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ABSTRACT
This work proposes a novel framework able to optimise both topology and fibre angle concomitantly
to maximise the stiffness of a structure. Two different materials are considered, one with isotropic
properties (nylon) and another one with orthotropic properties (onyx, which is nylon reinforced with
chopped carbon fibres). The framework optimises, in the same particular sub–step, first the topology,
and second, the fibre angle at every element throughout the design domain. For the isotropic mate-
rial, only topology optimisation takes place, whereas for the orthotropic solid, both topology and fibre
orientation are considered. The objective function is to minimise compliance and three admissible
volumes: 30%, 40%, and 50%. Three classical benchmark cases are considered: a cantilever beam, as
well as 3-point and 4-point bending. The optimum topologies are further treated and manufactured
using the fused filament fabrication (FFF) 3D printing method. Key results reveal that the absolute
stiffness, density–normalised and volume–normalised stiffness values within each admissible volume
are higher for onyx than for nylon, which proves the efficiency of the proposed concurrent optimisa-
tion framework. Moreover, although the objective function was to minimise compliance, it was also
effective to improve the strength of all parts. The excellent quality and geometric tolerance of the 3D
printed parts are also worth mentioning.

Highlights
• A topology optimisation framework for isotropic and orthotropic materials.
• Consideration of fibre orientation into the optimisation framework.
• Additive manufacturing of chopped carbon fibre reinforced nylon composites.
• Experimental validation: manufacturing and testing.

1. Introduction
One of the most fundamental engineering challenge is

how to design a structure to be as light as possible with-
out sacrificing its mechanical performances. According to
Sigmund and Maute [1], this can be achieved with topology
optimisation (TO). Its basic idea relies on repeated analysis
and design update steps usually guided by a gradient-based
computation. The first attempt on TO was carried out by
Bendsøe and Kikuchi [2] with the aim to propose an alterna-
tivemethod to shape optimisation approachable to yield both
the optimum topology and the optimal shape of a structure.
Later on, Bendsøe [3] introduced several ways of removing
the discrete nature of the problem by introducing a density
function as a continuous design variable within the optimisa-
tion problem. In fact, Bendsøe and Kikuchi [2], Bendsøe [3]
andRozvany et al. [4] proposed themost disseminatedmath-
ematical approach for TO, the well-known Solid Isotropic
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Material with Penalisation (SIMP) method [5]. This method
finds the optimal material distribution within a particular de-
sign domain, load cases, boundary conditions, manufactur-
ing constraints, and performance requirements [6, 7]. Other
less explored approaches include, for instance, the level set
[8], evolutionary structural optimisation [9], and moving
morphable component methods [10].

In the last 30 years, several TO approaches have been ex-
plored, mostly for isotropic materials [11]. This is mainly
due to two reasons: i) the high maturity level of ap-
proaches for isotropic materials (such as SIMP) and ii) well-
established manufacturing techniques for complex metallic
shapes. However, the continuous demand for lightweight
structures has led to the increase use of anisotropic carbon
fibre-reinforced polymer (CFRP) composites, especially in
high-performance aerospace, aeronautical, and automotive
components [12]. From the manufacturing point of view,
complex CFRP shapes can now be produced by additive
manufacturing (AM) techniques [13, 14]. Among them,
fused deposition modelling (FDM), or fused filament fab-
rication (FFF), is one of the most disseminated AM tech-
niques, in which a polymer filament, often reinforced with
fibres, is extruded and deposited on a build plate [15, 16, 17].
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According to the systematic review of Sanei and Popescu
[18], most studies on FFF for CFRP parts were published
in the last five years only [19]. For instance, Chen and
Ye [20, 21] 3D printed composite parts with carbon fibre
and nylon materials using topology optimisation relying on
the classical SIMP method [20] and to 3D print structures
with negative Poisson’s ratio [21]. Sugiyama et al. [22]
3D printed optimised composites with carbon fibres placed
along the principal stress directions.

However, there is still an open question: how to arrange
the reinforcing fibres and optimise the part topology? Aim-
ing at taking full advantage of both material anisotropy and
exploiting the powerful manufacturing capability of FFF
method, an adequate answer is by combining TO to optimise
the material distribution with structural optimisation to ad-
just the local fibre orientation. On the one hand, the material
distribution can be optimised using SIMP; on the other hand,
the fibre angle can be locally optimised with gradient-based
algorithms, in which the fibre angle can be treated as a de-
sign variable [23].

There are a few studies dealing with both topology and fi-
bre angle optimisations simultaneously. For example, Lee et
al. [24] developed a TO method for optimising both mate-
rial layout and fiber orientation in functionally graded fiber-
reinforced composites, in which the fibre angle are consid-
ered as discrete variables. Tong et al. [25] built a sequential
optimisation method considering both fibre angle and topol-
ogy for constant-stiffness laminated plates using lamination
parameters as design variables. The stiffness for a short can-
tilever beam and the flexibility for a compliant inverter in-
creased by 6.5% and 4.2%, respectively. Jiang et al. [26]
proposed a TO approach for continuous fiber angle optimi-
sation, which computes the best layout and orientation of
fiber reinforcement for AM structures. They report a mini-
mum compliance 63% lower than the baseline by selecting
a different print orientation, in which the fiber orientation
follows the outer contour of the dense material region for
each layer. Nomura et al. [27] developed a TO framework
for designing both topology and orientation distributions of
composite materials simultaneously. However, the optimi-
sation results have some areas which violate the conditions
for tensor invariants. Papapetrou et al. [28] developed an
optimisation framework for both topology and fibre paths to
create variable-stiffness designs. In general, the optimised
part is stiffer than the baseline. Yan et al. [29] proposed a
concurrent hierarchical optimisation methodology consider-
ing the simultaneous optimisation of structural topology and
orthotropic material orientation. They showed by means of
numerical examples that optimising both topology and fi-
bre angle might decrease compliance. Among these stud-
ies, only Jiang et al. [26] manufactured optimum beams us-
ing carbon-fiber-reinforced polylactic acid (PLA) compos-
ites. However, only one type of specimen and one volume
was 3D-printed. Nevertheless, all the other mentioned stud-
ies are merely computational. Chen and Ye [20] developed
a procedure combining topological design and fibre place-
ment paths based on average load transmission trajectories

for 3D-printed CFRP parts using the classical SIMP method
for optimising the topology.

After the non–extensive state–of-the–art on research un-
dertaken on the topic, the following gaps have been identi-
fied, which underlie the realisation of this study:

• no studies are considering the anisotropy of carbon fi-
bres in the topology optimisation;

• there is need for a framework that can simultaneously
optimise both topology and fibre angle;

• no investigations are considering chopped carbon fibre
reinforced thermoplastic composites; and

• there is a lack of comprehensive investigations consid-
ering the whole design process: from optimisation to
manufacturing and testing.

In this context, this work proposes a robust concurrent
topology and fibre angle optimisation framework for 3D-
printed composites using dedicated algorithms considering
the orthotropy of the composite materials in contrast to the
classical SIMP approach. The topology problem is solved as
a constrained problem whereas the fibre angle is treated as
an unconstrained optimisation problem. Three final volumes
are selected (30%, 40%, and 50%), and the objective func-
tion is complianceminimisation. Three benchmark cases are
considered to evaluate the novel approach herein developed:
i) cantilever beam, ii) three-point bending, and iii) four-point
bending (or MMB beam). Two materials properties are con-
sidered: isotropic and orthotropic. The isotropic material
consists of nylon (Polyamide 6 – nylon), whereas the trans-
versely isotropic material is a chopped carbon-fibre filled ny-
lon, called onyx. After the numerical optimisation is fin-
ished, the optimal 3-point and 4-point bending beams are
3D printed, with both nylon and onyx materials, and tested
under the same boundary conditions (BC) used in the opti-
misation.

2. The formulation
Let Ω be a domain in ℝ2 with boundary )Ω (Figure 1).

Consider that the Dirichlet and Neumann boundary condi-
tions are applied on )Ωu and )Ωf , respectively, where

)Ω = )Ωui ∪ )Ωfi ; )Ωui ∩ )Ωfi = ∅ i = 1, 2, (1)

such that

ui = u
g
i on )Ωui i = 1, 2, (2)

where ui is the i-th component of the displacement and ugi isknown, and
�ijnj = ti on )Ωfi i = 1, 2, (3)
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Figure 1: Schematic representation of both topology and fibre
orientation within a given domain.

where � is the stress tensor, n is a normal unit vector and tiis the traction vector.
Wewant to find the optimal material distribution that min-

imises compliance when subjected to boundary conditions
Eqs. (2) and (3). For this purpose, domain Ω is divided into
n finite elements, such that

Ω =
n
⋃

e=1
Ωe. (4)

Each element e has a relative density �e and an angle �e,which corresponds to the fibre orientation. Thus, element e
has an elasticity matrix Ce = Ce

(

�e, �e
) parametrised by

Ce = �Pe C
g
e , (5)

where Cge = Cge
(

�e
) is the elasticity matrix of the base ma-

terial in a global coordinate system and P is a penalisation
factor. A plane-stress consideration is adopted, and the elas-
ticity tensor is

C l =
⎡

⎢

⎢

⎣

C1111 C1122 0
C1122 C2222 0
0 0 C1212

⎤

⎥

⎥

⎦

(6)

in its local coordinate system and this is transformed to the
global coordinate system with

Cge = R
T
e C

lRe, (7)

where Re = Re
(

�e
) is the rotation matrix for element e.

The optimisation problem is stated as

min
�,�

f = F TU

s.t. V ≤ V̄
KU = F
�min ≤ �e ≤ 1.0

(8)

where f = f (�,�) is the compliance of the structure, F is
the vector of external forces, U = U (�,�) is the displace-
ment vector, V = V (�) is the volume of the structure, V̄ is a
fixed volume (upper bound),K = K (�,�) is the global stiff-
ness matrix and �min is the minimum value adopted for the
relative density, used to avoid numerical issues during both
the optimisation procedure and solving the linear system.

The optimisation problem stated in Eq. (8) can be written
as an unconstrained problem using the Lagrangian function,
leading to

min
�,�

L = F TU + �
(

V − V̄
)

s.t. KU = F
�min ≤ �e ≤ 1.0,

(9)

where L = L (�,�) is the Lagrangian function and � is the
Kuhn-Tucker multiplier. The minimum is reached when

∇�,�L = 0. (10)
Note that the volume constraint is dependent only on �

(and independent of �). Therefore, the procedure can be sep-
arated into a constrained and an unconstrained problem to be
solved sequentially. Derivating Eq. (10) with respect to �,
returns

∇�L = ∇�f + �∇�V = 0. (11)
As shown in [30], the q-th relative density can be updated

by
�k+1q = �kq�

�
q , (12)

where � is a relaxation parameter and �q is the update pa-
rameter, given by

�q =

df
d�q

� dVd�q

. (13)

The derivatives of the compliance and of the volume in
relation to the q−th relative density are given by

df
d�q

= uTq

( pg
∑

m=1
BTq

(

P�P−1q

)

CgqBqWmJm

)

uq (14)
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and

dV
d�q

= Vq , (15)

respectively, where Bq is the strain-displacement matrix of
the q-th element of the mesh, pg is the number of Gauss
points used for the numerical integration, Wm and Jm are,
respectively, the quadrature weight and determinant of the
Jacobian matrix associated to Gauss point m.
Now, taking the gradient from Eq. (10) with respect to �,

gives
∇�L = 0 = ∇�f, (16)

which is an unconstrained problem. The derivative of the
compliance with respect to the q-th angle is

df
d�q

= uTq

( pg
∑

m=1
BTq �

P
q
dCgq
d�q

BqWmJm

)

uq (17)

in which the derivative of the elasticity matrix with respect
to �q can be obtained analytically from Eq. (7). The un-
constrained problem is solved using the Steepest Descent
method with a Golden section algorithm for the line search.

Considering that the derivatives represent a local be-
haviour of the function, a scheme of moving limits is
adopted. These constraints are

�k+1q ∈
[

�kq − d
1
q , �

k
q + d

1
q

]

(18)
for the relative density and

�k+1q ∈
[

�kq − d
2
q , �

k
q + d

2
q

]

, (19)

for the angle of each element, where d1q and d2q are positive
moving limits for the q-th relative density, and the q-th an-
gle, respectively. The moving limits change at each iteration
depending on the behaviour of the design variable. If the
design variable changes monotonically in three subsequent
steps, the moving limit is updated by a factor higher than
1.0, and if the design variable oscillates in those steps, the
moving limit is updated by a factor lower than 1.0.
In topology optimisation problems, two significant issues

may occur. The first one is the appearance of patterns simi-
lar to a checkerboard, in which a region has, alternately, solid
and void elements. The second one is the mesh-dependency
of the results, in which different results are obtained for dif-
ferent mesh sizes [31]. Thus, a filtering scheme is adopted to
avoid numerical instabilities in the optimisation procedure.
A basic sensitivity filtering scheme [31] is used for both rel-
ative density and fibre angle. Consider a region of radius R
around an element e, which is given by

Ne =
{

j, ‖cj − ce‖ ≤ R
}

, (20)

where cj and ce are the centroid of elements j and e, respec-
tively. The dependency of the design variable of element e
on its neighbours is written as

)̃f
)�e

=

∑

j∈Ne
w
(

cj
)

�j
)f
)�j

�e
∑

j∈Ne
w
(

cj
)

vj
, (21)

where w(cj) is a weighting function, chosen here as a lineardecaying one.
A flowchart of the whole optimisation procedure is shown

in Figure 2. All steps are performed with an in-house code
written in Julia Language [32]. The data needed for the op-
timisation is an input to the algorithm. This includes the
geometry, mesh, all the variables for the topology optimisa-
tion, material properties and boundary conditions. The last
step before starting the optimisation procedure is to create
two vectors �1 and �1 containing the initial estimate for both
design variables. The input data used in all simulations is
shown in Appendix A.

The optimisation procedure itself is performed sequen-
tially. For each global optimisation step, the topology op-
timisation is performed first, followed by the material opti-
misation.

During the topology optimisation, the equilibrium prob-
lem for the current step n is solved for �n and �n. Then, thederivatives of the compliance about the �n are obtained withEq. (14) and used to update the relative densities to �n+1 ac-cording to Eq. (12) while respecting the moving limits im-
posed in Eq. (18).

The material optimisation step is conducted with the vari-
ables �n+1 and �n, see Figure 2. First, the derivatives of
the compliance about the fibre angles are evaluated with
Eq. (17). Second, the fibre angles are updated to �n+1 us-
ing the steepest descent algorithm, while respecting themov-
ing limits imposed in Eq. (19). In both topology and mate-
rial optimisation, a sensitivity filtering scheme, Eq. (21), is
adopted.

Convergence is reached when the compliance, relative
densities, and fibre angles have a variation inferior to 1% in
ten subsequent steps. If convergence is not satisfied, one as-
sumes n = n + 1, and the procedure returns to the topology
optimisation. When convergence is reached, a plain text file
is generated containing the compliance, a vector of relative
densities and a vector of fibre angles. This format is such
that the optimum geometry and fibre orientation can be vi-
sualised using the software Gmsh [33].

3. The optimisation
3.1. Study cases

The optimisation framework is tested on three design
cases: cantilever, 3-point bending and 4-point bending
beams, as shown in Figure 3. These are classical benchmark
cases in TO, allowing us to compare our results with other
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GLOBAL 
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Figure 2: Flowchart of the optimisation framework.

approaches available in the literature. In all cases, the prob-
lem is 2D (plane stress) and the optimisation domain has a
height a = 30mm and a width b = 60mm, see Figure 3.
Considering that the symmetry line is located at b = 0, the
supporting pins are located at 0.9b for both 3-point and 4-
point bending, whereas the force on the 4-point bending case
is applied at 0.1b. The domain is discretised by 180 × 90
regular bi-linear isoparametric elements with incompatible
modes [34]. An example of the finite element mesh, along-
side the final optimisation topology, is shown in Figure 4.
A filter radius R = 0.5mm is used in all cases to guaran-
tee that two adjacent elements are within the filtering radius.
For each design case, the optimisation is conducted for three
different final volumes: V = 30%, 40%, and 50% of the ini-
tial design domain.

The optimisation is conducted with two different materi-
als, one isotropic and one orthotropic, to quantify the effect
of fibre orientation. The isotropic solid has the properties of
nylon, whereas the orthotropic material, has those of onyx.
These two materials are the same as those used in the ex-

Table 1
Experimentally measured elastic and physical properties for
both nylon and onyx materials.

Nylon (n) Onyx (o)
E (GPa) 0.98 E1 (GPa) 1.26
� (–) 0.42 E2 (GPa) 0.33
� (g/cm3) 1.1 G12 (GPa) 0.37
G (GPa) 0.35 �12 (–) 0.39

� (g/cm3) 1.18

periments presented in Section 4.2. The properties of both
materials are presented in Table 1. The isotropic material,
nylon, is characterised by an elastic modulus E = 0.98GPa
and a Poisson’s ratio � = 0.42.

On the other hand, Onyx is a composite material in which
nylon is reinforced with chopped carbon fibres. Onyx comes
as a filament (to be used in fused filament fabrication) where
the chopped fibres are predominantly aligned with the fila-
ment direction, which leads to an orthotropic behaviour. The
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(a) (c)(b)

Figure 3: Design domain, loads, and boundary conditions for (a) cantilever, (b) 3-point bending, and (c) 4-point bending cases.

Figure 4: The convergence–free finite element mesh used in
all optimisation cases.

Onyx filaments have a fibre volume fraction Vf ≈ 15%, andthe carbon fibres have an average diameter �f = 6 µm and
length lf = 100 µm.
Uniaxial tests have been performed in both Onyx and Ny-

lonmaterials to characterise their elastic moduli,E1 for onyxand E for nylon, and the Poisson’s ratio, �, for nylon. Those
values are given in Table 1. With these characteristics, it is
possible to derive the other properties for the orthotropicma-
terial using the Halpin–Tsai model for short fibre-reinforced
composites [35]. The transverse elastic modulus E2 is givenby:

E2 = Em

(1 + ��2Vf
1 − �2Vf

)

; �2 =

(E1,f
Em

)

− 1
(E1,f
Em

)

+ �
; � = 2 (22)

where the elastic moduli of the fibres E1,f = 230GPa and
of the matrix Em = 0.98GPa. Otherwise, the in-plane shear
modulus G12 is given by:

G12 = Gm

(1 + ��3Vf
1 − �3Vf

)

; �3 =

(G12,f
Gm

)

− 1
(G12,f

Gm

)

+ 2
; � = 1 (23)

where the shear moduli of the fibres G12,f = 104.5GPa
(G12,f = E1,f∕2(1+�12,f ) and of the matrixGm = 0.35GPa
(Gm = Em∕2(1 + �m). Finally, the major Poisson’s ratio is

Table 2
Nomenclature for the specimens and their parameters.

Case V (���) R (mm) Material
cb_30_n

30% 0.5

Nylon
cb_30_o Onyx
3pb_30_n Nylon
3pb_30_o Onyx
4pb_30_n Nylon
4pb_30_o Onyx
cb_40_n

40% 0.5

Nylon
cb_40_o Onyx
3pb_40_n Nylon
3pb_40_o Onyx
4pb_40_n Nylon
4pb_40_o Onyx
cb_50_n

50% 0.5

Nylon
cb_50_o Onyx
3pb_50_n Nylon
3pb_50_o Onyx
4pb_50_n Nylon
4pb_50_o Onyx

given by:

�12 = �12,fVf + �mVm; �12 = �21
E2
E1

(24)

where the Poisson’s ratio of the fibres �12,f = 0.1 and that ofthe matrix is �m = 0.42. The orthotropic properties of onyxare included in Table 1 whereas an overview of all design
cases considered is provided in Table 2.

3.2. Optimisation results
A convergence analysis of the objective function is shown

in Figure 5 for the 3pb_30_n optimisation case. In this case,
the compliance is calculated at the end of each global step
of the optimisation procedure, meaning that both topology
and material optimisations are performed to obtain the value
of the objective function. All optimisation cases follow the
same convergence behaviour, therefore only one plot is pre-
sented as it is representative of all cases.

As stated earlier, convergence is reached when the objec-
tive function and the design variables do not vary by more
than 1% in ten subsequent global steps. Furthermore, the
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Figure 5: Convergence plot for the 3pb_30_n case.

convergence is monotonic, which shows the consistency of
the implemented algorithm. Finally, for both isotropic and
orthotropic cases, the objective function behaves akin to the
convergence analysis shown in Figure 5.

The optimal topologies for isotropic and orthotropic ma-
terials are compared in Figure 6. The results show that the
topologies for the isotropic and orthotropic materials differ
from each other; there are differences in the reinforcements,
especially for V = 0.3. The nature of the materials them-
selves makes it reasonable to expect such differences. In the
orthotropic case, the fibres have a preferential stiffness di-
rection, and the direction of the fibres is optimised along-
side the topology. In this case, the topology optimisation
step influences thematerial optimisation step and vice-versa.
Those features are not present in the isotropic case. More-
over, when the same case with different volume fractions is
considered, one can notice a pattern in the topologies. Basi-
cally, the higher the admissible volume of the structure, the
bigger the reinforcements and the larger the number of re-
inforcements. Thus, the implemented algorithms show con-
sistency.

In addition, Figure 7 shows the optimal fibre distribution
for the orthotropic cases. The fibre angles follow the rein-
forcements, which can be seen in details in the highlighted
areas. This was expected since the fibres oriented in the span
direction provide a higher stiffness to the structure, thus re-
ducing its compliance.

4. Experimental details
The optimal 3-point and 4-point bending beams were

manufactured and tested to verify the efficiency of the op-
timisation algorithm. The cantilever beam was excluded
from these tests as it is difficult to achieve perfectly clamped
boundary conditions in experiments. This section details the
approach followed to convert the TO output into an STL file,
as well as the 3D printing and testing procedures.

4.1. The STL file generation
Most rapid prototyping techniques and 3D printers require

the geometry to be provided as an STL file [36]. There-
fore, we have to convert the output from TO into a three-
dimensional STL file. This is done using three different
tools as depicted on the flowchart in Figure 8. First, a rough
STL file is created using an in-house algorithm. Second, the
STL mesh is verified and smoothed using MeshLab. Third,
Blender is used to correct minor issues with the mesh, if nec-
essary. The entire procedure is detailed below.

The first step is performed with an in-house algorithm
written in Julia Language [32]. The input for the algorithm
is a plain text containing the connectivity of each element
of the FE mesh and its relative density. The optimisation
was done on a 2D plane stress model and using symmet-
ric boundary conditions (see Section 3); therefore, our al-
gorithm uses extrusion and mirroring to generate the full
3D geometry. The optimisation process often produces el-
ements with intermediate relative densities (0 < �e < 1),
which cannot be part of the final geometry. Our algorithm
uses a threshold value �t such that elements with relative
densities above the threshold are assumed as solid and those
below �t are considered voids (see Figure 1). In all cases,
�t is selected such that the admissible volume is maintained.
Afterwards, the algorithm generates a crude STL file from
optimisation data. For each face of every element on the FE
mesh, a triangle of coordinates is generated alongside a nor-
mal vector. All triangles follow the right-hand rule and their
normals point outward.

Next, we use the mesh processing software MeshLab [37]
to verify and improve the STL model. The STL file created
in the first step contains duplicate faces and vertices for ad-
jacent elements, and we use MeshLab to remove these du-
plicate features. Then, the mesh quality is verified to en-
sure that it is ’watertight’, free of holes/gaps, and does not
contain any intersecting/overlapping triangles [38]. If any
problems are detected, then the mesh is corrected manually,
and this is done is two steps. First, the mesh is simplified
to a two-dimensional geometry by deleting elements in the
out-of-plane direction. Second, the 2Dmesh is exported and
opened with the software Blender [39], which includes built-
in tools for repairing STL meshes. The main issue encoun-
tered in this work consisted of elements connected by a sin-
gle vertex as shown in Figure 8. After correcting the issues,
the geometry is extruded into a 3D part and re-opened in
MeshLab to verify the mesh quality.

Once the quality of the mesh is satisfactory, the last step
is to smooth the geometry to eliminate the pixelated con-
tours caused by the optimisation procedure. This is done
with the Laplacian smoothing method, where the position
of each vertex is adjusted based on the weighted positions its
neighbours [40]. Finally, a new STL file is generated con-
taining the quality-checked, smoothed mesh. Then, the fibre
orientation of each element is translated to the 3D printer
afterwards.

JHS Almeida Jr, B Christoff, V Tita, L St-Pierre: Preprint submitted to Elsevier Page 7 of 15



Concurrent topology and fibre angle optimisation of composites

cb_30_n cb_30_o

cb_40_n cb_40_o

cb_50_n cb_50_o

3pb_30_n 3pb_30_o

3pb_40_n 3pb_40_o

3pb_50_n 3pb_50_o

4pb_30_n 4pb_30_o

4pb_40_n 4pb_40_o

4pb_50_n 4pb_50_o
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Figure 6: Optimal topologies for (a) cantilever, (b) 3-point bending, and (c) 4-point bending beams.

3pb_30_o

3pb_40_o

3pb_50_o

4pb_30_o

4pb_40_o

4pb_50_o

Figure 7: Optimal fibre angle for the optimised (a) 3-point
bending and (b) 4-point bending beams.

4.2. Additive manufacturing & testing
All samples were printed using a Mark Two 3D printer

(Markforged Inc., USA), which uses fused filament fabrica-
tion. Both printing materials (nylon and onyx) were stored
in a dry storage box to limit moisture retention prior to print-
ing. The filaments were heated within the printer’s head and
laid layer-by-layer, consolidating under atmospheric condi-
tions. From each simulation, the .stl files were sliced using
the Markforged cloud-based software, Eiger [41]. A layer
height of 0.1 mm and solid infill were selected to provide

as accurate detail as possible. All parts had the same over-
all dimensions: 120 × 30 × 8mm3, and were made up of 80
layers.

All samples were tested in 3-point and 4-point bending.
The tests were carried out with a displacement rate of 2
mm/min in a MTS universal testing machine equipped with
a load cell of 30 kN. A span-to-thickness ratio of 16:1 was
used, based on the recommendations of ASTM D7264 stan-
dard.

4.3. Experimental results
The experimental load versus displacement curves for all

nylon and onyx topologies under 3-point bending are shown
in Figure 9 (graphs with different axis limits for better vi-
sualisation of results and curve shapes). All samples have
a fairly ductile response, which is beneficial for composite
structural components since their inherent brittleness is per-
haps the main bottleneck that prevents their use in primary
structures. As expected, the stiffness and strength increase
with increasing volume. This holds true for both materials.
Another remarkable characteristic is the excellent repeata-
bility: each test was repeated five times and the standard de-
viation is very low for both stiffness and strength. Focusing
on the effect of the parent material, we observe the follow-
ing:

3-point bending:
• Nylon (Figure 9(a,c,e)): regardless of the volume, the

curves have a similar shape, with a linear–elastic in-
crease up to a peak force, followed by a gradual soft-
ening due to plastic deformation. Increasing the final
volume increases the deflection at peak force, which
is mainly due to an increase in structural stiffness and
strength.

• Onyx (Figure 9(b,d,f)): in general, the responses
are similar, but different from those of nylon sam-
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Figure 8: Flowchart of the procedure to transform the output from optimisation into a printable STL file.

ples. Firstly, these samples are significantly stiffer and
stronger than the nylon ones, which was expected since
they have reinforcing fibres. Nevertheless, even though
the reinforcing fibres are as small as 100 µm, they have
a strong effect on the structural response of the parts
thanks to the great efficiency of the concurrent opti-
misation framework herein developed. Secondly, onyx
samples exhibit a sharp load drop after the peak force,
followed later by a gradual softening. No full loss of
structural response is observed for any parts, which is
attractive for structural components since the part can
still carry load after cracking and/or elastic buckling oc-
cur.

4-point bending:
• Nylon (Figure 10(a,c,e)): all responses are similar to

those measured under 3-point bending; there is a linear-
elastic regime up to a peak load. Nonetheless, the post-
peak plastic deformation is slightly different and occurs
at a roughly constant load level. This is attributed to the
better load distribution onto the compressive side of the
sample.

• Onyx (Figure 10(b,d,f)): again, these specimens are
significantly stiffer and stronger than nylon samples.
Similarly to nylon specimens, onyx samples display
very little or no post-peak softening under 4-point
bending.

5. Discussion
The final deformed shapes, after unloading, for all parts

are shown in Figure 11. There are no fractured trusses ob-
served on any specimens. For nylon samples, plastic de-
formation and local buckling are the most dominant failure
mechanisms. Otherwise, minor cracking and elastic buck-
ling are the main failure mechanisms for onyx specimens.
Onyx parts also have more pronounced out-of-plane defor-
mation and intralaminar fracture on the compressive side of
the specimens (upper edge) when compared to nylon sam-
ples. It is worth mentioning that interlaminar failure (delam-
ination) was not observed in any specimens. We anticipate
that delamination would be more prevalent if the polymer
was reinforced with continuous fibres, in-line with the ob-
servations of Chen and Ye [20].
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Experimental load-deflection curves for 3-point bending beams: (a) 3pb_30_n, (b) 3pb_30_o, (c) 3pb_40_n, (d)
3pb_40_o, (e) 3pb_50_n, (f) 3pb_50_o. A representative photograph of the part taken at the peak load is shown for each
group. Graphs with different axes limits for better visualisation of the curves.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Experimental load-deflection curves for 4-point bending beams: (a) 4pb_30_n, (b) 4pb_30_o, (c) 4pb_40_n, (d)
4pb_40_o, (e) 4pb_50_n, (f) 4pb_50_o. A representative photograph of the part taken at the peak load is shown for each
group. Graphs with different axes limits for better visualisation of the curves.
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5 5

5 5

Figure 11: Deformed shapes for all 3D printed parts after unloading.

The structural stiffness K is given in Figures 12(a) and
12(d) for 3-point and 4-point bending tests, respectively. As
expected, increasing the admissible volume increases the
structural stiffness. In addition, the structural stiffness of
Onyx specimens is considerably higher than that of nylon
samples. This is surprising considering that the properties
of nylon are between the bounds of the onyx properties, i.e.,
E2 < E < E1, see Table 1. This improvement in struc-
tural stiffness shows the efficiency and purpose of the present
framework.

The density-normalised stiffness is shown in Figure
12(b,e), whereas the volume-normalised stiffness is given
in Figure 12(c,f). Both the density- and volume-normalised

stiffnesses confirm that onyx samples are significantly stiffer
than their nylon counterparts.

6. Conclusions
In this work, a simultaneous topology and fibre orienta-

tion optimisation framework has been successfully devel-
oped and applied to optimised parts with isotropic and or-
thotropic material properties. The objective function for all
optimisation cases was to minimise compliance with three
distinct volume constraints: 30%, 40%, and 50% of an ini-
tial rectangular domain. Three classical benchmark cases are
considered: cantilever beam, 3-point bending, and 4-point
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Figure 12: Structural stiffness for specimens under (a) 3-point and (b) 4-point bending. Density-normalised stiffness for (c)
3-point and (d) 4-point bending tests. Volume-normalised stiffness for samples under (e) 3-point and (f) 4-point bending.

bending. The optimised parts under 3-point and 4-point
bending were 3D printed using FFF technique and tested to
validate the proposed framework. Samples optimised for the
cantilever beam loading case were not considered in the ex-

perimental campaign because the boundary conditions used
in the optimisations could not be reproduced experimentally
with the equipment available.

The proposed framework was extremely effective at max-
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imising the structural stiffness for both nylon (isotropic) and
onyx (orthotropic) parts. Experimental results showed that
the density- and volume-normalised stiffnesses of onyx parts
were significantly stiffer than those of nylon samples, which
indicates that the concurrent framework was extremely ef-
ficient to optimise the chopped CFRP composite parts at
different admissible volumes. This framework can play a
key role in saving weight for additively manufactured CFRP
structures. In the future, we plan to extend this framework
to minimise weight under design load constraints.
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A. Input data for the optimisations
This section briefly describes the required input data to

perform all optimisation cases. Figure 13 shows the dimen-
sional parameters and the number of elements used in the
analyses. Figure 14 depicts the material properties for both
Onyx and Nylon materials.

Figure 15 describes all parameters used in the optimisa-
tion procedure, including the TO parameters as well as fil-
tering and moving limits parameters.

The boundary conditions are applied directly to the global
arrays of the problem.

f unct i on Domai n_dat a( )

#
# I nput  -  di mensi ons and mesh
#
# L -  l engt h
# h -  hei ght
# nL -  number of  el ement s -  l engt h
# nh -  number of  el ement s -  hei ght
# nel em -  t ot al  number  of  el ement s
#
const L = 60. 0
const h = 30. 0
const nL = 180
const nh = 90
const nel em = nL*nh

r et ur n L, h, nL, nh, nel em

end #f unct i on

Figure 13: Domain and FE mesh data.

f unct i on Mat er i al _dat a( )
#
# oni x
# E1_o -  El ast i ci t y Modul us -  Fi br e di r ect i on
# E2_o -  El ast i ci t y Modul us -  t r ansver sal
# t o f i br e di r ect i on
# nu12_o -  Poi sson r at i o
# G12_o -  Shear  Modul us
#
# nyl on
# E_n -  El ast i ci t y Modul us
# nu_n -  Poi sson r at i o
#
const E1_o = 1. 26E3
const E2_o = 0. 33E3
const nu12_o = 0. 39
const G12_o = 0. 37E3
const E_n = 0. 98E3
const nu_n = 0. 420

# I nt o a si ngl e ar ay
const pr ops_o = [E1_o, E2_o, nu12_o, G12_o]
const pr ops_n = [E_n, nu_n]

r et ur n pr ops_o, pr ops_n

end #f unct i on

Figure 14: Material properties.

f unct i on Opt i mi zat i on_dat a( )
#
# I nput  -  Opt i mi zat i on
#
# si mp -  penal i zat i on f act or
# et a -  r el axat i on f act or
# st ep -  al l owed st ep
# t ol  -  t ol er ance f or  conver gence
# l ambda1, l ambda2 -  i ni t i al  bi ssect i on
# par amet er s f or OC
# f r ac -  al l owed vol umet r i c f r act i on
# N -  al l owed number  of  i t er at i ons
# ( f or  each st ep)
# Rmax -  f i l t er i ng r adi us
# r ho_mi n -  mi ni mum al l owed densi t y
# r ho_max -  maxi mum al l owed densi t y
# t het a0 -  i ni t i al  val ue f or  t he f i ber  angl e
# r ho0 -  i ni t i al  val ue f or t he densi t y
#

const si mp = 3. 0
const et a = 0. 5
const st ep = 0. 001
const t ol = 1E-12
const l ambda1 = 0. 0
const l ambda2 = 1E5
const f r ac = 0. 3
const N = 2000
const Rmax = 0. 5
const r ho_mi n = 0. 001
const r ho_max = 1. 0
const t het a0 = 0. 0
const r ho0 = f r ac
#
# Movi ng l i mi t s and conver gency cr i t er i a
#
# del t ai nf  -  movi ng l i mi t  updat e per cent age ( l ower )
# del t asup -  movi ng l i mi t  updat e per cent age (upper )
# LMi nf _t het a -  Mi ni mum al l owed movi ng l i mi t  ( Fi br e angl e)
# LMsup_t het a -  Maxi mum al l owed movi ng l i mi t  ( Fi br e angl e)
# LMi nf _r ho - Mi ni mum al l owed movi ng l i mi t  (densi t y)
# LMsup_rho - Maxi mum al l owed movi ng l i mi t  (densi t y)
# st op -  por cent age of  desi gn var i abl es var i at i on
# t o assume conver gency
# st op_i t er  - subsequent  st eps t o assume conver gency
#

const del t ai nf = 0. 7
const del t asup = 1. 2
const LMi nf _t het a = 0. 01
const LMsup_t het a = 0. 2
const LMi nf _r ho = 0. 01
const LMsup_r ho = 0. 1
const st op = 0. 01
const st op_i t er = 10

r et ur n si mp, et a, st ep, t ol , l ambda1, l ambda2, f r ac, N,
del t ai nf , del t asup, LMi nf _t het a, LMsup_t het a, LMi nf _r ho,
LMsup_r ho, Rmax, nvmax, t het a_i ni ci al , r ho_mi n, r ho_max,
st op, st op_i t er

end #f unct i on

Figure 15: Optimisation data.
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