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ABSTRACT A corrected transport velocity formulation
(CTVF) based solver is developed to study the deformation of
elastic structures under hydrodynamic loads. CTVF is adopted
to handle both fluid and structural dynamics. The current
solver’s advantage is to eliminate inhomogeneous particle
distribution in fluid flow and tensile instability in elastic
structures. A ghost particle-based approach is used to handle
the coupling between the fluid and solid phases. The proposed
scheme is verified by simulating a few test cases, which we
validate with exact analytical solutions. As an application, we
simulate an elastic plate deformation due to dam-breaking
fluid.
Keywords: Smoothed particle hydrodynamics; Fluid-structure
interaction; Transport velocity formulation

I. INTRODUCTION
Fluid-structure interaction (FSI) is a common engineering

problem that is seen in daily life. Some examples include the
deformation of the wind turbine blade due to the fluid flow,
the flow traversal due to the deflected blade, blood flow in
heart value, coastal engineering, and vortex-induced vibration
[28], [5]. An accurate study of FSI can allow us to optimize
the systems where FSI is dominant. However, studying the
FSI phenomena through experiments or analytical techniques
is complex due to its nonlinear behavior.

Mesh-based schemes such as finite element method (FEM)
[14] and finite volume method (FVM) [11] have been used for
the last few decades in modeling the FSI problems. However,
mesh-based methods are not favorable when dealing with free
surface flow problems or problems involving large deformation
of the structure. This is due to explicit free surface tracking, and
mesh distortion [16] while dealing with large deformation solids.
Therefore, meshless methods are preferred while handling FSI
problems involving free surfaces, multiphase flows, and large
deformation in solids. The smoothed particle hydrodynamics
(SPH) and material point method (MPM) are more commonly
used to model the fluid phase. While the solids are modeled
with SPH or Reproducing Kernel Particle Methods (RKPM), or
the Discrete Element Method (DEM) [9], [13]. These meshless
techniques have been coupled for the past two decades to model
the fluid-structure interaction. A few schemes with SPH and
MPM are SPH-DEM [29], SPH-TLSPH [22], SPH-RKPM [19],
SPH-Peridynamics [26], MPM-DEM [23]. For more, see the
review by [12]. In the current work, we use SPH to handle FSI
problems.

In SPH, fluids are modeled primarily using two approaches,
one by assuming they are weakly compressible and another by
considering them incompressible. Though SPH is successful in
modeling fluid flows, it suffers from particle pairing and irreg-
ular particle distribution problems resulting in poor function

approximation [21] and unstable simulations. To homogenize
the particles, [30] adjusts the particle positions after each
timestep. Then, the particle properties are adjusted to the new
position using Taylor series approximation. Later, Adami [2]
proposed a transport velocity formulation (TVF) scheme where
the particles are moved with a ”transport velocity” rather than
the momentum velocity. TVF is applied to internal fluid flow
problems. Zhang [32] extended the TVF formulation and called
it the generalized TVF (GTVF) and applied it to free surface
problems and elastic solids. However, while extending TVF,
GTVF has missing terms and is sensitive to the particle shifting
technique (PST). [3] proposed a corrected TVF (CTVF) scheme
where the missing terms in TVF are incorporated and is robust
to the PST. While handling elastic solids with SPH, the classical
SPH [8] faces tensile instability and results in numerical fracture.
[8] has proposed adding artificial stress, [7] introduces stress-
points in addition to the existing particles, [24] modifies the
equation of state to eliminate the tensile instability. CTVF
can eliminate tensile instability and handle higher Poisson
ratios. While CTVF is also robust to different PST. FSI in
SPH is modeled by several works, such as, WCSPH-Total
Lagrangian SPH (TLSPH) [31], WCSPH-Updated Lagrangian
SPH (ULSPH) [4], ISPH-TLSPH[22].

Handling FSI problems with the transport velocity formu-
lation framework is advantageous as it can solve the tensile
instability issue in solid dynamics and inhomogeneous particle
distribution in fluids. In the current work, we handle FSI
problems by the CTVF method, where both fluids and solid
phases are modeled using CTVF alone. To validate the proposed
method, we consider three numerical test cases. A uniformly
distributed load over a clamped beam (UDL) problem is
considered to validate the elastic dynamics of CTVF. An
aluminum plate over a hydrostatic tank for FSI validation
is considered. Finally, it is applied to a fluid flow hitting
an elastic plate. Here, the deformation of the elastic plate
is compared against the experimental results. A convergence
analysis is undertaken for both UDL and elastic deformation
under hydrodynamic load problems.

II. METHODOLOGY
We follow CTVF formulation to model the fluid and solid

phase. Following CTVF, the particles are moved with a transport
velocity rather than the momentum velocity, with which we
get a homogenized particle distribution as well as it eliminates
the tensile instability. In the next two sections we show the
discretized equations of both fluid and solid phase. Please see
[3] for more details.

A. Discrete equations of the fluid medium
The governing equations of the fluid are conservation of

mass and momentum. Following the weakly compressible SPH
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scheme, we use an equation of state to complete the system.
The SPH discretization of the continuity equation (1) and the
EDAC based [20] pressure evolution equation (2) respectively
are,

d̃ρa
dt

=
∑
b

mb

ρb
(ρa ũab + (ρ (ũ − u))ab) · ∇aWab, (1)

d̃pa
dt

=
∑
b

mb

ρb

(
(pa−ρac2s) uab + pa ũab − (p (ũ−u))ab +

4 νedac
pa − pb

(ρa + ρb)(r2
ab + 0.01h2

ab)
rab

)
· ∇aWab. (2)

Where d̃
dt is the material derivative, with ũ being the transport

velocity of the particles, uab = ua − ub. Similarly, the
discretized momentum equation for fluids is written as,
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= −
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[(
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ρ2
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I−
(

Aa

ρ2
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ma
(3)

where Aa = ρaua⊗(ũa−ua), I is the identity matrix, η is the
kinematic viscosity of the fluid and [17] formulation is used to
discretize the viscosity term. Πab is the artificial viscosity [15]
to maintain the stability of the numerical scheme. It is given
as,

Πab =

{
−αhabc̄abφab

ρ̄ab
uab · rab < 0,

0 uab · rab ≥ 0,
(4)

where,
φab =

uab · rab
r2
ab + 0.01h2

ab

, (5)

where, rab = ra − rb, hab = (ha + hb)/2, ρ̄ab = (ρa +
ρb)/2, c̄ab = (ca + cb)/2, and α is the artificial viscosity
parameter. FaFSI is the force due to the interaction with elastic
structure. This force modeling is explained in section II-D. We
utilize the ghost particle approach proposed in [1] to handle
the boundaries.

B. Solid phase modeling
Similar to discretized fluid governing equation, the elastic

structure equations are (1), and the momentum equation,

d̃ua
dt

= −
∑
b

mb

[(
pa
ρ2
a

+
pb
ρ2
b

)
I−
(
σ

′

a

ρ2
a

+
σ

′

b

ρ2
b

+ΠabI

)]
·∇aWab

+ ga +
FaFSI

ma
, (6)

while the additional stress terms, A in momentum equation of
solid mechanics are not considered as it has a negligible effect.
An equation of state is utilized to link the pressure with density
following a weakly compressible SPH scheme. Jaumann stress
rate equation is solved to evolve the shear stress, given as,

d̃σ
′

a

dt
= 2G(ε̇a −

1

3
ε̇aI) + σ

′

aΩ
T
a + Ωaσ

′

a (7)

The SPH discretization of the gradient of velocity is given as,

∇ua = −
∑
b

mb

ρb
(ua − ub)⊗ (∇aWab), (8)

where ⊗ is the outer product. With the strain and rotation
tensors as,

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (9)

and Ωij is the rotation tensor,

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (10)

C. Transport velocity computation
The particles in the current scheme are moved with the

transport velocity,
dra
dt

= ũa. (11)

The transport velocity is updated using,

ũa(t+ ∆t) = ua(t) + ∆t
d̃ua
dt

+

(
dua
dt

)
c
∆t (12)

Where
(
dua

dt

)
c is the homogenization acceleration which

ensures that the particle positions are homogeneous. In the
current work we have used Sun’s [25] PST to homogenization
the fluid medium while iterative PST (IPST)[10] for the solid
phase. According to [3] the force formulation of [25] is,(
dua
dt

)
c

= −M (2h)c0
∆t

∑
b

[
1 +R

(
Wab

W (∆x)

)n]
∇aWabVb,

(13)
where R is an adjustment factor to handle the tensile instability,
and M is the mach number of the flow. Vb is the volume of
the bth particle, c0 is the speed of sound. The acceleration is
modified to account for particles on the free surface. Here,
R = 0.2 and n = 4 are used. Please see [3] for detailed
explanation of PST.

D. Fluid-structure interaction
Coupling is handled in a straight forward way in SPH.

While modelling the fluid phase and treating the fluid-structure
interactions, the structure particles are assumed to be boundary
particles. From the boundary handling given in Adami [1],
we compute the pressure of the boundary particles from the
extrapolated equation as,

ps =
ΣfpfWsf + (g − as) · ΣfρfrsfWsf

ΣfWsf
. (14)

Here, as is the acceleration of the structure particles. The
subscript f denotes the fluid particles and s denotes the structure
particles. By the extrapolated pressure, hydrodynamic density
of structure properties are computed. Please note that the
pressure we set here are only pertaining to the FSI force
and does not correspond to the real pressure or density of the
structure particles. By utilizing the previously set hydrodynamic
properties on the structure, the interaction force is computed
using,

FiFSI = −mi

∑
a

ma

(
pi
ρ2
i

+
pa
ρ2
a

+ Πia

)
∇iW (xia) (15)

where i is fluid particle, a is structure particle.
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III. RESULTS AND DISCUSSION
A. Uniformly distributed loading (UDL) on a clamped beam

In the first test case, we validate the structural part of the
current solver. We chose a homogeneous elastic plate clamped
on both ends acted upon by a uniformly distributed load (q = 20
Nm-1) as shown in fig. 1. The beam’s length (L) and height (H)
is 0.2 m and 0.012 m, respectively. The mechanical properties

Figure 1: The schematic of a clamped elastic beam being
acted upon by a uniformly distributed load.

of the plate are set as E = 107 Pa in Young’s modulus, ν = 0 in
Poisson’s ratio and ρ = 1000 kgm-3) in density. The numerical
solution of the y-displacement at the center of the beam is
compared against the analytical counterpart. The analytical
solution for the deflection of a uniformly distributed beam
clamped at both ends is given by

η

(
L

2

)
=

qL4

384D
, (16)

where, D is defined as Eh3

12(1−(ν)2) . We consider three particle
resolutions such that, 10, 15, and 20 particles along the beam’s
width are used. We run for a total physical time of 2 seconds.

Figure 2 depicts the time history of y-displacement of the
beam center for different particle resolutions computed using
the current solver compared against the analytical solution.
From fig. 2, we can see that the current solver can accurately
predict the displacement of the clamped beam. Convergence of
the current scheme is captured in fig. 2, and the computational
results are within a reasonable variation of the analytical
solution with the variation of the particle spacing.

B. Hydrostatic water column on an elastic plate
In this example we study the deformation of an elastic plate

due to the hydrostatic water column. We utilise the current
example to examine the accuracy and convergence of the current
solver. The schematic of fluid with the elastic beam is shown in
fig. 3 along with the initial pressure distribution in the fluid. The
figure includes the dimensions as well. The material properties
of the beam are, a density of 2700 kgm-3, with an Young’s
modulus of 67.5 GPa, and a Poisson ratio of 0.34. The material
properties of the fluid are, a density of 1000 kgm-3, with a
dynamic viscosity of 0 kgm-1s-1. We consider two particle
resolutions such that we get 10, 15 and 20 particles along the
width directing of the beam. We run the simulation for a total
physical time of 3 seconds. The y-displacement at the center
of the beam is compared against the analytical with the current
numerical solver for quantitative validation. Here, the beam
deflection computed using an analytical expression results in a
deflection d = −6.85× 10−5 m.
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Figure 2: Time variation of the y-displacement of the center
of the beam for three different resolutions, compared
against the analytical result.

Figure 3: Schematic of the hydrostatic water column on an
elastic plate. Fluid particle color represents pressure.

Figure 4 shows the particle plot of the fluid along with
the elastic solid at time 2 seconds with color of the fluid
particles describing the pressure. This snapshot corresponds
to the highest particle resolution i.e., 20 particles along the
width direction. From the fig. 4, we can see that the current
solver produces a smooth pressure distribution demonstrating
the stability of the current solver. Figure 5 depicts the time
history of y-displacement of the beam center for different
particle resolutions computed using the current solver compared
against the analytical solution. From fig. 5 we can see that
the current solver is able to predict the displacement of the
clamped beam within the vicinity of the analytical results. Also
as the particle spacing is reduced, the beam displacement is
converging as well.

C. Water impact onto an elastic plate
In this case, we study the deformation of the elastic plate

due to the impact of a dam breaking flow. Figure 6 shows
the initial positions of fluid and the structure inside the dam,
including the dimensions. Following [27] we set the material
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Figure 4: Snapshot of the fluid and the elastic structure at
time 0.5 sec including the pressure of the fluid.
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Figure 5: The mid-span deflection of the structure under
hydrodynamic loading with time for different resolutions,
compared against the analytical and the numerical result
of [18]

properties of the elastic plate, a density of 2500 kgm-3, with
an Young’s modulus of 106 Pa, and a Poisson ratio of 0. The
material properties of the fluid are, a density of 1000 kgm-3,
with a dynamic viscosity of 0 kgm-1s-1. A particle spacing of
5 × 10−4 m is taken, resulting in a total of 182911 particles,
which includes fluid, structure and solid wall. We run a total
physical time of 0.7 seconds. Here the fluid is initially released
which attains a certain velocity by the time it impacts the
structure. The structure will obstruct the fluid making it rise
and the fluid will deform the elastic plate. The fluid will rise
and hit the other end of the dam, following it comes back and
hits the structure from the back. For a quantitative validation,
we compare the current solver results to the other numerical
techniques.

Figure 6: Schematic of the dam-break flow impacting an
elastic plate. All dimensions are in meters.

Figure 7 shows the snapshots of the fluid and the elastic
structure at different time instances. From fig. 7, we can see
that the fluid after hitting the structure rises and hits the other
end of the tank and travels back to hit the structure again. The
time variation of the x-displacement of the elastic structure is
compared against other numerical results [27], [6]. From the
fig. 8 we can see that the displacement computed by the current
solver is with in a vicinity of the other results produced.
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(a)

(b)

(c)

Figure 7: (a) Snapshot of the fluid and the structure at
different time stamps - Water impact onto an elastic plate.
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Figure 8: Time histories of horizontal displacement of the
free end of the elastic structure compared against the
numerical results of [27], [6]- Water impact onto an elastic
plate.

IV. CONCLUSIONS
CTVF is able eliminate several issues SPH faces while

solving fluid and solid problems. Through particle shifting
techniques as well as incorporating the missing terms CTVF is
able to produce better approxmiation in simulating fluid prob-
lmes, also it is adaptable to different PST techniqes. Similarly
with PST the newly CTVF eliminates tensile instability while
solving the elastic dynamics probnlems. With the adavantages
in mind, we solve both fluid and solid phases in simulating
FSI problems with CTVF with this approach we are able to
handle FSI problems.

We validated the current schemes by solving a UDL problem
to test the structure equations and an aluminium plate over
a hydrostatic tank where an analytical solution is available
is utilized to validate the FSI part of the current solver. The
current solver is applied to wave front arising due to a dam
break hitting a steady elastic plate, here the deformation of
the elastic plate is compared against the experimental results.
A convergence analysis is undertaken for both fundamental
benchmarks, UDL and hydrostatic tank.

For the future work, we plan to extend the current solver
being extended to handle the anisotropic structures and 3D FSI
problems.
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