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Abstract

Previous studies have shown that the kagome lattice has a remarkably high fracture tough-

ness. This architecture is one of eight semi-regular tessellations, and this work aims to quan-

tify the toughness of three other unexplored semi-regular lattices: the snub-trihexagonal,

snub-square and elongated-triangular lattices. Their mode I fracture toughness was ob-

tained with finite element simulations, using the boundary layer technique. These simula-

tions showed that the fracture toughness KIc of a snub-trihexagonal lattice scales linearly

with relative density ρ̄. In contrast, the fracture toughness of snub-square and elongated-

triangular lattices scale as ρ̄1.5, an exponent different from other prismatic lattices reported

in the literature. These numerical results were then compared with fracture toughness tests

performed on Compact Tension specimens made from a ductile polymer and produced by

additive manufacturing. The numerical and experimental results were in excellent agree-

ment, indicating that our samples had a sufficiently large number of unit cells to measure

the asymptotic fracture toughness. This result may be useful to guide the design of future

experiments.
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1. Introduction

Lattice materials are not only light, stiff and strong, but they also have a high fracture

toughness (O’Masta et al., 2017; Gu et al., 2019; Liu et al., 2020). Optimising the architec-

ture of lattice materials to maximise their elastic modulus and strength has been the subject

of many investigations, and a few highly efficient designs have now been identified (Berger

et al., 2017; Tancogne-Dejean et al., 2018; Hsieh et al., 2019). These designs have properties

that are close to the theoretical bounds on elastic modulus and strength, leaving marginal

room for further improvements. In contrast, the fracture toughness is unbounded and many

architectures have remained unexplored.

The effect of architecture on the fracture toughness has been documented for a few

prismatic (2D) lattices. Analytical studies (Ashby, 1983; Gibson and Ashby, 1997; Chen

et al., 1998; Lipperman et al., 2007; Quintana-Alonso and Fleck, 2009; Berkache et al., 2022),

Finite Element (FE) simulations (Fleck and Qiu, 2007; Quintana-Alonso and Fleck, 2007;

Romijn and Fleck, 2007), and experiments (Huang and Gibson, 1991; Quintana-Alonso et al.,

2010; Seiler et al., 2019) have shown that the fracture toughness of elastic-brittle lattices

can be expressed as:

KIc = Dρ̄dσts

p
ℓ, (1)

where ρ̄ is the relative density of the lattice, ℓ is the length of the cell walls, σts is the tensile

strength of the parent material, and the constants D and d are topology-dependent and

listed in Table 1 for five prismatic lattices (which are shown in Fig. 1). This scaling law

was later extended to ductile lattices by Tankasala et al. (2015). They assumed that the

parent material follows the Ramberg-Osgood relationship, where the strain ϵ and stress σ

are related by:

ϵ

ϵ0s
=

σ

σ0s

+

�
σ

σ0s

�n

, (2)

where ϵ0s and σ0s are the yield strain and stress, respectively, and n is the strain-hardening

exponent. Their simulations showed that the effect of ductility can be captured by adding
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Table 1: Constants D and d in Eq. (1) for di�erent prismatic lattices. Data collected from Fleck and Qiu
(2007) and Romijn and Fleck (2007).

Topology D d
Kagome 0.212 0.5
Triangular 0.500 1
Hexagonal 0.800 2
Square 0/90� 0.278 1
Square� 45� 0.216 1

a term in Eq. (1), which becomes:

K Ic = D 0�� d� 0s

p
`

�
� f

� 0s

� n +1
2n

; (3)

where� f is the failure strain of the parent material. Their results showed that the constant

D 0 can be sensitive to the degree of strain hardeningn; therefore, it is not necessarily equal

to D in Eq. (1). In contrast, the exponentd was identical for both elastic-brittle and ductile

lattices. Even though fracture toughness tests have been conducted on a few ductile lattices

(Alsalla et al., 2016; O'Masta et al., 2017; Gu et al., 2018, 2019; Daynes et al., 2021; Li

et al., 2021), there are, to the best of our knowledge, no direct comparison between Eq. (3)

and experiments.

The results in Table 1 show that the exponentd may take three di�erent values. In

general, bending-dominated architectures, such as the hexagonal lattice, haved = 2 (Gibson

and Ashby, 1997). Otherwise, stretching-dominated topologies, like the triangular lattice or

the 3D octet truss, have an exponentd = 1 (Fleck and Qiu, 2007; O'Masta et al., 2017). The

kagome lattice, however, has an unusual behaviour: despite being stretching-dominated, it

has a lower value ofd, making it signi�cantly tougher than other architectures at low relative

densities. The kagome lattice is also geometrically di�erent from other architectures listed in

Table 1. The hexagonal, square, and triangular lattices are classi�ed as regular tessellations,

meaning that they are made from a single regular polygon, see Fig. 1. In contrast, the kagome

lattice is assembled from two regular polygons and is therefore classi�ed as a semi-regular

tessellation (Williams, 1979). There are seven other semi-regular tessellations, see Fig. 1,

and this work aims to quantify their fracture toughness.
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Figure 1: Examples of prismatic lattices: there are three regular and eight semi-regular tessellations. Regular
lattices are made from a single regular polygon, whereas semi-regular tessellations are assembled from
multiple regular polygons. The nomenclature is based on Williams (1979).

Our study will focus on snub-trihexagonal, snub-square and elongated-triangular lattices

(see Fig. 1) as they are the sti�est and strongest semi-regular tessellations (Omidi and St-

Pierre, 2022). The other four semi-regular lattices are bending-dominated; therefore, their

fracture toughness is expected to be low and comparable to the hexagonal lattice withd = 2.

We will show that the snub-trihexagonal has a fracture toughness similar to the triangular

lattice with d = 1, whereas the snub-square and elongated-triangular lattices exhibit a

unique behaviour withd = 1:5, an exponent di�erent from other prismatic lattices listed in

Table 1. Our study includes both FE simulations and experiments: the predictions will be

used to calibrate Eq. (3), which will then be compared to fracture toughness tests.

This article is structured as follows. The numerical modelling approach and the testing

procedure are described in Section 2. Then, the numerical and experimental results are
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presented in Section 3, followed by a discussion in Section 4.

2. Material and methods

2.1. Numerical modelling approach

The fracture toughness of each lattice was predicted using Finite Element (FE) simula-

tions. All simulations were done with the implicit solver of the commercial software Abaqus

and assuming �nite strain. We used the boundary layer method, which was introduced by

Schmidt and Fleck (2001) and then used in many other studies (Fleck and Qiu, 2007; Romijn

and Fleck, 2007; Tankasala et al., 2015; Gu et al., 2018), to ensure that our results can be

directly compared to those presented in Table 1.

For each tessellation, we used a square domain with a side length of 300`, where` is the

length of a cell wall. The domain contained an initial crack in the negativex1 direction, as

shown in Fig. 2a. A detailed view of the position of the initial crack is given in Fig. 2b-d

for each architecture. Additional simulations (not included here) showed that moving the

crack tip to a di�erent cell had a negligible e�ect on the fracture toughness. All bars were

meshed using Timoshenko beam elements (B21 code in Abaqus); 50 elements per bar were

used around the crack tip (r � 30̀ , see Fig. 2a), whereas 10 elements per bar were used

elsewhere. A mesh convergence analysis revealed that further re�nements had a negligible

e�ect on the predicted fracture toughness.

Each node on the outer boundary of the domain had an applied displacement based on

the K I asymptotic �eld, see Fig. 2a. The snub-trihexagonal lattice is isotropic (Omidi and

St-Pierre, 2022) and therefore, the displacement �eld (u1 and u2) had the form:

ui =
K I

p
r

G
f i (� ); (4)

where r and � are the polar coordinates of each node (see Fig. 2a), the functionsf i (� ) are

given in (Williams, 1952), and G is the shear modulus of the snub-trihexagonal lattice,

which is detailed in (Omidi and St-Pierre, 2022). Otherwise, the displacement �eld for

the orthotropic snub-square and elongated-triangular lattices was obtained from (Liu et al.,

1998). The orthotropic displacement �eld is similar to Eq. (4), except that the functionsf i

also depend upon the relative density �� .
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Figure 2: (a) Domain used in the �nite element predictions. The dashed red line indicate the position of
the initial crack for (b) snub-trihexagonal, (c) snub-square, and (d) elongated-triangular lattices.

In all cases, the cell wall material was assumed to follow the Ramberg-Osgood relationship

detailed in Eq. (2). The degree of strain hardeningn and the failure strain � f were varied

in the simulations while keeping the yield strain� 0s = 0:02 and the yield strength� 0s =

45 MPa �xed. These values of� 0s and � 0s are representative of the polymer used later in the

experiments, see Section 2.2. Finally, the fracture toughnessK Ic corresponds to the value

of K I when the maximum strain in any element reaches the failure strain� f .

2.2. Specimen design, manufacturing and testing

Fracture toughness tests were performed to corroborate the numerical simulations. All

tests were done on Compact Test (CT) specimens, and their dimensions are given in Fig. 3

for each topology. The widthW, and crack lengtha were slightly di�erent for each lattice,

but selected to ensure thata=W � 0:25, as recommended in ASTM E1820 (2018). All

samples had a depthB = 15 mm in the prismatic direction. For each architecture, three

values of relative density were produced, �� = 0:2, 0.25, and 0.3. This was done by keeping

the bar length �xed to ` = 6 mm, and changing the cell wall thicknesst (the relationship

between �� and t=` is given in Omidi and St-Pierre (2022) for each topology). Note that

additional FE simulations were conducted to ensure that the CT samples had a su�ciently

large number of unit cells to provide an accurate measurement of the fracture toughness.

This analysis is detailed in Appendix A.
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Figure 3: Dimensions of compact tension specimens for (a) snub-trihexagonal, (b) snub-square, and (c)
elongated-triangular lattices. All dimensions are in mm. Samples had a depthB = 15 mm in the prismatic
direction.

All samples were manufactured by additive manufacturing; more speci�cally, by stere-

olithography using a Form 3L machine from Formlabs. First, the geometry was created in

Abaqus and a stl �le was exported to the Form 3L machine. Second, the specimen was

printed with a layer thickness of 50� m and using the Formlabs Clear resin. All samples

were printed with their prismatic axis perpendicular to the printing bed. After printing, the

lattice was washed in an isopropyl alcohol (IPA) solution and post-cured under UV light at

a temperature of 60� C for 30 min, as recommended in the Formlabs documentation.

All CT samples were tested using a MTS electromechanical testing machine with a

capacity of 30 kN and with a constant displacement rate of 2 mm/min. Both the force and

load-line displacement were recorded by the testing machine. For each test, the fracture

toughness was calculated according to (ASTM E1820, 2018):

K Ic =
Pmax

B
p

W
f

� a
W

�
; (5)

where Pmax is the maximum force; the dimensionsB, W and a are given in Fig. 3; and

the function f (a=W) is given in ASTM E1820 (2018). We emphasise that Eq. (5) is based

on linear elastic fracture mechanics, but this assumption is supported by the measured

responses, which are presented in Section 3.2.

Tensile tests were conducted to measure the response of the Clear resin used to manu-
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Figure 4: Measured tensile response of the Clear resin used to manufacture all samples. The response is
accurately modelled by the Ramberg-Osgood relationship, Eq. (2), with� 0s = 45 MPa, � 0s = 0 :02, and
n = 13.

facture all CT samples. Following the procedure detailed above, dog-bone specimens were

fabricated with dimensions comparable to those of the cell walls in the CT samples. The ten-

sile specimens had a gauge length of 10 mm, a width of 10 mm, and a thickness of 0.50 mm.

Ten tests were conducted at a strain-rate of 5� 10� 4 s� 1 and the average material properties

were: a Young's modulusEs = 2:0 � 0:10 GPa, a yield strength� 0s = 45 � 3 MPa, and a

failure strain � f = 0:10� 0:02. A measured stress-strain curve is given in Fig. 4 for a sample

with properties close these average values.

3. Results

3.1. Numerical results

The fracture toughness of each lattice, predicted with FE simulations, is plotted as a

function of relative density in Fig. 5 and 6. Results are shown for di�erent values of failure

strain � f in Fig. 5, while keeping the degree of strain hardening �xed atn = 13. In contrast,

Fig. 6 shows the e�ect of the strain hardening exponentn, for a �xed value � f = 0:1. In both

�gures, the relative density �� � 0:1 to ensure that buckling does not occur before fracture

(Shaikeea et al., 2022). In all cases, the �rst cell wall to fracture is the vertical bar in front

of the crack tip, as shown on the deformed meshes in Fig. 7.
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Figure 5: Normalised fracture toughness as a function of relative density for (a) snub-trihexagonal, (b) snub-
square, and (c) elongated-triangular lattices. Results are shown for a strain hardening exponentn = 13 and
di�erent values of failure strain � f .

Figure 6: Normalised fracture toughness as a function of relative density for (a) snub-trihexagonal, (b) snub-
square, and (c) elongated-triangular lattices. Results are shown for a failure strain� f = 0 :1 and di�erent
values of strain hardening exponentn.

Figure 7: Deformed meshes at the moment of initial fracture for (a) snub-trihexagonal, (b) snub-square,
and (c) elongated-triangular lattices. Results are shown for �� = 0 :25, � f = 0 :1, and n = 13. The �rst cell
wall to fracture is indicated in red.
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Table 2: Parameters D , D 0, and d for the scaling laws in Eq. (1) and (3). Results for D 0 are given for
di�erent values of strain hardening exponent n, whereasD corresponds to an elastic-brittle material.

Topology D
D 0

d
n = 3 n = 13 n = 23 n = 33

Snub-trihexagonal 0.46 0.45 0.44 0.42 0.42 1
Snub-square 0.95 0.83 0.75 0.73 0.73 1.5
Elongated-triangular 0.71 0.58 0.45 0.42 0.42 1.5

Clearly, increasing the failure strain� f increases the fracture toughness of all three lat-

tices, see Fig. 5. For example, the fracture toughness of a snub-trihexagonal lattice increases

by 127% when an elastic-brittle parent material is replaced by a ductile solid with� f = 0:1

and n = 13. This increase is sensitive to architecture; being 87% for the snub-square and

50% for the elongated-triangular lattice. On the other hand, increasingn decreases the

fracture toughness, see Fig. 6. This reduction, however, saturates aroundn = 33 as the

response of the parent material becomes elastic perfectly-plastic, see Eq. (2).

The results in Fig. 5 and 6 were used to �nd the parametersD, D 0 and d for the scaling

laws introduced earlier in Eq. (1) and (3). The results, summarised in Table 2, show that

D 0 varies signi�cantly with n for both the snub-square and elongated-triangular lattices.

This is, however, not the case for the stretching-dominated snub-trihexagonal lattice. These

observations are in-line with the results of Tankasala et al. (2015); their simulations showed

that D 0 is sensitive to n for the diamond and hexagonal lattices, whereasD 0 is roughly

constant for the stretching-dominated triangular lattice.

Next, we turn our attention to the exponentd of the scaling law, see Eq. (1) and (3). The

fracture toughness of a snub-trihexagonal lattice scales linearly with relative density, which

givesd = 1, see Fig. 5a and 6a. In contrast,d = 1:5 for snub-square and elongated-triangular

lattices. Results in Fig. 5 and 6 show that this scaling is insensitive to the failure strain� f

and the degree of strain hardeningn.

3.2. Experimental results

Force versus displacement curves are plotted in Fig. 8 for the three semi-regular lattices

with a relative density �� = 0:25. In all cases, the response is linear up to the peak forcePmax ,

which corresponds to the �rst fracture event. Photographs showing the deformation of the
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Figure 8: Force versus load-line displacement recorded during fracture toughness tests. Responses are shown
for a relative density �� = 0 :25.

samples before and after fracture are given in Fig. 9. Multiple bars fail in the �rst fracture

event, starting with the vertical cell wall ahead of the crack tip, as predicted numerically

(see Fig. 7). The tests on samples with �� = 0:2 and 0.3 are not shown here, but they had

a similar crack propagation path and also had a linear response, which justi�es the use of

Eq. (5) to calculate the fracture toughness.

The normalised fracture toughness is plotted in Fig. 10 as a function of relative density for

the three architectures considered in this study. Two samples were tested for each geometry

and both data points are included in Fig. 10. In general, the scatter is small; the average

di�erence between tests is 4%, and the largest di�erence is 11%. This can be attributed to

the variability of the failure strain of the polymer, which is � f = 0:10� 0:02 as mentioned

in Section 2.2.

The measurements are also compared to FE simulations in Fig. 10. These numerical

results are reproduced from Fig. 5 and correspond to the case where� 0s = 45 MPa, � 0s = 0:02,

� f = 0:1, andn = 13. These material properties were obtained by �tting the measured tensile

response of the polymer, and we can see in Fig. 4 that this Ramberg-Osgood description

follows closely the measured stress-strain curve. The scaling law in Eq. (3), which is �tted
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Figure 9: Photographs of the fracture toughness tests for (a) snub-trihexagonal, (b) snub-square, and (c)
elongated-triangular lattices with a relative density �� = 0 :25. Photographs are shown right before and after
the �rst fracture event. For scale, all bars have a length of 6 mm.
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