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Abstract

Different parameterizations, related to mixed-effects structure, of ground-motion mod-
els for the duration of strong shaking are revisited. A new parameterization is proposed
which can better account for the separation of source and path duration in additive
ground-motion duration models. In addition, different distributions for the likelihood of
ground-motion duration given the predictor variables are investigated. Traditionally, du-
ration has been modeled as lognormally distributed, which makes sense for a multiplicative
model, but less so for an additive model. Models using a lognormal and Gamma likelihood
are compared, using the M9 simulations (Frankel et al., 2018) as an underlying data set.
In general, differences between models in terms of predictions are small, but the models
using a Gamma distribution perform slightly better than the ones employing a lognormal
distribution. Furthermore, the new parameterization outperforms traditional models. All
models are estimated via Bayesian inference, accounting for epistemic uncertainty through
the posterior distribution of the parameters.

1 Introduction

Typically, seismic hazard analysis is calculated form ground-motion parameters that character-
ize the amplitude of the shaking. A complete description of ground motion includes a measure of
duration. Ground-motion duration can influence structural damage (e.g. Chandramohan et al.,
2016), liquefaction (e.g. Green et al., 2020), and slope-stability (e.g. Wang et al., 2021). Sev-
eral different duration measures have been proposed, see Bommer and Mart́ınez-Pereira (1999)
for a comprehensive overview. Different duration measures can be more useful for different
applications.

Similar to ground-motion models (GMMs) for peak parameters or response spectral ordi-
nates (pseudo-spectral acceleration, PSA), one can derive empirical GMMs for ground-motion
duration measures (e.g. Bommer et al., 2009; Kempton and Stewart, 2006; Afshari and Stew-
art, 2016; Jaimes and Garćıa-Soto, 2021; Bahrampouri et al., 2021; Anbazhagan et al., 2017;
Yaghmaei-Sabegh et al., 2022; Du and Wang, 2017). PSA GMMs model the target variable as
a multiplication of different terms corresponding of source, path, and site effects. By contrast,
duration GMMs come in two distinct fashions: multiplicative, where total duration is modeled
as source duration times path duration (e.g. Bommer et al., 2009; Jaimes and Garćıa-Soto,
2021; Bora et al., 2014; Yaghmaei-Sabegh and Hassani, 2020), and additive, where total dura-
tion equals source duration plus path duration (e.g. Abrahamson and Silva, 1996; Bahrampouri
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Figure 1: Location of M9 stations used in the analysis. Red line is a contour line of RRUP =
10km.

et al., 2021; Kempton and Stewart, 2006; Afshari and Stewart, 2016). An additive model as-
sumes that the dominant contributor to path duration is the time difference of arrival times
of compression and shear waves (Bahrampouri et al., 2021), in which case the path duration
should be magnitude-independent.

Multiplicative duration models have the same structure as PSA GMMs, and can be fit in the
same manner, to account for between-event and site-to-site residuals via random effects models
(Stafford, 2014). Additive models, however, require more care to properly account for event
terms associated with event-specific source durations (Walling et al., 2018). Here, we discuss the
implications of different parameterizations of additive duration models, and propose a model
structure that better accounts for the separation of source and path durations than in previous
models. In addition, we investigate the Gamma distribution as a way to model the likelihood of
ground-motion durations. Duration models typically assume a lognormal distribution, which is
very reasonable for multiplicative models, but its application to an additive model of positive
terms is less natural. We fit models with both a lognormal and Gamma likelihood, and compare
the estimated models in terms of their predictions.

We estimate the different models based on data from the M9 simulations (Frankel et al.,
2018). This provides a great data set to illustrate the different models. Compared to real data
sets with observed data, the data distribution is more homogeneous. In particular, there is
abundant data at short distances, which is important for duration models, since the source
duration represents the model prediction at zero distance.

The paper is organized as follows: we very briefly describe the data, then lay the foundation
of the duration models in Section Intuition of Duration Model. Details about the M9 models
are found in Section Duration Models for M9 Simulations, followed by results and a discussion.

2 Data

We illustrate the different duration models on simulated ground motions from the M9 project
(Frankel et al., 2018). The M9 simulations comprise simulations of 30 different magnitude
9 events on the Cascadia subduction zone. The nice thing about simulated data is that the
distance range is “complete”, i.e. we do not have to worry about missing data in particular at
short distances. We use a subset of the M9 simulations (mainly to reduce the number of data).
Figure 1 shows a map of the simulated stations that we use. Selection is also guided by the
desire to have only stations in one direction of the rupture (i.e. only towards the coast).

In total, we use 15,810 observations from 30 simulations, i.e. 527 observations per simulation.
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Figure 2: Used D5075 duration values of the M9 simulations against rupture distance RRUP ,
color coded by simulation. The black line is a loess fit (Cleveland, 1979) to the data.

Each simulation is treated as an event, with an event term. The predictor variable is the closest
distance to the rupture RRUP , also called rupture distance. As the duration measure, we use
the significant duration (Trifunac and Brady, 1975), which which is based on the normalized
arias intensity I(t). Here, we use D5−75, which is commonly used (e.g. Bahrampouri et al.,
2021; Kempton and Stewart, 2006; Afshari and Stewart, 2016; Jaimes and Garćıa-Soto, 2021).

3 Intuition of Duration Model

Generally, there are two approaches to model duration. The first is to model duration as a
multiplicative model, similar to PSA GMMs (e.g. Jaimes and Garćıa-Soto, 2021; Anbazhagan
et al., 2017; Meimandi-Parizi et al., 2020; Bora et al., 2015, 2019). Such an approach has the
advantage that the model can be fit in the same way as a response spectrum GMM (using mixed-
effects regression to partition into between-event and within-event residuals, corresponding to
source and path duration). A multiplicative duration model has the basic form

lnD = f(r⃗;M, R, . . .) + δB + δW (1)

where f(r⃗;M, R) is a function with coefficients r⃗, dependent on magnitude, distance, and
possibly other parameters such as time-averaged shear wave velocity in the upper thirty meters
VS30. δB and δW are the event term and within-event residual, respectively. These are typically
(universally) assumed to be normally distributed with standard deviations σS and σP . Thus,
the overall duration is assumed to be lognormally distributed in a multiplicative model.

A different approach to model duration is an additive model, where the total duration is
modeled as the sum of a source and path duration, Dtotal = Dsource + Dpath (e.g. Afshari and
Stewart, 2016; Kempton and Stewart, 2006; Boore and Thompson, 2014; Abrahamson and
Silva, 1996; Bahrampouri et al., 2021; Boore, 2003; Atkinson and Boore, 1995). Empirical
duration models based on regression analysis using such a model sometimes try to account for
between-event terms (ostensibly corresponding to a source term) with the following modeling
approach (Afshari and Stewart, 2016; Kempton and Stewart, 2006; Bahrampouri et al., 2021;
Abrahamson and Silva, 1996)

lnD = ln [fsource(c⃗;M) + fpath(r⃗;R)] + δB + δW (2)

where fsource(c⃗;M) and fpath(r⃗;R) are functions for the source and path duration, respectively,
and δB and δW are the between-event and within-even residual. The model of Equation 2
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has the advantage that it can be fit using a traditional mixed-effects regression (albeit with a
nonlinear functional form). However, Equation (2) implies

D = fsource(c⃗;M) eδB eδW + fpath(r⃗;R) eδB eδW (3)

so the “full” source and path duration are both affected by the event term δB and within-event
residual δW . In particular, the event term δB, which is typically interpreted as a term that
determines the variability of the source duration, has the effect of changing the path duration
(and thus the distance scaling). This means that δB can be understood as a random effect
that models an individual distance scaling for each event. Since in a model like Equation (2)
the residuals δW and δB affect both source and path durations, we call this model a “mixed
model”.

One way to separate the source and path duration in an additive model would be to write
it as

D = fsource(c⃗;M) eδB + fpath(r⃗;R) eδW (4)

in which the two terms are completely decoupled. Assuming δB and δW are normally dis-
tributed, this means that both source and path duration are lognormally distributed. The sum
of two logarithmic distributions is not a logarithmic distribution, and as a consequence, the total
duration D is not lognormally distributed. Such a model was used in Walling et al. (2018). A
(rather severe) constraint in Equation (4) is that all terms are positive. It then follows that the
source duration, fsource(c⃗;M), must be smaller than the smallest observed duration, D. This is
a severe constraint on the source duration, and ignores possible sources of random variation in
observed duration, in particular at shorter distances (see for example Figure 4(b) of Boore and
Thompson (2014), which shows negative path durations after correcting total durations using
a reasonable, physics based source duration model).

To alleviate the constraint that the source duration must be smaller than the observed
duration in an additive model, we propose to partially decouple the two terms, and write the
model as

D =
[
fsource(c⃗;M) eδB + fpath(r⃗;R)

]
eδW (5)

In this model, the path duration is unaffected by the between-event residual δB (which is thus
a proper measure for the variability of the source duration), while the structure of the model
allows for the observed duration D to be smaller than the event-specific source duration, which
is given by Dsource = fsource(c⃗;M) eδB, in the case that δW is negative. In this model, the total
duration D is lognormally distributed (assuming δW is normally distributed).

We can write the model of Equation (5) as a hierarchical model

Dsource ∼ LN(ln fsource(c⃗;M), σS) (6)

medpath = Dsource + fpath(c⃗;R) (7)

D ∼ LN(lnmedpath, σP ) (8)

One can understand these Equations as follows: the source duration is lognormally distributed,
with a median which is a function of magnitude, and standard deviation σS. Given a value of the
source duration for a specific event, the median path duration is the sum of the source duration
and a function that depends on distance. The actual observed duration is then lognormally
distributed with the calculated median and standard deviation σP .

One should note some differences of the model of Equation (5) to traditional PSA GMMs
as well as the mixed model of Equation (2). The model cannot be fit using traditional mixed
effects, and the total variance is not the sum of the individual variances (i.e. σ2

total ̸= σ2
S + σ2

P ).
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3.1 Why Lognormal?

In general, duration models assume that D is lognormally distributed (we are not aware of
any model that does not make this assumption). One reason for this assumption is ease of
computation, and the advantage that one can use methods that have been well established
for PSA GMMs. However, for response spectral GMMs the lognormal distribution makes
physical sense, as the spectrum is a multiplication of several terms (Boore, 2003). For duration
models, the situation is not as clear, in particular if one wants to use an additive model (for
a multiplicative model as in Equation (1) the lognormal distribution makes sense). It is easy
to reformulate Equations (6) to (8) using a different distribution, as long as it is defined for a
positive random variable. Instead of the lognormal distribution, we also model duration with a
Gamma distribution. In the following paragraphs, we briefly describe the Gamma distribution
and how it can be used in a duration model context.

If the random variate X is distributed according to a Gamma distribution,

X ∼ Gamma(α, β) (9)

then the corresponding probability density function is

pdf(x) =
βα

Γ(α)
xα−1 e−βx (10)

where Γ(·) is the Gamma function, α is called the shape parameter, and β is the rate parameter.
The mean of the Gamma distribution is calculated as

E[X] = µ =
α

β
(11)

If we assume that duration is distributed according to a Gamma distribution, then we model
the mean as a function of magnitude (for source duration) and distance (for path duration).
Hence, we can write

µsource = fsource(c⃗;M) (12)

We can then rewrite the rate parameter β of the Gamma distribution as β = α
µ
(cf. Equa-

tion (11)), and thus formulate the hierarchical model with Gamma distributions as

Dsource ∼ G(αS,
αS

µsource

) (13)

µpath = Dsource + fpath(r⃗;R) (14)

D ∼ G(αP ,
αP

µpath

) (15)

analogous to the lognormal model in Equations (6) to (8). It would also be possible to model
the source and path duration with a different distribution (e.g. a lognormal distribution for the
source and a Gamma distribution for the path duration).

The Gamma model has the same number of parameters to fit as the lognormal model: co-
efficients for the source and path duration, event-specific source durations, and a distributional
parameter (σ for lognormal, α for Gamma) for both the source and path duration. One dif-
ference is that we model the mean as a function of magnitude and distance for the Gamma
model, while we model the median in a lognormal model.

We do not think that there is an a-priori a preference for either the lognormal or Gamma
model for an additive duration GMM. In the literature, duration has been universally modeled
with a lognormal distribution (e.g. Kempton and Stewart, 2006; Afshari and Stewart, 2016;
Bahrampouri et al., 2021; Jaimes and Garćıa-Soto, 2021), but one could argue that this is due
to familiarity (based on PSA GMMs), as well as ease of computation. In later sections, we
compare duration models based on the Gamma model and the lognormal distribution.
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3.2 Source Duration Model

The model of the source duration is often based on the inverse of the corner frequency of the
source spectrum (e.g. Abrahamson and Silva, 1996; Kempton and Stewart, 2006), following
Brune (1970, 1971)

Dsource =
1

fc
(16)

Following Abrahamson and Silva (1996), the corner frequency can be written as

fc = 4.9 106β

(
∆σ

M0

)1/3

(17)

where M0 is the seismic moment (M0 = 101.5M+16.05), β is the shear-wave velocity at the source
( from now on we assume β = 3.2km/s), and ∆σ is the stress parameter. Thus, this give a
model for the source duration as

Dsource =

(
∆σ(M)

101.5M+16.05

)−1/3

/
(
4.9 106β

)
(18)

Magnitude scaling in the source duration is introduced by the moment M0, as well as a po-
tentially magnitude dependent stress parameter. Assuming an exponential dependence of the
stress parameter on magnitude (∆σ = exp(a1 + a2M)), the scaling can be combined (Bahram-
pouri et al., 2021; Bommer et al., 2009) into a model of the form

Dsource = exp(c1 + c2M) (19)

A constant (magnitude-independent) value of the stress parameter ∆σ implies a value of the
slope of lnDsource with magnitude of c2 = 1.151 (Bommer et al., 2009), while a slope of a2 =
3.45 for the magnitude dependence of ∆σ leads to a constant (magnitude-independent) source
duration (Afshari and Stewart, 2016).

We want to stress that Equation (18) is merely a crutch to connect source duration to
magnitude, and to inform the form of the magnitude scaling for the source duration. While
Equation (18) is developed(?) for circular ruptures, its use in empirical duration models does
not mean that the events used to estimate the empirical model are assumed to have a circular
rupture. Similarly, the stress parameter ∆σ is an empirical parameter that makes Equation (18)
work.

It should also be noted that the use of a double-corner frequency model, as used in Atkinson
and Silva (2000) to model a finite fault comprised of Brune subfaults, leads to the same model
structure. In this case, the source duration is modeled as (Boore and Thompson, 2014)

Dsource = 0.5/fa (20)

where fa is the lower of two corner frequencies in the double-corner frequency model of (Atkinson
and Silva, 2000), which is used to model a finite fault comprised of Brune subfaults. An
empirical model for fa based on Californian events is

ln fa = 2.181− 0.496M (21)

which leads to the same magnitude dependence as Equation (19) but with a different slope.
In an empirical duration model based on events of different magnitudes the slope would be a
parameter to be estimated.

As stated before, in an empirical duration model one wants to account for between-even
source duration variability, i.e. the fact that an event can have a longer or shorter source

6



duration than what the model implies. This can be modeled by including a random effect
for each event. The distribution of the random effects allows one to include source duration
variability in a forward prediction. There are different possibilities how to include an event-
specific random effect in the source duration model based on the corner frequency. One can
model an event-specific stress parameter ∆σe, or an event-specific source duration Dsource,e,
where subscript e indicates that the parameter corresponds to event e. If the stress parameter
is modeled as a lognormal distribution, then the source duration is also a lognormal distribution,
i.e. from

∆σ ∼ LN(µln∆σ, σln∆σ) (22)

it follows that
Dsource ∼ LN(µlnDS

, σlnDS
) (23)

where µlnDS
is calculated according to Equation (18) (using expµln∆σ as the stress parameter),

and σlnDS
= σln∆σ

3
. This is not the case for other distributions, i.e. a Gamma distributed stress

parameter does not imply a source duration that is Gamma distributed or vice versa.
In general, we think that the fact that the two parameterizations of the model (using stress

parameter or source duration directly) are equivalent for the lognormal distribution makes this
model preferable. It is difficult to test this part of the model, as the source durations are not
directly observable.

The M9 simulations (obviously) have a constant magnitude M = 9, so we cannot infer a
magnitude scaling. However, we can estimate a model using the stress-parameter parameteri-
zation, which induces a scaling of the source duration with magnitude. For ease and stability
of computation, we use the following model for the source durations of the M9 simulations

lnDsource ∼ N(µlnDS
, σlnDS

) (24)

i.e. with a constant median logrithmic source duration µlnDS
. One can calculate a median stress

parameter from µlnDS
using Equation (18).

3.3 Path Duration Model

The model for the path duration needs to incorporate some sort of distance scaling that en-
sures that duration increases with distance. This is often modeled as a combination of linear
segments (Kempton and Stewart, 2006; Atkinson and Boore, 1995; Boore and Thompson, 2014;
Bahrampouri et al., 2021; Abrahamson and Silva, 1996; Afshari and Stewart, 2016) in additive
models. Based on Figure 2, we use a bilinear model for the distance scaling. The model is

fpath(r⃗;RRUP ) = r1RRUP + (r2 − r1)δ ln

[
1 + exp

(
RRUP −Rb

δ

)]
(25)

which is a bilinear function with a smooth transition at R = Rb, where r1 and r2 are the
slope below and above the breakpoint Rb, respectively, and δ controls the smoothness of the
transition. We fix the value of δ = 1, the other parameters are estimated during model fitting.
The model of Equation (25) is differentiable with respect to all parameters, which helps during
model fitting.

One note on computation: for large distances, the term exp
(
RRUP−Rb

δ

)
can be numerically

unstable and lead to overflow. Hence, one should use a logSumexp function, as implemented
e.g. in the package matrixStats (Bengtsson, 2022) for the computer environment R (R Core
Team, 2021).
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3.4 Model Predictions

Making prediction with the partially decoupled model is more complicated than for the mixed or
a multiplicative model. In the mixed model, where the event term “sits outside the logarithm” in
Equation (2), the median prediction can just be calculated asmed = ln [fsource(c⃗;M) + fpath(r⃗;R)],
and the standard deviation of the corresponding normal distribution (in log-space) is calculated
as σ =

√
σ2
S + σ2

P .
By contrast, in the partially decoupled model the (event-specific) source duration is part

of the prediction for the full duration, and thus there are different possibilities for calculating
predictions of a new event: one could use the mean of the source duration distribution, the
median, the mode, or some other point estimate. The mean of the total duration can be
calculated as

µ(D) =

∫ ∞

0

∫ ∞

0

x p(DS)p(x|Dp)dxdDS (26)

This is the same value as when using the mean of the source duration in the prediction

µ(D) = µ(DS) + fpath(r⃗;RRUP ) (27)

where µ(DS) = exp
[
µlnDS

+ 0.5σ2
lnDS

]
for the M9 simulation model (as the source duration

model is a lognormal distribution). This is not true for the median, i.e. med(D) ̸= med(DS) +
fpath(r⃗;RRUP ).

If the full distribution is desired, one can use Monte Carlo simulation, i.e. one can sample
from the source duration distribution, calculate desired quantities (such as mean or fractiles)
of the total duration distribution given the sampled source durations, and then average over
the samples. However, this approach is more computationally involved, and results may change
from run to run, or depend on the number of samples.

4 Duration Models for M9 Simulations

We estimate different duration models on the durations from the M9 simulations. We then
compare the models in terms of their scaling, their predictive distributions, and their predictive
performance. The estimated models are

1. A mixed model (cf. Equation (2)).

2. A partially decoupled model, with the source and path duration modeled as a lognormal
distribution.

3. A partially decoupled model, with the source duration modeled as a lognormal distribution
and the path duration modeled as a Gamma distribution.

The mixed model has the form

lnD = ln [c1 + fpath(r⃗;RRUP )] + δB + δW (28)

where δB and δW are normally distributed with mean zero and standard deviations σS and
σP , respectively, and c1 is the source duration function, which is modeled as a constant since
all vents have the same magnitude.

As seen in the Figure 2, there is more variability in the logarithmic duration values at short
distances. Such a behavior cannot be modeled with a constant standard deviation σP or shape

8



parameter αP . Hence, we model these parameters as distance dependent, with the following
functional forms

σP (RRUP ) = s1 + s2
1

1 + exp(−s3(RRUP −Rs))
(29)

αP (RRUP ) = a1 + a2RRUP (30)

The parameters s1, s2, s3 and Rs, or a1 and a2, respectively, are determined during model
fitting, and are constrained such that the overall standard deviaton or shape parameter is
positive.

4.1 Model Implementation

The models are fitted via Bayesian inference (e.g. Spiegelhalter and Rice, 2009; Gelman et al.,
2013) using the program Stan (Carpenter et al., 2017; Stan Development Team, 2022). Stan
implements Markov Chan Mote Carlo (MCMC) sampling (Neal, 1993) in the form of Hamil-
tonian Monte Carlo (Neal, 2011; Betancourt, 2017b,a). Thus, the results of the model fitting
process are samples from the posterior distribution, which can be used to assess the epistemic
uncertainty associated with the models.

We run the regressions through the R-interface cmdstanr (Gabry and Češnovar, 2021). We
run four chains for each model, with 200 sampling iterations. Convergence of the chains is
evaluated via the R̂ (R-hat) statistic (Vehtari et al., 2020). Comparisons between the mod-
els is done via the PSIS-LOO information criterion (Vehtari et al., 2017, 2021), which is an
approximation to leave-one-out cross-validation. We also assess the posterior predictive distri-
bution of the models, which is a measure of the overall uncertainty/variability of the model,
and comprises both epistemic uncertainty of the parameters and aleatry variability due to the
lognormal or Gamma distribution. The posterior predictive distribution for an observation ỹ
is defined as (Gelman et al., 2013)

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ (31)

so it is calculated by integrating out the uncertainty of the estimated parameters.
The parameters to be estimated are the coefficients for the path duration model (r1, r2,

Rb), the log median of the source duration (µlnDS
) for the partially decoupled model or c1 for

the mixed model, and the shape/scale parameters σS, σP and αP . In addition, the individual
source durations DS (for the decoupled models) or the event terms δB for the mixed model are
estimated as well. The prior distributions for the source durationsDS is given by Equation (24),
while it is a normal distribution with mean zero and standard deviation σS for δB. For the
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other parameters, the prior distributions are as follows:

r1, r2 ∼ N(0, 0.2)

RB ∼ N(60, 40)

c1 ∼ N(25, 5)

σS ∼ N(0, 1)

µlnDS
∼ N(3.2, 2)

σlnDS
∼ N(0, 2)

a1 ∼ N(0, 5)

a2 ∼ N(0, 1)

s1, s2 ∼ N(0, 1)

s3 ∼ N(1, 2)

Rs ∼ N(60, 40)

5 Results

Figure 3 shows the posterior density, assessed from the posterior samples, of the parameters
associated with the path duration as well as the average source duration. In general, the path
duration coefficients are very similar between the three models, with slightly smaller values of
r1 for the Gamma model, and slightly wider uncertainty of r2 for the mixed model.

The average source duration is captured by parameter c1 (for the mixed model) and exp(µlnDS
)

for the partially decoupled models (Gamma and lognormal). It models the median of the source
duration distribution, and is the model prediction for RRUP = 0. However, we need to remem-
ber that for the Gamma model, the prediction represents the mean of the total duration, while
for the lognormal and mixed model it represents the median. Hence, we also calculate the mean
of the total duration for the lognormal and mixed model via

µ(D(RRUP = 0)) = exp
[
µlnDS

+ 0.5σP (RRUP = 0)2
]

(32)

We calculate the mean for each posterior sample, which gives a posterior distribution for this
parameter. In Figure 3, the posterior distribution of the mean prediction for RRUP = 0 are
quite similar between the models.

Figure 4 shows the estimated standard deviations/shape parameters. The mixed model
shows a smaller value for σS than the other models. The reason is that the event term δB
in the mixed model is not just a source term, but models a different distance scaling for each
event, and thus σS is more a measure of the variability of the distance scaling. This can be
seen in Figure 5, which shows predictions for each of the 30 events (including the event-specific
DS or δB). The Gamma and logormal (partially decoupled) models show a similar range
of predictions, which stays constant with increasing distance. By contrast, the mixed model
predictions show a different distance scaling for each event, and increasing range with distance.

Within-event residuals are shown in Figure 6. The residuals for the Gamma and lognormal
models are calculated via

resid = lnDobs − ln [DS + fpath(r⃗;RRUP )] (33)

where DS is the estimated event-specific source duration. For the mixed model the residual is
the term δW in Equation (28). Hence, the residuals are calculated in log-scale with respect to
the logarithm of the mean prediction for the Gamma model, and with respect to the logarithm
of the median prediction of the other two models. There are no large differences between the
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lognormal and mixed model), dependent on distance. For the shape/scale parameters, the mean
and 5%/95% fractiles are shown, calculated from the posterior distributions of the parameters
associated with the shape/scale parameters.
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Figure 6: Residuals of the different models. The black line is a loess fit (Cleveland, 1979) to
the residuals.
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Figure 7: Predictive density and data for the different models.

different models in terms of the residuals. The residuals of all models are well well centered,
with larger variability at shorter distances. Such variability is also seen in peak and response
spectral values in Frankel et al. (2018), and due to different distances to subevents.

Figure 7 shows the distance scaling of the predictive distribution, together with the data.
The predictive distribution comprises both the epistemic uncertainty and the aleatory vari-
ability of the model. For each distance, we calculate the mean or median prediction for each
posterior sample. Then, we randomly sample 100 source durations or event terms, and sample
again 100 overall durations for each source duration/event term. From the resulting samples,
we calculate the mean, median, and 5% and 95% fractiles. The mean and median predictions
of all models are quite similar, but there are some differences in the fractiles, in particular at
very small and very large distances.

Figure 8 shows graphical posterior predictive checks (Gabry et al., 2019). For these plots,
we draw samples from the posterior predictive distribution (cf. Equation (31)), and compare
to the data. For each sample of the posterior distribution, we randomly draw a new data
set (i.e. we calculate the mean/median and shape/standard deviation for each data point and
sample from the corresponding distribution). Thus, we have 800 synthetic data sets of 15,810
simulated durations. In Figure 8, we compare the median, 5% and 95% fractiles across those
800 simulated data sets with the median and fractiles of the observed data. Overall, for a good
model we would expect that the fractiles of the simulated data sets are similar to the ones
data. In general, the differences between the models are small, but the Gamma model seems
to be able to capture the 5% and 95% fractiles of the data slightly better. The plots shown in
Figure 8 show median and fractiles of the whole data set(s). The models can perform differently
for different ranges of the data; we provide plots similar to Figure 8 for different distance bins
in the electronic supplement1.

To quantify model comparison, we can look at the expected log pointwise predictive density

1available at https://github.com/nikuehn/Duration_M9
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data.

Table 1: Differences in expected log pointwise predictive density ∆êlpdPSIS−LOO, based on
PSIS-LOO, standard error of the difference, and difference in log-likelihood ∆LL on test data
when leaving out one event at a time.

Model ∆êlpdPSIS−LOO SE(∆êlpdPSIS−LOO) ∆LL SE(∆LL)
Gamma 0.0 0.0 0.0 0.0
Mixed -23.7 24.8 -52.0 9.9

Lognormal -242.9 20.3 -53.8 9.5

(elpd, Vehtari et al., 2017) for a new data set. Table 1 lists the differences in elpd for the
different models, relative to the best model in terms of elpd. The elpd values are an approxi-
mation to leave-one-out cross-validation. Thus, they are conditioned on the estimated source
duration values/event terms. For details, see Vehtari et al. (2017), Vehtari et al. (2021), and
the documentation of the loo package (Vehtari et al., 2022)2. Table 1 shows that the Gamma
model has a better predictive performance than the lognormal model, which is in line with the
posterior predictive checks shown in Figure 8. The mixed model has similar elpd compared to
the Gamma model (within the standard error of the elpd difference), and performs much better
than the lognormal model. Here one needs to remember that elpd is a measure of the predictive
distribution conditional of the source durations or event terms, which in the case of the mixed
model contain differences in the distance scaling for the events (Figure 5). The similar elpd
values between the Gamma and mixed model, and the much larger value of the mixed model
compared to the lognormal model indicates that modeling differences in distance scaling may
be advantageous.

To assess model performance on new events (i.e. with unknown source durations/event
terms), we also perform a leave-one event-out test. Here, we estimate the models by leaving
out all records from one event as test values, and then calculate the log-likelihood of the test
data. The differences i the log-likelihood to the Gamma model are shown in Table 1, for
five runs (i.e. five test events), calculated as ∆LL = LLmod − LLGamma. For details on the
calculation of the log-likelihood values of the different models, see the electronic supplement3.
The Gamma model attains the highest log-likelihood value, but now the lognormal and mixed
model are comparable, which is consistent with Figure 7.

2https://mc-stan.org/loo/index.html
3available at https://github.com/nikuehn/Duration_M9
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5.1 NGA Sub Data

The models estimated in this paper are estimated for 30 simulations with magnitude M =
9. Assuming a constant (magnitude independent) stress parameter ∆σ, we can still make
predictions for other magnitude values, via Equation (18). In this section, we calculate residuals
to data from the NGA-Subduction (NGA-Sub) project (Bozorgnia et al., 2022; Contreras et al.,
2022; Ahdi et al., 2022; Mazzoni et al., 2022, 2021). We use the interface data from the KBCG
NGA-Sub model (Kuehn et al., 2020, 2022), and calculate residuals for the Gamma model
(residuals to the other models are provided in the electronic supplement4). Predictions can
be calculated as follows: the median stress parameter can be calculated from the estimated
median source duration via

µln∆σ = −3 (µlnDS
+ ln 4.9 + 6 ln 10 + ln β) + (1.5 ∗ 9 + 16.05) ln 10 (34)

which is just rearranging of Equation (18). For each record, we can then calculate the mean
prediction and residuals as

Dsource =
( µln∆σ

101.5M+16.05

)−1/3

/
(
4.9 106β

)
exp

σ2

2
(35)

µ = Dsource + fpath(r⃗;R) (36)

resid = lnY − lnµ (37)

The residuals are shown in Figure 9 with respect to distance, magnitude and VS30. The
residuals are clearly biased (the mean of the residuals is -0.887), so the model based on the M9
simulations is overpredicting the data. The distance scaling of the data at larger distances is
similar to the model, but is quite different for short distances. Part of this could be due to the
geometry of the subuction zone (the M9 simulations are done for Cascadia/Pacific Northwest,
while the NGA-Sub data is mostly comprised of Japanese records). Another possibility is
that the distance breakpoint RB is magnitude dependent, which would lead to a different
distance scaling at short distances. Otherwise, the residuals show similar behavior as for the
M9 simulations, with larger variability at short distances.

The residuals do not show a great trend with magnitude, which might indicate that a
constant stress drop is not an unreasonable model. The increase of the loess fit at large
magnitudes is mainly due to the residuals of the Tohoku (M = 9.12) event, which suggests
a larger than average source duration for Tohoku (compared to the NGA Sub data). Durations
have been found to be negatively correlated with PGA (Bradley, 2011) based on shallow active
crustal ground motions. The event term of Tohoku is negative in Kuehn et al. (2020), which
would imply a positive event term for duration, so the observation of Figure 9 is in line with
expectation.

The residuals show a positive trend at low values of VS30, indicating longer durations at softer
sites. This trend is in agreement with previous studies (Bahrampouri et al., 2021; Kempton
and Stewart, 2006; Afshari and Stewart, 2016).

6 Discussion

We have presented and compared different parameterizations of additive duration models, based
on the M9 simulations. The models differ in the placement of the random effect of the event
term (affecting both source and path durations, as done previously in the literature, or only
affecting the source duration), as well as in the observation likelihood (lognormal and Gamma).

4available at https://github.com/nikuehn/Duration_M9
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Figure 9: Residuals to Interface NGA-Sub data from Kuehn et al. (2020) with the Gamma
model. The solid black lines show a loess fit (Cleveland, 1979) to the residuals, the dashed
black lines are the mean of the residuals.

We think that the partially decoupled model is more physical (or its interpretation is more in
line with the physical intention). The reason is that the partially decoupled model does not
introduce a different path scaling for each event, and thus the variability of the estimated
source-specific effects represents source duration variability, and is not affected by variability
in distance scaling. We find that the partially decoupled Gamma model performs best of
the three models, both in terms of graphical posterior predictive checks (Figure 8) as well as
when assessed by PSIS-LOO and leave-one event-out training training/test splits (Table 1).
However, the differences between the model predictions are not large (Figure 7), which raises
the question whether it matters which model is used. The mean and median predictions of
all models are very similar, and differences in the fractiles of the predictive distribution only
become pronounced a larger distances. Hence, while the partially decoupled Gamma model is
preferable in terms of its physical interpretation and a slightly better predictive performance,
this is only of concern of the full distribution of the model prediction is needed. Related to
this point is that the predictive distribution is harder to compute for the partially decoupled
models; in the mixed model, the total variance can be calculated as σ2

T = σ2
S +σ2

P , which is not
valid for the decoupled models, and one has to resort to numerical or Monte Carlo integration.

We also find that the Gamma model has better predictive performance compared to the
lognormal model. Published duration models (both multiplicative and additive) generally model
duration with a lognormal distribution. As stated before, we do not think that there is an a-
priori reason to prefer one over the other. Both lognormally and Gamma distributed variables
are positive, continuous, and right skewed, which makes these distributions reasonable choices
for duration data. The two models are both similarly easy (or complex) to fit, with similar
results, so we believe more research is necessary to assess which model is better. In particular,
the Gamma model should be applied to a real data set of observed duration models, to check
whether the conclusions drawn from the M9 simulations also apply there.

There are advantages to using a lognormal model over the Gamma model. A lognormal
model allows to easily model correlations of (log) duration residuals with residuals from PSA
GMMs (Bradley, 2011). Such correlations can help to constrain duration model regressions
(Stafford, 2008). In addition, the development of spatial correlation models for within-event
residuals are easier with normally distributed residuals, though such models are not common
(one exmple is Huang et al. (2020)).

By contrast to the lognormal and mixed model, which model the median of the duration
distribution, the Gamma model is parameterized by a function for the mean of the distribution.
This requires some care when comparing models, but it is easy to convert from median to mean
for the lognormal model. This raises a more general question: when a point estimate of ground-
motion duration is used, which one should be used? Possible choices are the median, the mean,
or the mode, which are all different fro the lognormal and Gamma distribution. Bora et al.
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(2014) used the median prediction of their duration model to calculate response spectra via
random vibration theory (RVT) in conjunction with an empirical Fourier amplitude spectrum
(FAS) model, but switched to the mean in Bora et al. (2015) and Bora et al. (2019). Lavrentiadis
and Abrahamson (2021) used the median duration (D5−85 of (Abrahamson and Silva, 1996) in
their RVT calculations. Duration model predictions may be used in stochastic simulations
(Boore, 1983, 2003), as for example in Sokolov and Chernov (2001) or (Bommer et al., 2017).
Often it is not clear which duration (mean or median is used), but given that most models use a
lognormal distribution, it is implicitly the median. Green et al. (2020) sample from the duration
distribution to calculate liquefaction hazard. It is probably application dependent whether it
makes sense to neglect duration variability (it might not matter, it might be computationally
too demanding), but if the variability is taken into account, the different models can potentially
lead to different results.

As shown in Table 1, the predictive performance of the mixed model is much better compared
to the lognormal model when conditioning on estimated event terms, but similar when testing
against a new event. Since the event terms of the mixed model also account for event-specific
distance scaling, this suggests the simplistic path model (with a constant distance scaling) can
be improved. The 30 events are all simulated at the same stations, so the path effect is less of
regional effect (like different scaling due to different paths because events are located in different
regions), but is due to local differences in paths, which can arise due to different location,
orientation and depth of the subevents used for simulation. Adding an event-specific distance
scaling term to the partially decoupled models (modeled as a random effect to coefficient r2)

leads to a large improvement with values of ∆êlpdPSIS−LOO = +265.8 for the Gamma model

and ∆êlpdPSIS−LOO = +75.1 for the lognormal model, compared to the Gamma model without
event-specific distance scaling (the best model according to Table 1).

When estimating a model on observed data such as the NGA-Sub data, we would expect
differences in distance scaling between events/regions, similar to (partially) nonergodic effects
in PSA models (Stafford, 2014). Several of the NGA-Sub models (e.g. Kuehn et al., 2022;
Parker et al., 2021; Abrahamson and Gülerce, 2022) include regional adjustment terms to
account for differences in anelastic attenuation and linear site scaling. It is easy to include
regional similar random effects structures in both the mixed and partially decoupled models.
Moving to more fully nonergodic models (Anderson and Brune, 1999), incorporating a cell-
specific distance scaling model (Kuehn et al., 2019; Dawood and Rodriguez-Marek, 2013) into
both models should pose no conceptual problem. Nonergodic models based on spatially varying
coefficient models (Bussas et al., 2017; Landwehr et al., 2016) can also be included, but should
be done in the parameterization of Kuehn (2021), where the nonergodic latent effects are not
integrated out.

The models presented in this paper do not include site scaling, i.e. scaling whith VS30 and/or
Z1.0/2.5. In the literature of (mixed) additive duration models, site scaling has been included
as an additive (Abrahamson and Silva, 1996; Kempton and Stewart, 2006) or multiplicative
term (Bahrampouri et al., 2021; Afshari and Stewart, 2016). In general, the partially decou-
pled models can accommodate both possibilities, and one should assess the implications when
developing new models.

We only briefly touched upon within-model epistemic uncertainty associated with the mod-
els. The epistemic uncertainty is quantified via the posterior distribution of the parameters,
which is shown in Figures 3 and 4. The uncertainty of the coefficients translates into uncertainty
of model predictions, which generally should not be ignored. Plots of the epistemic uncertainty
associated with the model predictions, similar to Figure 7, are shown in the electronic sup-
plement (Figure S12)5. For the presented models, the epistemic uncertainty is rather small,

5available at https://github.com/nikuehn/Duration_M9
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Figure 10: 90% credible intervals for the epistemic model predictions and the full predictive
distribution.

which is due to the data distribution. There are 30 events, all of the same magnitude, and all
records are simulated at the same stations, so the data coverage is quite extensive compared
to an empirical model. The influence of the epistemic uncertainty on model predictions in the
M9 duration models is small, but we would expect it to be larger for models based on observed
data. Figure 10 shows the 90% credible intervals against distance, calculated as the 95% frac-
tile minus the 5% fractile. Shown are the intervals for the epistemic uncertainty (Figure S12)
and the full predictive distribution (Figure 7). At longer distances, the mixed and lognormal
models show a larger difference in the predictive distribution compared to the Gamma model.
The epistemic uncertainty of the mixed model increases stronger with distance than for the
other models. This is due to the slightly wider posterior distribution of r2 for the mixed model
seen in Figure 3. As discussed before, the mixed model formulation leads to event-specific
distance scaling, so we can interpret the r2 coefficient as a mean distance scaling coefficient.
It is informed by the distance scaling of the 30 events, and hence is based on less data, which
leads to larger uncertainty. This is similar to the larger uncertainty of the global model in a
partially nonergodic GMM compared to an ergodic global model (e.g. Kuehn et al., 2022).

When applied to observed data, the M9-models are strongly biased (Figure 9), though the
scaling with magnitude as well as the long-distance scaling seem to be in agreement with the
data scaling. Hence, we do not advise to use the models directly, but we believe that it can be
used to provide informative prior distributions for some parameters of an empirical subduction
duration model.

This paper is concerned with the estimation of additive duration models. We have illustrated
the different models with theD5−75-significant duration. Some experiments indicate that similar
conclusions can be drawn for D5−95, but we have not made a comprehensive analysis like for
D5−75. We do not expect major differences for other significant duration measures apart from
the values of the parameters. Absolute and bracketed durations (i.e. duration measures based
on exceedance of a certain threshold acceleration) decrease with distance (e.g. Bommer et al.,
2009; Stafford, 2008), so models for them require more adjustment.

Code Availability

The Stan and R codes to run the analyses are available at https://github.com/nikuehn/

Duration_M9.
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