durations of hurricane winds. This kind of information, which are contained in 169 

the time series of hurricane wind speeds and directions, are critical for structural response estimation and 170 

risk analysis. Thus, in this section, a number of hurricane wind speed and direction records are collected 171 
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for a location of interest. In order to collect hurricane wind records for a region, the region is first discretized 172 

into a series of grids and then hurricane wind records are collected for each grid. 173 

 Wind records for a location of interest 174 

A location in Massachusetts with latitude 41.7 and longitude -70.1 is used as an example in this section. 175 

Wind records are collected for this specific location from 10,000-year synthetic hurricanes developed by 176 

Liu (2014). Examples of the collected 10-min sustained wind speed and wind direction records at the 177 

location of interest are shown in Fig. 3 to Fig. 5 with the corresponding hurricane tracks. It is seen in Fig. 178 

3(a), Fig. 4(a) and Fig. 5(a) that the hurricane eye usually moves thousands of miles from a hurricane’s 179 

genesis to dissipation. It is reasonable to assume that the wind speed induced by a hurricane that is very far 180 

away is relatively small and can be neglected. Therefore, as suggested by Vickery et al. (2009c), hurricane 181 

winds are considered only when the location of interest is within 250 km of the hurricane eye (see the blue 182 

circles in Fig. 3 to Fig. 5). This limit on distance also provides a limit for the durations of the hurricane 183 

wind records. Figure 3(c), Fig. 4(c) and Fig. 5(c) illustrate the absolute values of the wind speeds and the 184 

wind directions in a polar coordinate system, while Fig. 3(d), Fig. 4(d) and Fig. 5(d) illustrate the hurricane 185 

wind speeds in the North and East directions in a Cartesian coordinate system. Note that the wind direction 186 

in the polar coordinate system is clockwise positive from the North direction. It is seen that the pattern of 187 

wind speed and direction records are different for different hurricanes, which depends on a number of 188 

factors, including the 7 parameters defining the hurricane eye tracks and wind fields. While the impacts of 189 

the hurricane wind field as shown in Fig. 2 on the wind records is complex, a qualitative analysis of the 190 

impact of hurricane eye tracks on the wind records provides examples of the range of loading developed 191 

during hurricanes. Specifically, when the location of interest is very close to the hurricane eye track, the 192 

record of the absolute values of the wind speeds usually has two peaks and the drop of the wind speed in 193 

the middle is due to the near zero wind speed in the hurricane eye (see Fig. 3(c)). On the contrary, if the 194 

location of interest is further from the hurricane eye track, the record of the absolute values of the wind 195 

speeds will typically only have one peak (see Fig. 4(c) and Fig. 5(c)). The difference between Fig. 4 and 196 

Fig. 5 is that the hurricane eye passes by the West or East side of the location of interest, which dominates 197 

the variation of the wind directions as presented in these two figures. 198 
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 199 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 200 

 201 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 202 

 203 
(c) Wind speed and direction records 204 
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 205 
(d) Wind speed records in the North and East directions 206 

Fig. 3. An example of hurricanes going through the location of interest 207 

 208 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 209 

 210 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 211 
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 212 
(c) Wind speed and direction records 213 

 214 
(d) Wind speed records in the North and East directions 215 

Fig. 4. An example of hurricanes passing by the West side of the location of interest 216 

 217 
(a) The whole hurricane track (the blue circle represents the 250 km limit) 218 
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 219 
(b) The hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot) 220 

 221 
(c) Wind speed and direction records 222 

 223 
(d) Wind speed records in the North and East directions 224 

Fig. 5. An example of hurricanes passing by the East side of the location of interest 225 

Wind records are first collected through applying the 250 km distance limit between the hurricane eye and 226 

the location of interest. Hurricanes with very low wind speeds are then filtered out through a strategy that 227 

only hurricanes whose maximum wind speeds at the location of interest are greater than the 50-year MRI 228 

wind speed at the same location are considered. The 50-year MRI wind speed obtained from the ASCE 7 229 

Hazard Tool (ASCE, 2016) is a 3-second gust wind speed at 10 m above ground (47 m/s for this location), 230 
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which is then converted to 10-min sustained wind speed at 10 m above ground (32.4 m/s for this location) 231 

following the approach proposed by Simiu and Scanlan (Simiu and Scanlan, 1996). This 50-year MRI 10-232 

min sustained wind speed is used as the threshold for comparison with the collected hurricane wind records 233 

to get rid of those with small maximum wind speeds. Thus, a total of 162 hurricane wind records are 234 

collected from the 10,000-year synthetic hurricanes, of which 160 records are shown in Fig. 6 within a 235 

Cartesian coordinate system and are used in the following sections for clustering. Only 160 records are 236 

included because 162 cannot be divided by the batch size (i.e., 16) employed in the training process of the 237 

autoencoder, as will be introduced in Section 4.1. In addition, Fig. 7 presents the histogram of the durations 238 

of all of the collected hurricanes with a mean duration of 12.4 hours. To avoid the impulse effects, a 1-hour 239 

linear ramp-up and a 1-hour linear ramp-down are attached to the beginning and the end of the collected 240 

wind records, respectively, as recommended in the Prestandard for Performance-Based Wind Design 241 

(ASCE, 2019). To be consistent with the hurricane wind records with 10-min intervals, the ramp is added 242 

as six 10-min steps with a constant wind direction. Note that the ramps are not included in Fig. 3 to Fig. 5 243 

but included in Fig. 6 and Fig. 7. Moreover, as will be discussed in the following sections, the collected 244 

wind records may have different durations, but the autoencoder needs the same size for the input data of 245 

each record. Therefore, to facilitate training the autoencoder, zero paddings are added to the beginning and 246 

the end of the records that are shorter than the longest one. Consequently, all records after preprocess have 247 

the same length as the longest one. For each record, zero paddings at the beginning and the end have the 248 

same length, which means all records after preprocessing have a midpoint that is usually recorded when the 249 

hurricane eye is closest to the location of interest. 250 

 251 
Fig. 6. The 160 collected hurricane wind records resolved in two directions 252 
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 253 
Fig. 7. Histogram of the durations of the collected hurricane wind records 254 

 Wind records for a region 255 

Hurricane wind records for different locations have different patterns. Consequently, it is appropriate to 256 

select site-specific wind records instead of generic wind records for all locations. Compared to generic wind 257 

records, site-specific wind records have lower uncertainties and thus can be used to predict responses of 258 

structures at a given location more accurately. To collect and select site-specific hurricane wind records for 259 

a region of interest, this research proposes that this region can be discretized into a set of grids and the 260 

centroid of each grid is used to represent the whole grid for recording wind speeds and directions. Thus, 261 

hurricane wind records can be collected for all centroids of the grids. To demonstrate this idea, Fig. 8 shows 262 

Massachusetts as a testbed, which is divided into 0.2° by 0.2° grids. In Fig. 8, the red dots represent the 263 

centroids of the grids that are not associated with Massachusetts, while the 92 blue dots represent the 264 

centroids of the grids that are associated with Massachusetts. The hurricane wind records collection 265 

procedure proposed in Section 3.1 is then run for all 92 grids. Note that when generating the wind records, 266 

the percentage of the sea-land transition defined in Section 2 is calculated for the centroid of each grid 267 

based on its fetch distance. In addition, the 50-year MRI wind speeds for the centroids of some grids cannot 268 

be obtained from the ASCE 7 Hazard Tool because these centroids are over the ocean (see Fig. 8); therefore, 269 

for these cases, locations within the same grids but on the land are used to find the 50-year MRI wind speeds. 270 

Figure 9 presents the histogram of the number of hurricanes collected for all 92 grids, with a mean value of 271 

202.   272 
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 273 
Fig. 8. Massachusetts is discretized into grids 274 

 275 
Fig. 9. Histogram of the number of collected hurricanes for the 92 grids 276 

 Wind records clustering and selection 277 

The approximately 200 collected hurricane wind records for each grid are still too many for design checks 278 

and fragility development, especially considering the long durations of the wind records. Incremental 279 

dynamic analysis (IDA) may be used to estimate collapse probability of structures under hurricanes (Du et 280 

al., 2022; Vamvatsikos and Cornell, 2002). This approach is computationally intensive because direct 281 

integration of the nonlinear dynamic governing equations is required over the entire duration of the 282 

hurricane wind records and this nonlinear time history analysis needs to be run multiple times with scaled 283 

wind records. As such, it is important to limit the number of records used. Therefore, in this research, the 284 

collected wind records for each grid are first clustered using a machine learning approach and then 285 

approximately 1/10 of the wind records in each cluster are selected, which are combined together to create 286 

approximately 20 selected wind records for each grid. This significantly reduces the number of nonlinear 287 
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time history analyses required, while still preserving the uncertainties in the collected records. This 288 

procedure is similar to stratified sampling in statistics. Sampling is the process of selecting a subset from a 289 

population so that the characteristics of the whole population can be estimated using this subset, while 290 

stratified sampling is used by dividing the population into subpopulations (i.e., clusters in this paper), where 291 

the elements within each subpopulation are similar, and performing sampling on each subpopulation. 292 

Stratified sampling may improve the precision of the sample because sampling variability within each 293 

subpopulation is smaller than the sampling variability on the entire population (Botev and Ridder, 2017; 294 

Parsons, 2014). Specifically, the selected wind records can cover a spread of properties such as durations, 295 

patterns of wind speed records, and patterns of wind direction records, because the collected wind records 296 

are divided into clusters based on these properties. 297 

 Fully connected autoencoder 298 

Since the collected hurricane wind records are time series of both wind speed and direction with different 299 

durations, it is challenging to cluster the records directly. To facilitate the clustering process, the high 300 

dimensional wind records are first transformed into low dimensional latent features using an artificial neural 301 

network named autoencoder (Aggarwal, 2018; Bond et al., 2022; Tavakoli et al., 2020). The architecture 302 

of the autoencoder for wind records at the location of interest given in Section 3.1 is presented in Fig. 10. 303 

It is seen that the input matrix is the original wind speed records in the Cartesian system, which has two 304 

columns with each column representing wind speed time histories in the North and East directions, 305 

respectively. The input matrix is first flattened into a vector as the input layer of the fully connected 306 

autoencoder and then passed through other hidden layers to reconstruct the data as another vector in the 307 

output layer, which is finally reshaped to a matrix as the reconstructed wind speed records in the Cartesian 308 

system. Even though the two columns of the input matrix are correlated time series of wind speeds in two 309 

directions, this “flatten” and “reshape” process is reasonable because the correlations are considered in the 310 

flattened vectors (input and output layers) through the weights of the fully connected layers. In another 311 

word, “flatten” and “reshape” only change the appearance of the data while retaining the relationships and 312 

correlations of the elements within the data. A fully connected autoencoder means that all the neurons in 313 

one layer are connected to all the neurons in the next layer. The autoencoder architecture consists of two 314 

parts: the encoder that compresses the high dimensional input data into the small-size latent feature vector, 315 

and the decoder that utilizes the latent features to reconstruct the input data. In this example, the flattened 316 

wind speeds in the input layer are transformed into 5 latent features through the encoder process, which are 317 

then expanded to form the reconstructed but still flattened wind records in the output layer through the 318 

decoder process. The hidden layers with a nonlinear activation function (Tanh) are included to enhance the 319 

power of this autoencoder so that it can map the input data into much smaller dimensional spaces. Here 320 
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Tanh is adopted because it has better performance than other activation functions based on numerical tests 321 

in this research. This autoencoder architecture requires that all input matrices have the same size; thus, the 322 

size of the longest wind record is used as the size of the input matrices and zero padding is added to the 323 

beginning and the end of all other shorter wind records. This strategy retains all information in the wind 324 

records. In this example, the longest record has 156 data points (including the ramp-up and ramp-down) 325 

with 10-min intervals, so the number of rows of the input matrices is 156. 326 

 327 
Fig. 10. The proposed autoencoder architecture 328 

The training of this autoencoder is conducted by minimizing the error between the reconstructed data in the 329 

output layer and the input data, which ensures that the latent features can represent the important patterns 330 

of the wind records. The Adaptive Moment Estimation (Adam) algorithm is adopted for stochastic 331 

optimization and batch normalization is added to some hidden layers as shown in Fig. 10 to address the 332 

exploding and vanishing gradient problems (Aggarwal, 2018). Since the chosen batch size is 16, only 160 333 

of the collected 162 wind records are used for the training process. In addition, Fig. 11 illustrates the 334 

reconstructed 160 wind records in the North and East directions after training the proposed autoencoder 335 

neural network. The histogram of the reconstruction error between the original and the reconstructed wind 336 

records is shown in Fig. 12, which demonstrates that the reconstructed records match well with the original 337 

ones and the latent features hold the most important characteristics of the wind records. It should be noted 338 

that since the 312 data points in the input layer is compressed into only 5 latent features, there must be some 339 

loss of information in this process and the discrepancies between the original and the reconstructed records 340 
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are inevitable. However, these discrepancies are usually induced by noise or other nonsignificant factors; 341 

therefore, the low dimensional latent features should be adequate for clustering because the important 342 

information has been extracted through the autoencoder. 343 

 344 
Fig. 11. The 160 reconstructed wind records in two directions for the location of interest 345 

 346 
Fig. 12. Histogram of the reconstruction error 347 

 Clustering and selection based on latent features 348 
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The location of interest studied in Sections 3.1 and 4.1 is used here as an example. After the training process, 349 

all wind speed time series are converted into latent feature vectors, on which the k-means algorithm is 350 

applied for clustering. The goal of clustering is to maximize the similarity of data within each cluster and 351 

maximize the dissimilarity of data in distinct clusters. Therefore, one can take a subset of the data in a 352 

cluster to represent all data in that cluster, the accuracy of which depends on the number of clusters used. 353 

Here, the elbow rule is adopted to find an optimal number of clusters (Thorndike, 1953). To do so, the k-354 

means algorithm has been run multiple times on the latent features with different number of clusters ranging 355 

from 2 to 20. For this example, when the number of clusters k equals 8, the Within-Cluster-Sum of Squared 356 

Errors (WSS) curve reaches its elbow as shown in Fig. 13. Therefore, the 160 hurricane wind records are 357 

divided into 8 clusters. Since it is difficult to show the 5 latent features on a 2D or 3D figure, principal 358 

component analysis is performed on the latent features and the first 3 principal components are plotted in 359 

Fig. 14 to demonstrate the results of the k-means clustering. This is acceptable because the first 3 principal 360 

components possess 82% of the variation of the 5 latent features and it is believed that the 5 latent features 361 

must show better performance than the 3 principal components if they can be plotted in a figure. In Fig. 14, 362 

the first 3 principal components are presented using 8 different colors for the 8 clusters, from which it may 363 

be seen that the hurricane wind records are clustered well because the principal components of different 364 

clusters have rare overlaps and the principal components of each cluster are gathered closely around their 365 

centroid. 366 

 367 
Fig. 13. The WSS for different number of clusters 368 
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 369 
Fig. 14. Principal components of the latent features for the 8 clusters 370 

To demonstrate the effectiveness of the proposed clustering approach, Fig. 15 to Fig. 22 illustrate the 371 

hurricane wind speeds and tracks of the 8 clusters. It is seen that the clustering results are successful, 372 

because hurricane wind speeds and durations within each cluster have similar patterns. Specifically, 373 

Clusters 2 and 7 have hurricanes whose tracks pass by the East side of the location of interest, while other 374 

clusters have hurricanes whose tracks pass by the West side of the location of interest. The number of 375 

hurricanes in each cluster from Cluster 1 to Cluster 8 are 31, 17, 31, 13, 20, 12, 19 and 17, respectively. So 376 

much more hurricanes pass by the West side of the location of interest than the East side. The main 377 

difference between Cluster 2 and Cluster 7 is that the durations of hurricanes in Cluster 7 is longer. For the 378 

clusters passing by the West side of the location of interest, Cluster 3 and Cluster 4 has the shortest and the 379 

longest durations, respectively, while Clusters 1, 5, 6 and 8 have durations in the middle. Clusters 6 and 8 380 

have very similar durations, but they are divided into two clusters because they have different shapes for 381 

the profile of the wind speed time histories. There are outliers in some clusters such as the one with abrupt 382 

changing of the storm heading direction as seen in the figure of hurricane tracks of Cluster 2. This can be 383 

expected because the k-means algorithm cannot eliminate all outliers, but instead assigns outliers to their 384 

closest cluster. Usually, outliers are rare and their latent feature points are far from the centroid of all points 385 

in a cluster. Therefore, the outlier commonly will not be included to the final suite of wind records 386 

considering the selection strategy within a cluster that will be introduced below. The wind field shown in 387 

Fig. 2 also has impacts on the clustering results, which cannot be explained explicitly here because its 388 

information is included in the latent features through the operations on the wind records during the training 389 

of the autoencoder. 390 
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Considering the computational demand of nonlinear time-history analyses that these wind records will be 391 

used to perform, approximately 1/10 of the hurricanes in each cluster are selected and combined together 392 

as the final suite of hurricane wind records. The number of records selected from each cluster is proportional 393 

to the total number of records in each cluster, which results in 3, 2, 3, 1, 2, 1, 2 and 2 records from each 394 

cluster, respectively. This strategy is used to make sure the proportions of different patterns of wind records 395 

are similar in the selected 16 hurricanes and the original 160 ones. It is also reasonable to make sure the 396 

selected records from each cluster are the most representative ones. To achieve this goal, the clustering 397 

results of the latent features are used, and for each cluster it is recommended to select those records whose 398 

latent feature points are the closest to the centroid of all latent feature points in that cluster. The selected 399 

records for each cluster are highlighted in bold solid lines as shown in Fig. 15(a) to Fig. 22(a), which is a 400 

demonstration of the validity of this selection strategy within a cluster. In Fig. 15(a) to Fig. 22(a), all wind 401 

records are shown in different colors and curves resolved from the same record are shown in the same color 402 

in the upper subplot and lower subplot. It is seen that the selected records are representative, as they are 403 

near the middle of all the records. The total of 16 selected hurricanes can be employed to represent 404 

uncertainties in wind loading for design check and fragility development for structures at the location of 405 

interest. Note that these selected wind records are only time series of 10-min mean wind speed at 10 meters 406 

height. If one wants to use them for structural dynamic analysis, the fluctuating wind speeds and the 407 

atmospheric boundary layer should be considered. 408 

 409 
(a) Wind records of Cluster 1 410 
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 411 
(b) Hurricane eye tracks of Cluster 1 412 

Fig. 15. Hurricanes in Cluster 1 413 

 414 
(a) Wind records of Cluster 2 415 

 416 
(b) Hurricane eye tracks of Cluster 2 417 

Fig. 16. Hurricanes in Cluster 2 418 
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 419 
(a) Wind records of Cluster 3 420 

 421 
(b) Hurricane eye tracks of Cluster 3 422 

Fig. 17. Hurricanes in Cluster 3 423 
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 424 
(a) Wind records of Cluster 4 425 

 426 
(b) Hurricane eye tracks of Cluster 4 427 

Fig. 18. Hurricanes in Cluster 4 428 
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 429 
(a) Wind records of Cluster 5 430 

 431 
(b) Hurricane eye tracks of Cluster 5 432 

Fig. 19. Hurricanes in Cluster 5 433 
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 434 
(a) Wind records of Cluster 6 435 

 436 
(b) Hurricane eye tracks of Cluster 6 437 

Fig. 20. Hurricanes in Cluster 6 438 
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 439 
(a) Wind records of Cluster 7 440 

 441 
(b) Hurricane eye tracks of Cluster 7 442 

Fig. 21. Hurricanes in Cluster 7 443 
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 444 
(a) Wind records of Cluster 8 445 

 446 
(b) Hurricane eye tracks of Cluster 8 447 

Fig. 22. Hurricanes in Cluster 8 448 

 Wind records selection for a region 449 

As a case study for regional analysis, Massachusetts has been divided into 92 girds and wind records has 450 

been collected for each grid given in Section 3.2. Here the procedures for wind records clustering and 451 

selection introduced in Sections 4.1 and 4.2 are applied to all 92 grids. The same autoencoder architecture 452 

is used for all grids except for the slightly different sizes of the input vectors for different grids, which is 453 

because the maximum duration of the collected records for different grids may be different. The same k-454 

means algorithm is also adopted for clustering on the latent features; however, the number of clusters may 455 

vary for different grids because it is dynamically determined using the elbow rule. The histogram of the 456 

number of clusters for all grids is presented in Fig. 23 with a mean value of 5.65. Since approximately 200 457 

hurricane wind records are collected for each grid, then approximately 20 records are selected for each grid 458 
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according to the method introduced in Section 4.2. Finally, a wind map is generated so that a suite of 459 

hurricane wind speed and direction records can be provided for any locations in Massachusetts. For example, 460 

Fig. 24(a) gives 16 wind records selected from 8 clusters for a grid whose centroid has a latitude of 41.7 461 

and a longitude of -70.1 (this location is used in Sections 3.1 and 4.1), while Fig. 24(b) gives 19 wind 462 

records selected from 4 clusters for a grid whose centroid has a latitude of 42.1 and a longitude of -72.5. 463 

Here the wind records selected from the same cluster are shown in the same color, and it is seen that wind 464 

records within the same cluster have similar characteristics in terms of wind speeds, directions, and 465 

durations. This approach provides an alternative to the ASCE 7 wind map. The ASCE 7 wind map can only 466 

provide a wind speed without any information of variation of the wind speed and direction during a 467 

hurricane. This methodology can be generalized to any other regions besides Massachusetts. 468 

 469 
Fig. 23. Histogram of the number of clusters for all grids 470 



30 

 

 471 
(a) For a grid whose centroid has a latitude of 41.7 and a longitude of -70.1 472 

 473 
(b) For a grid whose centroid has a latitude of 42.1 and a longitude of -72.5 474 

Fig. 24. Examples of selected hurricane wind records 475 

 Conclusions 476 

This paper presents a machine learning approach for collecting and selecting hurricane wind speed and 477 

direction records for a location and a region, which can be used for efficiently developing fragility curves 478 

or assessing probabilistic behaviors of structures considering uncertainties in hurricanes. The selected 479 

hurricane wind records are supposed to address the uncertainties in hurricanes because 1) they are selected 480 

from 10,000-year synthetic hurricanes and 2) the collected records with similar properties are first divided 481 
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into clusters and then the most representative ones are selected from each cluster. The preprocess of the 482 

wind records is also important since it can remove hurricanes with very small wind speeds and limit the 483 

durations of the records to a relatively short time. The proposed autoencoder architecture is shown to be 484 

able to reconstruct the wind speed time series and compress them into low dimensional latent features. The 485 

clustering results based on the latent features using the k-means algorithm are successful, because the points 486 

in the latent space are divided clearly into several clusters, and the wind records in the same cluster exhibit 487 

similar properties in duration, hurricane track, and changing of wind speed and directions. A method is also 488 

proposed to select the most representative records from each cluster based on the clustering results of latent 489 

features. This hurricane selection procedure is demonstrated using wind records from both a location and a 490 

region. For the regional hurricane selection, Massachusetts is used as a testbed, and it is discretized into a 491 

set of grids with performing the proposed hurricane selection procedure on each grid. Usually, approximate 492 

20 wind records are selected for a location, which make the nonlinear structural analysis feasible for 493 

uncertainty propagation simulation under hurricanes. 494 
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