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Abstract

We discuss the multiscale modeling of a granular material trapped between continuum elastic
domains. The amorphous granular region, usually termed “gouge”, is under high confinement pressure,
to represent the loading of faults at depth. We model the granularity of gouge using the Discrete
Element Method (DEM), while the elastic regions surrounding it are represented with two continuum
domains modeled with the Finite Element Method (FEM). We resort to a concurrent coupling of the
discrete and continuum domains for a proper transmission of waves between the discrete and continuum
domains. The confinement pressure results in the appearance of a new kind of ghost forces, which we
address via two different overlapping coupling strategies. The first one is a generalization to granular
materials of the Bridging Method, which was originally introduced to couple continuum domains to
regular atomic lattices. This method imposes a strong formulation for the Lagrange constraints at the
coupling interface. The second strategy considers a weak formulation. Different DEM samples sizes
are tested in order to determine at which scale a convergence of the elastic properties is reached. This
scale sets the minimal mesh element size in the DEM/FEM interface necessary to avoid undesirable
effects due to an elastic properties mismatch. Then, the two DEM/FEM strategies are compared for a
system initially at equilibrium. While the performance of both strategies is adequate, we show that
the strong coupling is the most stable one as it generates the least spurious numerical noise. Finally,
as a practical example for the strong coupling approach, we analyze the propagation of pressure and
shear waves through the FEM/DEM interface and discuss dispersion as function of the incoming wave
frequency.

1 Introduction
The behavior of seismic faults depends on the response of a gouge region squeezed between solid rock
masses. The micro-constituents of the gouge play an important role in the fault friction stability [22].
Numerical models representing granular materials subject to shearing provide useful insights to understand
stability and emerging stick-slip behavior [1, 15, 16, 22, 29]. Such models generally utilize the Discrete
Element Method (DEM) to represent the gouge, which is composed of an amorphous grain structure
subjected to high confining pressure. While the gouge is made of grains, the surrounding regions can be
modeled as an elastic continuum domain to represent efficiently and accurately the far-field boundary
conditions. To obtain a proper transmission of waves between the discrete and continuum domains, the
discrete and continuum domains need to be coupled together. Here, we choose to handle the interaction
between the surrounding solids and the gouge with a FEM/DEM coupling [17, 20]. FEM/DEM couplings
have the advantage of conserving the physical mechanisms of both domains, while drastically reducing the
computational cost when compared to pure DEM simulations.

During the last decades, two main classes of coupling methods have emerged: overlapping methods [28, 31]
and edge-to-edge methods [11, 24, 26]. Edge-to-edge methods do not consider a reconciliation zone between
the two domains. The coupling is implemented by imposing reciprocal boundary conditions. Contrariwise,
overlapping methods consider a reconciliation zone where the coupled domains are mixed together. The
Arlequin method [13] introduced by H. B. Dhia, considers an energy weighing in order to control the
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influence of each domain, while a set of kinematic constraints enforces coherency thanks to Lagrange
multipliers. Strong and weak Lagrange constraints lead to different formulations of kinetic constraints. The
Bridging Method [31] is a classical overlapping method, based on the Arlequin method, which considers
a strong constraint and, has been used to couple atomistic and continuum domains. Edge-to-edge and
overlapping methods have been initially developed to couple perfect crystal structures (through molecular
dynamics) with continuum domains (MD/FEM).

DEM/FEM coupling differs from MD/FEM coupling on several aspects and brings unique challenges.
First, the targeted particles obey different interaction laws: atoms interact through energy potentials
(leading to both attractive and repulsive forces that are function of the distance between particle centers),
while discrete particles interact according to macroscopic contact laws (short range interactions), which
require the consideration of rotational degrees of freedom. Second, MD is more often than not used with a
well-organized crystal structure, while DEM considers generally an amorphous structure, which leads to
heterogeneous effective elastic properties. These differences make the extension of MD/FEM to DEM/FEM
a far-from-trivial task. Several approaches have been put forward to couple continuum and discrete (DEM)
domains, including overlapping [10, 12, 30, 32] and edge-to-edge methods [17, 20]. However, to the best of
our knowledge, none of these methods have been tested for a three-dimensional amorphous arrangement
of DEM particles (e.g. a gouge) subjected to a confinement pressure. The confinement pressure has a
destabilizing effect, which challenges the enforcement of Lagrange multipliers and results in Ghost Forces
of a new kind, which have not been previously reported in the literature. In this paper we demonstrate
the emergence of these spurious effects, and provide a simple modification of the Bridging Method allowing
to cancel all Ghost Forces both for a weak and a strong formulation of the constraints. As a by-product,
this work also provides simple guidelines to the multiscale modeling of a gouge at depth, in particular in
view of seismic applications.

Section 2 presents two FEM/DEM coupling methods. The first one enforces a strong coupling and is an
extension of the Bridging Method [31] developed for MD/FEM to DEM/FEM. The second one considers a
weak formulation of the Lagrange constraint. In Section 3, the behavior of a granular material is studied
to determine its effective elastic properties and help choose the finite-element mesh size at the DEM/FEM
interface. Section 4 compares the coupling strategies in order to determine the most appropriate one for
stability. Then, in Section 5, the passing through of pressure and shear waves is analyzed for different
wave frequencies.

2 Coupling strategy for FEM-DEM
Overlapping methods consider a reconciliation zone (also called the Bridging Zone), where the continuum
and discrete domains are mixed together. We consider two different overlapping method formulations. The
first method imposes a strong coupling with a Lagrange constraint where each particle is constrained to
the equivalent position coming from the FEM interpolation. The second is a weak coupling that enforces
such a constraint in an average sense within the volume of each element.

The first step of Arlequin couplings consists in defining an energy weighting, which permits to con-
trol the relative influence of each model. Thus, the global energy in the system is defined using the
Hamiltonian

H =

∫
Ω

α(X)EC(X) + (1− α(X))ED(X) dX, (1)

where EC and ED are the energy densities in the continuum and discrete regions. These are weighted in
the bridging zone using a scaling function α which defines the influence of the continuum domain α(X) for
a given spatial location X.
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However, kinematic consistency between the coupled models cannot be enforced by the energy weighting.
Therefore, the two models are tied together by means of Lagrange constraints. The energy weighting and
the Lagrange constraint (g = 0) lead to a Lagrangian problem which can be summarized as:

HL = H + λTg, (2)

where H is the original Hamiltonian, HL its expanded version including the coupling restrictions and λ
the Lagrange multiplier matrix. This leads to new equations of motion:


Mü = F + λ · ∂g

∂u

md̈ = f + λ · ∂g
∂d

(3)

where u,F and M are displacements, forces and masses of the FEM domain, and d,f and m are the
displacements, forces and masses of the particles. The energy weighting leads to the altered masses m
and M , which are defined such that mi = (1− α(Xi))mi and M I = α(XI)MI with Xi and XI the initial
positions of particles and continuum FEM nodes. The Verlet [5] scheme is employed to perform the time
integration of the uncoupled domains, which produces test velocities (u̇⋆, ḋ⋆) not respecting the coupling
constraint.

∣∣∣∣∣∣∣∣
u̇⋆,n+1/2 = u̇⋆,n + ∆t

2 M−1F n

un+1 = u⋆,n +∆tu̇⋆,n+1/2

Computation of F n+1

u̇⋆,n+1 = u̇⋆,n+1/2 + ∆t
2 M−1F n+1

∣∣∣∣∣∣∣∣
ḋ⋆,n+1/2 = ḋ⋆,n + ∆t

2 m−1fn

dn+1 = d⋆,n +∆tḋ⋆,n+1/2

Computation of fn+1

ḋ⋆,n+1 = ḋ⋆,n+1/2 + ∆t
2 m−1fn+1

(4)

The correction of the test velocities needs to be done within the reconciliation zone thanks to the Lagrange
multipliers, which gives at the n-th step the following form [31]:∣∣∣∣∣∣∣

u̇n+1 = u̇⋆,n+1 −M
−1 ∂g

∂u

T · λ

ḋn+1 = ḋ⋆,n+1 −m−1 ∂g
∂d

T · λ
(5)

The velocities produced by Eq. 5 are chosen to satisfy the time derivative of the Lagrange constraint
ġ = 0. This choice imposes that the Lagrange multipliers λ are obtained by solving:

ġ = Aλ, (6)

where A is the constraint matrix, which depends on the constraint function g and can deliver distinct
formulations of the coupling, such as the strong and weak coupling detailed in sections 2.1 and 2.2.

2.1 Strong coupling
The strong coupling considers a Lagrange constraint, where each particle is constrained to the position
interpolated from the FEM displacement field. Therefore, the constraint applied to the particles is expressed
as:

g = NTu − d = 0, (7)

where NTu is the interpolated displacement for all coupled particles, computed with the standard
finite-element shape functions evaluated at each of the particles’ positions (Xi) :
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N =

 φ1(X1) · · · φ1(Xi)
... · · ·

...
φI(X1) · · · φI(Xi)

 (8)

where φI is the FEM shape function for node I employed to discretize the continuum domain. The
expression of corrected velocities from Eq. 5 together with the time derivative of Eq. 7 allows to identify
the particular form of Eq. 6 specific to the strong coupling:

NT u̇⋆,n+1 − ḋ⋆,n+1︸ ︷︷ ︸
ġ

=
(
NTM

−1
N −m−1

)
︸ ︷︷ ︸

A

λ, (9)

Additionally, to reduce the computational cost and provide a dissipative treatment of wave reflections [7],
the constraint matrix A can be lumped. Therefore, the Lagrange multipliers can be obtained by solving
Eq. 9. Finally, the velocities can be corrected using the computed Lagrange multipliers, which leads to the
following algorithm to be applied in the reconciliation zone:

∣∣∣∣∣∣∣∣∣∣∣∣∣

ġ = NT u̇⋆,n+1 − ḋ⋆,n+1

A = NTM
−1

N −m−1

Optional lumping of A
λ = A−1ġ

u̇n+1 = u̇⋆,n+1 −M
−1

Nλ

ḋn+1 = ḋ⋆,n+1 +m−1λ

(10)

2.2 Weak coupling
The idea behind the weak coupling is to relax the constraint so that it is respected in an integral sense.
The intended effect is that the constraint is imposed in average over each element and not anymore point
wise over the particles. For this, the standard collocation method taken from finite elements is employed,
leading to the following weak constraint:

gW
I =

∫
Ω

φI(X)G(X)dX =
∑
i

φI(Xi)gi = 0 (11)

where the integral becomes a discrete sum due to the discrete nature of the constraint, which can be
formally written by defining the continuous constraint G(X) =

∑
i δ(X −Xi)gi with Dirac δ distributions.

Therefore, there are as many Lagrange constraints as the number of coupled FEM nodes, and it takes the
following matricial form:

gW = N
(
NTu− d

)
= 0 (12)

This leads to the weak formulation of Eq. 6:

N
(
NT u̇⋆,n+1 − ḋ⋆,n+1

)
︸ ︷︷ ︸

ġW

= N

A︷ ︸︸ ︷(
NTM

−1
N +m−1

)
NT︸ ︷︷ ︸

AW

λW (13)

In the case of weak coupling, the constraint matrix AW cannot be lumped as it would introduce too
important approximations in the resolution of the Lagrange multipliers, a poor control of the influence of
each coupled model and a spurious time evolution. Considering the previous developments, the algorithm
employed to correct weakly for the velocities in the reconciliation zone becomes:
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∣∣∣∣∣∣∣∣∣∣∣∣∣

ġW = N
(
NT u̇⋆,n+1 − ḋ⋆,n+1

)
A = NTM

−1
N −m−1

AW = NANT

λW = [AW ]−1ġ
u̇n+1 = u̇⋆,n+1 −MNNTλW

ḋn+1 = ḋ⋆,n+1 +mNλW

(14)

3 Granular medium and constitutive behavior
In order to test the presented coupling approaches, we consider a system where the continuum and discrete
domains have a matching material behavior within the range of small (elastic) deformations. It is therefore
necessary to determine the macroscopic elastic properties of the granular ensemble.

The granular medium represents a dry gouge, with no adhesion between the particles, and subjected to a
specific confinement pressure coming from the surrounding medium. Several DEM box sizes are generated
to determine if the granular material can be considered as linear elastic, and to observe if the extracted
material properties are converging when the sample size becomes large enough. The material properties
of the FEM and the mesh size at the FEM/DEM interface will be chosen based on these single scale
DEM results, with the ambition to avoid any mismatch in the material response between the coupled
domains.

3.1 DEM sphere packing
Nine different box sizes, with periodic boundary conditions in the three directions, are considered. In order
to account for variability due to the random particle distribution, twenty samples have been generated for
each box size. The DEM simulations are run using LAMMPS software [27], with DEM grains parameters
corresponding to glass bead values as described in Table 1. Glass beads are widely used as a model
material in simulations [4, 15] and in experiments aiming to represent the behavior of granular materials
[14, 19].

Two grain sizes were considered, with an average diameter d0 = 3 mm. The dimensionless stiffness is
defined as κ = (E∗/σn)

2/3 with E∗ = E/(1 − ν2) [2, 3] and is characterizing the equilibrium overlap
between particles δ, i.e. δ/d0 ≃ κ−1 [3]. To be in the so-called rigid limit, δ ≪ d0, it is necessary to have
δ/d0 = κ−1 ≪ 1. In our case κ = 495 ≫ 1, for which the granular assembly can be considered fairly
stiff.

Note that a too high overburden pressure could lead to a non-elastic behavior. Agnolin and Roux [3]
observed an elastic behavior until a pressure of 10 MPa. As we are considering an overburden pressure
of σn = 5 MPa, it is safe to assume an elastic contact behavior. The time step is chosen according to
the criterion ∆t < 0.14

√
mmin/kmax [21], with mmin the minimum grain mass and kmax the maximum

normal contact stiffness. We considered the Hertz contact law [18] with tangential forces between two
grains (details on the contact law are given in the supplementary material).

To generate the DEM samples, the initial boxes are first filled with particles such that they occupy a
volume fraction of 60%. Then, the boxes are compressed in the three directions and relaxed, iteratively,
until an overburden pressure of 5MPa is reached. During the process, the final equilibrium conditions
are approached as the particles’ excess kinetic energy is dissipated via viscous damping forces. For a box
size of 12d0, approximately three million time steps are necessary to reach equilibrium at the desired
overburden pressure.
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Young’s modulus, E 50 (GPa)
Grain density, ρ 2500 (kg/m3)
Poisson’s ratio, µ 0.3
Overburden pressure, σn 5 (MPa)
Grain minimal diameter, dmin 2.5 · 10−3 (m)
Grain maximal diameter, dmax 3.5 · 10−3 (m)
Grain mean diameter, d0 3 · 10−3 (m)
Friction between grains, µg 0.5
Elastic constant for normal force, kn 3.663 · 1010 (N/m2)
Elastic constant for tangential force, kt 4.5249 ·1010 (N/m2)
Viscoelastic damping constant for normal force, γn 0.2 (1/(ms))
Viscoelastic damping constant for tangential force, γt 0.1 (1/(ms))
Time step, dt 10−8 (s)

Table 1: DEM grain parameters. See supplementary material for the definitions of kn, kt, γn and γt.

3.2 Homogeneous Elastic properties
The boxes containing the particles are then subjected to positive and negative displacements equivalent to
particular strain states, where each component (εxx, εyy, εzz, γxy, γxz, γyz) is evaluated separately (see
elastic examples of LAMMPS [27]). After each displacement, the boxes are relaxed, before measuring the
overall stress. The 36 elastic tensor coefficients (Cij) are computed with the corresponding applied strain
direction (an average of positive and negative strains is performed to get a better accuracy). The Zener
[33] anisotropy index 2C44/(C11 − C12) can be extracted as a measure of anisotropy.

Figure 1a shows that this anisotropy coefficient is very close to unity for a box size larger than 6d0. This
implies that for a large enough box, our granular samples can be considered isotropic. Figure 1b shows the
elastic tensor of a box of length 12d0 for a specific realization. The structure of the elastic tensor confirms
the isotropy of the granular medium.
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Figure 1: (a) represents the Zener anisotropy index in terms of the number of particles per box length
Lx/d0. (b) represents the elastic tensor of the box of length 12d0 at a specific realization. The vertical
error bars represent the standard deviation due to the 20 box generations per box length.
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The elastic properties (Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio) are then
determined. In Figure 2a, the Young’s modulus is shown as a function of the number of particles per box
length, and reaches a plateau for box sizes larger than 12d0. The shear modulus and the bulk modulus
are also following the same trend (see supplementary material Figures 9a and 9b), while the Poisson’s
ratio (Figure 2b) and density (supplementary Figure 9c) appear practically constant with respect to the
box size. The tests conducted suggest a convergence of the elastic properties for box sizes larger than
12d0. Therefore, any linear-elastic continuum domain discretized using a characteristic mesh size equal or
larger than 12d0 should display the same constitutive behavior (see Table 2 for numerical values) than the
homogenized DEM samples.

Young’s modulus, E 0.977 (GPa)
Density, ρ 1543 (kg/m3)
Poisson’s ratio, µ 0.255
Overburden pressure, σn 5 (MPa)

Table 2: Effective constitutive parameters for a granular domain. Such values will be employed as material
properties for the FE simulations.
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Figure 2: Convergence of elastic properties as the sample size becomes larger. (a) shows the Young’s
modulus in terms of the number of particles per box length Lx/d0. (b) shows the Poisson’s ratio in terms
of the number of particles per box length Lx/d0. The vertical error bars represent the standard deviation
due to the 20 box generations per box length.

4 Simulations of coupled FEM/DEM

4.1 Geometry
The geometry considered in all the following coupled simulations is that of an elongated 3D bar of
constant section, made of a DEM region surrounded by two finite-element meshes, as presented in Figure 3.
According to the results from the previous section, finite elements with a characteristic size h ≈ 12d0 have
elastic properties matching with DEM granular packings. The DEM dimensions are chosen to ensure at
least two elements, ≈ 24d0, in the section (x and z directions), a gouge thickness ≈ 20d0 (the unconstrained
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DEM), and two bridging regions covering the length of one element along the y direction. The FEM
dimensions are chosen in such a way that the dimensions in x and z match the DEM region, while the
length of each FEM meshes are ≈ 400d0. Such a long bar will allow studying the propagation of large wave
lengths. Periodic boundary conditions are imposed to the system in the lateral directions (x and z). As
previously stated, the DEM particles are packed with a hydrostatic confinement pressure, which needs to
be balanced with the FEM subdomains. This is achieved with eigen-strains pre-stressing the FEM domains.
The concurrent coupling will be in charge of exchanging forces between interface nodes and particles. As
will be discussed below, the efficiency of the proposed coupling approaches differ notably.

Figure 3: Schematic of the FEM/DEM coupling.

4.2 Strong/Weak coupling and ghost-force correction
The strong and weak coupling strategies have been implemented in the open-source LibMultiScale software
[6–9]. Note that a parallel version of the strong coupling is available in LibMultiScale.

To determine whether the strong or weak coupling is more appropriate, this coupled geometry is first
considered with no added perturbation, and run over long simulation times. Three different coupling
set-ups, composed of three different DEM regions, have been tested to consider the effect of the amorphous
structure. The displacement within a chosen cross-section in the FEM (indicated in red dashed line in
Figure 3) is monitored in order to establish the performance of each coupling strategy. For the weak
coupling, after a simulation time of 500, 000 timesteps, a displacement noise is observed to be in the
order of 10−5m ∼ 10−2 · d0 (Figure 4b), while it is in the order of 10−6m ∼ 10−3 · d0 (Figure 4d) for the
strong coupling. Such spurious displacements will keep growing as a consequence of a lack of equilibrium
in the coupling region, due to the imposed pre-stress. The applied eigen-strains, which induce forces
on the free surface of the mesh where nodes should be associated with a vanishing energy weight, are
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at the origin of this issue. The approximations in the integration of the Lagrange constraint led to the
equations presented in section 2, which precludes a null weight on the continuum interface. This becomes
obvious when considering equations 10 and 14, where a division by the weighted mass (M̄) is performed,
forbidding a perfectly null weight. In Anciaux [7], it was shown that an adequate, non-zero, choice
of the weight for these limiting nodes could also diminish wave reflections substantially, in the case of
crystalline structures evolving around their ground state configuration. With the presented amorphous
and pre-stressed configuration, the same coupling approach does not compensate well the interface forces,
giving rise to ghost forces.

To balance these, a strategy similar to the one used by Shenoy et al. [25] has been employed: initial nodal
forces were saved at the simulation onset, and then subtracted throughout the entire simulation. With this
force correction, the weak coupling shows a diminished noise displacement in the order of 10−7m ∼ 10−4 ·d0
(Figure 4a), and of the order 10−11m ∼ 10−8 · d0 (Figure 4c) for the strong coupling. Therefore, it appears
that the strong coupling with ghost force correction yields the most stable system, which will be used in
the following section to study propagating waves through the coupling interface.
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Figure 4: Testing different coupling strategies. (a, b) show the average displacement at a specific cross-
section considering the weak coupling. (c, d) show the average displacement at a specific cross-section
considering the strong coupling. (a, c) consider the subtraction of the initial force to correct ghost forces,
while (b, d) do not. The shaded regions represent the minimum and maximum displacement values
obtained through the three different simulations.

5 Waves passing through the coupling interface

5.1 Wave train characterization
Ricker [23] demonstrated that a seismogram can be decomposed into a succession of wavelets, which
are nowadays called Ricker wavelets. To excite our coupled system and form a compressional wave
propagating along the y direction, we impose through time a Gaussian displacement corresponding to a
ricker wavelet:
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uy(t) = I exp

(
−1

2

(
2πc(t− t0)

λ

)2
)
, (15)

with c the velocity of the wave, λ its wavelength, I its intensity and t0 = λ/(2c).

The Fourier transform is used to analyze the spectrum of the wave:

F [uy(y)](k) =
1√
2π

∫ +∞

−∞
uy(y)e

iky dy =
1√
2π

∫ +∞

−∞
I exp

(
−1

2

(
2π(y − ct0)

λ

)2
)
eiky dy (16)

The Fourier transform has a Gaussian shape localized around the fundamental wavelength λ. If the
fundamental wavelength λ is chosen to be much larger than the mean diameter of the particles d0, all
the harmonics of significant intensity that are contained in the spectrum will be much larger than the
diameter of a particle d0. Additionally, if a wavelength is larger than the mean diameter of the particles
d0, it will be experienced by the DEM grains as a smooth transition from one grain to its neighbors, and it
will not trigger rearrangements of the fabric. Therefore, the DEM portion will undergo small deformations
and will behave as a linear-elastic medium. Also, a large wavelength reduces numerical dispersion in the
FEM.

Let us now derive a condition for a compressional wave to be considered low-amplitude. In what follows,
let us note ξ = 2π

λ (y − c(t− t0)). To quantify the maximum value of the strain, we apply the chain
rule:

ε =

∣∣∣∣∂uy(y)

∂y

∣∣∣∣ = ∣∣∣∣∂uy(y)

∂ξ

∂ξ

∂y

∣∣∣∣ ∼ |uy,ξ(y)|
λ

∼ I

λ
. (17)

The condition for the continuum to remain linear and elastic is ε ≪ 1 (small strains), which consequently
leads to I/λ ≪ 1. While this result was derived for compressional waves, a similar approach can be pursued
for shear waves with identical conclusions.

5.2 Wave propagation
A wave propagation through the strong coupling system presented earlier (see Figure 3) will be monitored
in order to characterize the artifacts produced by the coupling. A Ricker’s wavelet is generated at the
extremity of the left FEM portion, by applying the displacement given by Eq. 15 as a boundary condition.
The propagation of the wave is studied for two different mesh sizes h: 12d0 and 3d0, for both compressional
and shear Ricker waves. We consider two large wavelengths (200d0, 400d0) and two small strains (8.3 ·10−4,
8.3 · 10−5) for compressional and shearing waves. Table 3 summarizes the wavelengths, intensities, and
strains of the generated waves. For all the conducted simulations, the displacement of the wave will be
monitored within the cross-section at y = 0.138m. This cross-section is highlighted with a dashed red line
in the Figure 3 in the case of element size 12d0.

Wavelength λ (m) 200d0 200d0 400d0
Intensity I (m) 5 · 10−4 5 · 10−5 1 · 10−4

Strain ε 8.3 · 10−4 8.3 · 10−5 8.3 · 10−5

Table 3: Waves characteristics.
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Figure 5: Waves passing through the coupling interface. (a, c) consider a characteristic mesh size of 12d0,
while (b, d) consider a characteristic mesh size of 3d0. The top row figures (a, b) have been generated
considering push waves, while the bottom row figures (c, d) have been generated considering shear waves.
The red curves represent the waves before reaching the DEM, and the blue curves correspond to the waves
after passing through the DEM. The dash vertical lines are visual guides for the location of the FEM-DEM
interfaces.

In the case of compressional and shear waves for a large mesh size of 12d0, we observe that the intensity of
the wave after passing the DEM is close to 1 for every strain (see Figure 5a, Figure 5c). This means that
we have an almost-complete transmission of the wave, regardless of its strain level. Contrariwise, for a
mesh size of 3d0, we observe that the intensity of the transmitted wave is diminished by a small factor (∼
0.88), independently of the strain (see Figure 5b, Figure 5d). The less-accurate transmission of the wave
in the case of the smallest mesh size 3d0 is due to the mismatch of material properties between FEM and
DEM. In fact, it was shown in Section 3, that a mesh characteristic size greater than 12d0 is necessary
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to homogenize the elastic properties of the DEM. If this is not the case, the constitutive behavior varies
among elements.

It can be observed that a reflected wave has been generated in all cases (see Figures 5a, 5b, 5c, 5d). In
order to determine the origin of the reflected wave we pursue an analogy with MD/FEM coupling. It has
already been observed in MD/FEM coupling [7] that a reflected wave emerges at the coupling interface.
The dispersion relation that relates the wave frequency to its wavelength can differ between the MD and
the FEM depending on the FE mesh size (Figure 2.8 in [7]). If the mesh size is equal to the distance
between atoms, the dispersion relation will be the same. However, when the mesh size increases, MD
and FEM domains admit different wave velocities for the same harmonic. This difference of propagation
velocities (dispersion) creates the impedance contrast that is at the origin of the reflected wave. The same
mechanism is at the origin of the reflected wave that is observed in our DEM/FEM simulations, the main
difference being that the dispersion relation of the granular medium is much more convoluted than the
simple 1D atomic chain that is used in the illustrative example of [7]. The intensity of the reflected wave
can be reduced by increasing the wavelength, as the dispersion relation in both domains will be similar in
the long-wavelength limit if the material properties of the homogenized granular medium are assigned to
the continuum. By increasing the wavelength compared to the mesh size, we reduce the difference of wave
speeds between the two domains and therefore reduce the intensity of the reflected wave.

In order to validate our discussion as to the origin of the reflected wave in the DEM/FEM coupled system,
we study the propagation of two compressional waves, each with the small strain 8.3 · 10−5, but with
different wavelengths (200d0, 400d0). The considered discretization used characteristic element sizes 12d0.
Figure 6 shows the displacement of these two compressional waves in the system. In both cases, a reflected
wave is created during the propagation through the coupling and DEM regions. Though, a higher reflected
intensity is observed for λ = 200d0, than for a wavelength λ = 400d0. This indicates that the reflected
wave is due to dispersion happening at the FEM/DEM interface, which is strongly dependent on the
wavelength.
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Figure 6: Transmission through the coupling interface of two compressional waves with λ = 200d0 (orange
and dashed-dark blue for before and after the interface) and λ = 400d0 (red and dashed-light blue for
before and after the interface). The dash vertical lines are visual guides for the location of the FEM-DEM
interfaces.

To strengthen our analysis, we plot the ct diagrams for λ = 200d0. Figure 7 shows the results for a large
mesh size 12d0 and Figure 8 for a small mesh size 3d0. These ct diagrams show a better transmission of
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the compressional and shear waves for a large mesh size. One can nonetheless observe reflected waves in
all cases.

Note that a residual displacement at the unconstrained DEM region is observed for a large mesh size
12d0, in the case of a compressional wave of strain 8.0 · 10−4. For the smallest mesh size 3d0, a residual
displacement is observed independently of the strain, with higher values for compressional waves than for
shear waves.

Overall, the propagation of compressional and shear waves confirms that a mesh size of at least 12d0 is
necessary to avoid a mismatch of material properties between FEM and DEM. It also confirms the ability
of our numerical framework to satisfactorily transmit waves of different kinds yet only for small strains,
which is a standard assumption of concurrent coupling methods.
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Figure 7: Wave transmission through the coupling interface for a mesh size of 12d0 and λ = 200d0. (a, b)
represent the ct diagrams of compressional waves at different strains. (c, d) represent the ct diagrams of
shear waves at different strains.
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Figure 8: Wave transmission through the coupling interface for a mesh size of 3d0 and λ = 200d0. (a, b)
represent the ct diagrams of compressive waves at different strains. (c, d) represent the ct diagrams of
shear waves at different strains.

6 Conclusions
We have investigated the transmission of elastic compression and shear waves through a DEM/FEM
interface. Two different coupling strategies have been proposed with regard to the formulation of the
kinematic constraints, termed “strong coupling” and “weak coupling". The effect of subtracting the initial
force at the FEM interface has also been studied.

For verification purposes, we devised a simulation set-up in which both DEM and FEM are meant to
represent the same material when deforming in small strain conditions. We first determined that our
granular samples can be considered as homogeneous, linear-elastic and isotropic for sample sizes larger
than 12 times the representative grain size. This size constrains the minimum finite-element mesh size to
be used in order to match elastic properties between the continuum and the discrete domains.

Next, we developed a test to determine the most stable approach (in the sense of introducing the least
noise in the system). We observed that the “strong” version of the coupling (e.g., constraints defined
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exactly at each grain that overlaps with FEs) outperforms the “weak” one (which weights the constraints
differently depending on the relative position of the grains with respect to the nodes of the element that
engulfs it). Additionally, correcting the spurious forces induced by pre-stressed FEs was proved remarkably
beneficial when it comes to stabilize the DEM/FEM overlapping region. We concluded that the strong
coupling considering the subtraction of initial force is the proper choice for the problem at hand.

Finally, longitudinal and shear waves were sent through coupled DEM/FEM model. The results reveal the
presence of a reflected wave, due to the dispersion happening at the FEM/DEM interface, whose amplitude
decreases as the wavelength increases. Additionally, the propagation of waves confirms that a mesh size of
at least 120 is necessary to avoid a mismatch of material properties between FEM and DEM. Overall, the
results confirm the aptitude of our numerical framework in the LibMultiScale software to satisfactorily
transmit small-strain waves of different kinds (compressional/shear) between the two domains.
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Supplementary Material
Hertz contact law

We consider the Hertz contact law between two grains, for which the force vector between particles i and j
is given by:

Fij =
√
δn

√
RiRj

Ri +Rj


−knδn︸ ︷︷ ︸

spring

− γnmeff
dδn
dt︸ ︷︷ ︸

damping

n

︸ ︷︷ ︸
Normal force Fn

+

−ktδt︸ ︷︷ ︸
spring

− γtmeff
dδt
dt︸ ︷︷ ︸

damping

 t

︸ ︷︷ ︸
Tangential force Ft


(18)

Where kn and kt are computed using elastic properties:

kn =
(2/3)E

1− ν2
(19)

kt =
2E

(1 + ν)(2− ν)
(20)

The damping coefficients γn and γt are taken as in the reference by B. Ferdowsi and A. M. Rubin [15]
(private communication). The damping coefficient γt corresponds to the default value of LAMMPS
(γt = 1

2γn). The contact law parameters kn, kt, γn, andγt are summarized in Table 1.
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Elastic properties
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Figure 9: (a) represents two shear moduli in terms of the number of particles per box length Lx/d0. The
first shear modulus (in black/grey) is computed using the expression µ = C44 and the second one (in blue)
using µ = (C11 − C12)/2. (b) shows the Bulk modulus, in terms of the number of particles per box length
Lx/d0. (c) shows the density, in terms of the number of particles per box length Lx/d0. The vertical error
bars represent the standard deviation due to the 20 box generations per box length.
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