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Abstract 

Silicon-based cantilever biosensors used for the characterization of physical properties of cells 

such as their mass and stiffness have been gaining great interest and have profound 

implications in cell biology, tissue engineering, cancer, and disease research. The 

electrochemically made porous silicon (PSi) has been promising in terms of immobilizing 

biological molecules through its porosity and has led to improved biosensing applications. 

However, PSi loses its mechanical strength with porosity. The one-end cantilever sensors 

on the other hand are subject to non-uniform mass sensitivity. A novel SiCN and PSi-based 

pedestal cantilever structure have therefore been proposed which can result in improved 

biosensing. Nanoindentation of SiCN films showed the mechanical strength whereas Finite 

Element modeling was done to show mass homogeneity for the system.  
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1. Introduction 

The conjunction between optical and mechanical properties in silicon has given rise to some 

significant applications, the most coveted of them is in the field of biosensing. Optical 

cantilever sensors find their use in Atomic Force microscopes and other related surface 

characterization techniques1. Piezo cantilevers on CMOS photonic platform have been used 

for sensing technologies. Mach Zehnder interferometers (MZI) have been used to study 

light interaction with molecular2. Porous silicon, which is an electrochemical derivative of 

silicon has been used as a biosensor. It is bio-compatible and can hold the biological 

materials inside its pore causing immobilization of the sample during tests and hence 

leading to enhancement of sensitivity3-6. The electrical properties like conductivity as well 

as the optical properties like refractive index show commendable changes when foreign 

molecules get attached to it.   The porosity % on which the whole sensing capability of PSi 

is based can be tuned by the etching parameters like current density and etch time7. This 
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communication however focuses on the PSi-based cantilever structures used for biosensing 

and hence the mechanical aspects of PSi-based structure have also been discussed    

 

The mechanical stability of PS used as a cantilever studied by nanoindentation however 

showed a decrease in H and E values due to an increase in porosity8, 9. Thin films of suitable 

materials deposited on silicon before the etching process involving proper fabrication can 

lead to the formation of stable PSi-based cantilever structures applicable to sensing. The 

cantilever-based MEMS resonator sensors on the other hand suffer the problem of un 

attainment of homogenous mass sensitivity. The intensity of vibration being highest at the 

free end of the cantilever makes the mass sensitivity highest and a reduction as one moves 

towards the fixed end. The resonant frequency of operation is inversely proportional to the 

mass may hamper the sensing efficiency10. This communication, therefore, analyses a 

previously proposed pedestal cantilever structure and suggests a novel SiCN and PSi-based 

cantilever foundation for biosensing.  

 

The ternary nanocomposite material Si-C-N was first introduced to the scientific 

community as a high-temperature oxidation-resistant polymer-derived ceramic (PDCs) 11. 

PDCs are a new class of ceramics that combines the functional properties of polymers with 

the mechanical and chemical durability of ceramics. Polymer-derived ceramics (PDCs) 

have a polymer-like nanostructure and ceramic-like properties, e.g., creep and oxidation 

resistance 12.  

 

 

 

 

 

 

 

 

      

 

 

Fig 1. Ternary phase diagram of Si-C-N 

 

Apart from high-temperature oxidation resistance, the hardness as well as high-temperature 

stability of the Si–N–C phase exceeds those of SiC and Si3N4. The electronic band gap of 

2.5-3.8 eV allows us to consider this material as a wide band gap and dielectric material. 

More importantly, stability of   β-C3N4 with comparable diamond hardness has been 

achieved in ternary silicon carbonitride. The Si-C-N phase diagram is shown in Fig 1. The 

incorporation of Si in the CN deposit promotes the inclusion of nitrogen and leads to C3N4. 

The Si-C-N has shown stability up to 1600C and it remains in the amorphous state up to 

1500oC.These properties make silicon carbonitride a promising material for prospective 

applications such as structural ceramics, MEMS, hard protective coatings, and electronic 

materials 12-17.  

 

 

2. Materials and Methods 

There is a standard method of forming adopted by researchers with slight alterations18, 19.  

PSi is usually made in an electrochemical bath consisting of HF as an electrolyte. The P-

type Si wafer (100) having a 3.14 cm2 area with a resistivity of 1 to 2 𝛺𝑐𝑚 were anodized 
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in the formation bath. The wafers act as a seal between the front and rear region of the 

formation bath. The front region was filled with HF: C3H7OH in a 1: 1 ratio while the rear 

portion was immersed in KCl solution. The silicon chip which gets etched away is used as 

an anode while graphite rods are used as cathode. The graphite rods in turn are kept in a 

KCl solution for conductivity. The current used, concentration of the electrolyte, the 

resistivity of the silicon chip, and the time for which the reaction takes place are considered 

to be the etching parameters. The variation of etching parameters and luminescence 

properties of PSi have been reported earlier 20.  

 

The SiCN nanocomposite hard coatings were deposited on Si by magnetron sputtering.  A 

2-inch dia sintered SiC pellet was used as the target. Argon followed by nitrogen gas were 

introduced in an evacuated chamber for the reactive sputtering process the details of which 

along with the microstructural as well as structural characterizations have been reported 21, 

22. 

 

Nanoindentation is often used in studying the mechanical properties of thin films deposited 

on Si applicable for sensing purposes.  It has also been recently reported to be used for 

finding the stiffness of soft biomaterials and organs.23 It is a method to characterize material 

mechanical properties on a very small scale due to its high spatial and depth resolution of 

the measurement., the details of which can be found elsewhere.24-26 

 
 

3. Results and discussions 

In a single layer of porous silicon, pores of varied dimensions can be observed due to non-

uniform etching caused by unevenness of the sample. These pores are responsible for the 

immobilization of the biological molecules and are helpful for sensors. A variation in 

etching parameters is related to the porosity which is crucial for gas sensing capabilities. 

However, PS is losing mechanical strength with porosity. A mechanically stable structure 

is very much required for MEMS cantilever sensors. 

Although Silicon is the preferred choice for piezoresistive sensors due to 

controllable/repeatable properties and well-established processing techniques. Silicon-

based MEMS sensors operate reliably only up to a temperature of about 150 °C27 Therefore, 

for high temperatures, SiC stands out as one of the most promising candidates28. An up-

gradation of SiC comes in the form of SiCN which can withstand even higher temperatures 

than SiC. Phases like SiNx (including) β-Si3N4) and CNx (including β-C3N4) are formed in 

the nanocomposite SiCN thin film providing good thermomechanical and conducting 

properties.  

Nanoindentation showed hardness of 20 GPa and Modulus of 240 GPa for the SiCN films 

which are quite impressive considering the sharp Berkovich indenter. The substrate effect 

usually starts when the penetration crosses a depth that is 1/10th of the film thickness. 

Considering this the film thickness can be estimated to be 300 nm approximately (Fig 2b).   

The load-depth plot in Fig 2a   shows that a 1.8 mN load was required by the indenter to 
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reach a depth close to 80 nm. The parameters hr, he, ht, hc, and ha are the residual elastic total 

contact depth and sink in-depth respectively27, 28. 

 

 

 

 

 

 

 

 

 

 

Fig 2. Nanoindentation a) Load-depth plot and b) Hardness-Modulus plot for SiCN films 

on silicon substrate c) Load and Time on the sample and (d) optical image of the 

nanoindentation impression 

 

The deviation from linearity as observed in the unloading portion is called the hysteresis 

effect) indicated as 1 in the figure). The linear region parallel to the depth (indicated as 2) 

and the nonattainment of 0 N after full unloading (indicated as 3) is due to the partial 

delamination of the film as also observed in the optical image of the nanoindentation region, 

the shape of which has been marked arising from 3 sided pyramidal Berkovich indenter.  

The bright regions surrounding the indentation confirmed the partial delamination from the 

sides of the indenter impression (Fig 2d). The delaminated regions have higher brightness 

as they are closer to the lens. The time on the sample plot also indicated the delamination 

upon loading as a vertical spike was observed without any load changes (Fig 2c).  

Silicon Carbon nitride (Si-C-N) thin films have an application in high-temperature pressure 

sensors due to their piezoresistive properties28. The properties of SiCN applicable to MEMS 

piezoresistive devices are given in Table 1 29-33. Therefore, a combined structure of SiCN 

and Porous Silicon as discussed below (Fig 3) where the Si substrate is coated with SiCN 

film first followed by etching taking place will have the property of cantilever biosensors 

at the same time will be mechanically stable.  

 

delamination 

(a) (b) 

(c) (d) 
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Table 1. Parameters of SiCN useful for piezoresistive applications 

 

Parameter Value 

Bandgap 2.3–3.0 eV 

Break down voltage 29 V at RT with leakage 

current density 

1.2 ×10 -4 A/cm2 

 5 V at 200oC  

1.47 × 10 -4 A/cm2 

Modulus  240 GPa 

Chemical inertness excellent 

MEMS compatibility excellent 

 

The PSi layer is clamped at the four pedestals made of SiCN as seen in the top view (Fig 

3b) and is subject to vibrations on trapping biomolecules in its pores as shown in the cross-

sectional view (Fig 3 a).  Therefore, this new cantilever design can overcome the non-

uniform mass sensitivity associated with one-end cantilevers.   

                                

               Fig 3. SiCN and PSi-based cantilever for biosensing (a) cross-sectional and (b) Top 

view (c) Cantilever with pedestal geometry9 and its (d) FEM analysis. 

 

 

Because the resonant frequency of the sensor is inversely proportional to the square 

root of its total mass measurement of resonant frequency shift between the system 

with and without the target mass gives the mass of the target entity. Using these unique 

characteristics of the MEMS-based sensor, various physical quantities, such as mass, 

stiffness, viscosity, and so on, have been measured: one of the commonly measured 

entities is the biological cells. The characterization of physical properties of cells such as 

their mass and stiffness has been gaining great interest and can have profound 

implications in cell biology, tissue engineering, cancer, and disease research. However, 

it is commonly known that the Cantilever-type resonator has a non-uniform mass 

sensitivity that significantly changes based on the locations where the target is attached: 

the mass sensitivity is at its maximum when the added mass is placed at the free end of 

the cantilever and the sensitivity decreases to zero as the added mass gets to the fixed 
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end of the cantilever. In other words, the measured mass reading is a function of the 

location of the cell relative to the free end that determines the mass that is measured.  

 

A novel design with pedestal geometry has been proposed which can solve this non-

uniform mass sensitivity as given in Fig 3(c).9 Finite element modeling showing the stress 

distribution concerning time for total deformation is shown in Fig 3(d). It is observed that 

the structure is most sensitive at the canter which shows uniform reduction on moving 

towards the edges. Hence the cantilever structure as proposed, which is quite similar to the 

pedestal cantilever, will not have the problem of non-uniform mass sensitivity.  

 

 

4. Conclusions 

The mechanical instability associated with porous silicon due to an increase in porosity and 

the non-uniform mass sensitivity associated with single clamped cantilevers were 

addressed and a novel cantilever biosensor based on SiCN hard coatings and PSi was 

proposed. The growth of PSi concerning etching parameters and Nanoindentation of SiCN 

films deposited on Si showed hardness of 20 GPa and Modulus of 240 GPa. Finite element 

analysis of a pedestal cantilever was done which showed the stress distribution with a 

central maximum radially decreasing towards the edges.  Hence the proposed structure was 

found to be free from non-uniform mass sensitivity and also a mechanically stable system.  
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