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Abstract

Temporal and spatial Fourier transforms are natural tools in the study of propagating waves in many applications.
For example, the inverse spatial Fourier transform specifies how any wave can be built by summing plane waves.
However, sign conventions necessary to describe waves are at odds with sign conventions used in spatio-temporal
Fourier transforms. This note describes the problem and shows several ways that authors deal with it.

1 Introduction

THERE IS a slightly uncomfortable relationship between
how plane waves are expressed mathematically and

how the Fourier transforms used to describe and analyze
them are expressed. This note will discuss some of the vari-
ous approaches that authors take.

Authors of “wave” books tend to describe a wave as some
function s (t , x) = p (kx −ωt ) or s (t , x) = p (kx +ωt ) with
p (·) a kind of base function and where the former form de-
scribes a wave propagating in the forward x direction as
t increases and the latter form a wave propagating in the
−x direction with increasing t , both assuming that k and
ω are positive. Some other authors, perhaps of the signal
processing bent, insert a negative sign in the argument, as
in s (t , x) = p (ωt ±kx) with again the − form propagating
forward and the + form propagating backward1. While all of
these are solutions to the one-dimensional wave equation

∂2s

∂x2 = 1

c

∂2s

∂t 2

with the constraint that k =ω/c as can be verified by direct
substitution, the “wave” forms reverse the base function p in
time and thus if the wave s is considered to be emitted from
an antenna or a loudspeaker, it will come out backwards
which is probably not as intended. In three dimensions, the
generic wave can be described with a spatial wave vector
x = (

x, y, z
)′ as s (x, t ) and the wave equation as

∇2s = ∂2s

∂x2 + ∂2s

∂y2 + ∂2s

∂z2 = 1

c

∂2s

∂t 2 . (1)
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1Some authors use forms such as p [± (ct ±x)] or p [± (t ±x/c)] but since
these are mere scalings of the argument we shall not consider them to be
essentially different than the cases presented.

While any function s as described will work as a wave,
it is often convenient to use a sinusoidal expression called
a monochromatic wave. In that case, for forward traveling
waves and wavenumber vector k described below, we have

s (t ,x) = p (ωt −k ·x) = e±i (ωt−k·x) (2)

which is used with the usual caveat that the real part is to be
taken, or in the case of radar and communication systems,
that quadrature processing is used in the receiver to recover
both real and imaginary parts. ω is identified as the tem-
poral radian frequency of the sinusoid in radians/s and in
one dimensional cases k = |k| is identified as the spatial ra-
dian frequency in radians/m; we allow their cyclic frequency
counterparts f and ν defined by ω = 2π f and k = 2πν as
well, and we will use either form at will, for example, express-
ing the same monochromatic wave above as

s (t ,x) = e±i 2π( f t−ν·x). (3)

Spatial radian frequency is commonly called the wavenum-
ber. The three-dimensional counterpart to k is the wavenum-
ber vector k = (

kx ,ky ,kz
)′ with each component indicating

the wavenumber in each direction and |k| is the wavenum-
ber in the direction of propagation which is indicated by the
unit vector k̂ = k/|k|; the cyclic frequency vector ν is defined
by k = (

νx ,νy ,νz
)′ = 2πν. If loci of constant function value—

phase for the monochromatic case—can be constructed as
straight lines or planes orthogonal to k then the wave is
called a plane wave.

One-dimensional Fourier transforms are traditionally de-
fined with a “sign-i ” convention as follows, first for the for-
ward transform from time t to frequency f and then for the
inverse transform (sometimes the substitution ω = 2π f is
used but that does not concern us here). These temporal
transforms are calculated at a fixed location in space, letting
t and f be variable.

S f
(

f ,x
)= ˆ s (t ,x)e−i 2π f t d t (4)
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s (t ,x) =
ˆ

S f
(

f ,x
)

e i 2π f t d f . (5)

Spatial Fourier transforms are also useful and we would like
to maintain the same sign-i convention. Thus we hopefully
write

Sν (t ,ν) =
ˆ

s (t ,x)e−i 2πν·xdx (6)

s (t ,x) =
ˆ

Sν (t ,ν)e i 2πν·xdk, (7)

now fixing time and letting the spatial and wavenumber
variables become the transform variables. The latter equa-
tion is of special interest because it shows that any wave s
can be expressed as an infinite summation, an integral, of
plane waves over all directions and wavenumbers. This is
the important concept of the plane wave spectrum and is the
spatial corollary of composing any time function from an
infinity of sinusoids as in (5) above.

Note the similarity between the exponential form describ-
ing the monochromatic wave (3) and the exponential form
inside the Fourier transforms. This is important because
wave fields often can be advantageously studied by using
their Fourier transforms. The uncomfortable situation arises
when one considers that it would be interesting to take the
Fourier transform of a wave with respect to either time t or
space x, but those variables have different signs in the wave
function—how do we make the inverse Fourier transforms
fit our notion of a plane wave? A perusal of a few books
reveals that authors deal with this in different ways.

2 Approaches

In [1] a four-dimensional transform pair is used, combining
time and three spatial dimensions. A plane wave is repre-
sented by

s (t ,x) = e i (ωt−k·x) (8)

and, separating the authors’ four-dimensional transform
into time and space transforms, the time-frequency inverse
transform is as in (5) and thus the forward transform is as
in (4). (Note that we are freely mixing radian and cyclical
frequency variables as promised, and focusing on the signs
in the complex exponentials.) However, to accommodate the
spatial variables’ reversed sign, the definition of the spatial
transforms is redefined as

Sν (t ,ν) =
ˆ

s (t ,x)e i 2πν·xdx

and

s (t ,x) =
ˆ

Sν (t ,ν)e−i 2πν·xdk,

with reversed signs relative to our hoped-for forms of (6) and
(7). In [2] the same convention p (ωt −k ·x) is used for waves,
either general or monochromatic. However, it is unclear
what conventions are used for Fourier transforms.

The approach used in [3] defines a plane wave as in (8)
but an alternate wavenumber vector which is the same as de-
fined herein except with a negative sign. Thus, this alternate
vector points in the direction opposite to the propagation
direction. While this might seem odd, it is used in a chap-
ter in which an antenna array is described and the reversed
vector points in the direction of arriving plane waves, op-
posite to their direction of propagation if transmitted. It is
difficult to find an actual Fourier transform definition in this
multi-author book but one supposes that this negation of
the wavenumber vector has the further advantage of using
the traditional i -signs of (4) through (7), i.e., for both time
and space transforms.

Reference [4] is an acoustics book describing radiating
surfaces and defines plane waves as

s (t ,x) = e i (k·x−ωt), (9)

the back-ward-in time form. The i -sign problem is dealt
with by keeping the traditional form of the spatial Fourier
transform in (6) and (7) but defining a non-traditional, sign-
reversed form for the time-frequency transforms,

S f
(

f ,x
)= ˆ s (t ,x)e i 2π f t d t

s (t ,x) =
ˆ

S f
(

f ,x
)

e−i 2π f t d f .

The same method is used in [5], another “wave” book. In [6]
waves are initially described by both time and spatial vari-
ables as in (9) but quickly the time dependence is dropped,
referring only to the “amplitude distribution” of the field;
time-frequency Fourier transforms are never used and the
traditional sign convention of (6) and (7) prevails.

Many authors structure their presentations of waves so
that the time dependence of the wave s (t ,x) is carefully ig-
nored, or rather, put in the background. This can be done
through the use of a version of phasors that electrical en-
gineers typically learn in circuit and system analysis, or by
simply stating that the time dependence is “understood”
as in [7], in any case, carrying along only the magnitude
and phase of sinusoids. In the study of waves, removing
the time dependence leaves a phasor that is the complex
amplitude as a function of the spatial coordinates x. An as-
pect of this approach involves taking the Fourier transform
with respect to time of the wave equation (1) resulting in the
time-independent Helmholtz equation [8]

∇2s +k2s = 0.

It should be remembered that the time dependence such
as exp(iω0t ) can always be reinserted as needed, in either
circuit or wave studies, to recover the actual signal or wave.
In these texts, typically one-dimensional Fourier transforma-
tion is presented with time and frequency as the conjugate
pair and two- or three-dimensional Fourier transforms are
presented with k and x or ν and x as the transform pairs.
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The temporal and spatial analyses are not merged and so the
traditional forms (4), (5), (6), and (7) suffice in these texts.
The use of the phasor approach is easy to justify but restricts
analyses to monochromatic fields. Many applications can’t
always be restricted to waves comprised of single sinusoids.
For example radar where wideband signals are commonly
used, or audio signals where even short segments of waves
can cover much of the 10 octaves available to human hear-
ing. In these cases the wave must be considered as at least a
discrete sum of sinusoids or a continuous sum of sinusoids,
thus the need for a time-frequency Fourier transform. Even
so, under test conditions, these wideband systems can be
excited with sinusoids and the simplified phasor approach
returns with success.

In contexts such as the study of radar, the time depen-
dence of the waves is sometimes the main concern and
many authors will simply state that the time-defined one-
dimensional waveform is emitted from an antenna, trav-
els to an object r m distant were it is reflected back to
the receiver. A round-trip delay is simply stated as being
2r /c. Conventional i -signs are adequate then. However,
in imaging radars, the wave nature can provide a conve-
nient framework for understanding as well as a source of
image reconstruction algorithms [2], [9]. Situations arise
where the Fourier transform is performed in either the time-
frequency domains or in time and one, two, or three space-
wavenumber domains at the same time or in various combi-
nations of time and space domains.

Also in the radar setting, the transmitted, outgoing, wave
can be described as propagating in the increasing direction
of a coordinate axis, a forward propagating wave. But the
reflected, returning, wave, typically of more interest, is then
usually a backward propagating wave along the same coor-
dinate axis [10]. In this situation, both terms of the propa-
gation exponent have the same sign, e i (ωt+k·x), and both the
favored forms (4) and (5) can be used for time-frequency
transforms and (6) and (7) for space-wavenumber trans-
forms.

Three other methods are available for dealing with this
problem of waves versus transforms. First, simply interpret
either the time or spatial axes, which ever is problematic, as
being drawn backwards and reverse plots or images graphi-
cally as needed. Second, reverse the sense of the base func-
tion p (·) as needed, i.e., change the sign of its argument.
This will swap the reversal to the other domain relative to
time or space but this might be acceptable depending on
the application. Third, when computing the Fourier trans-
forms using a machine discrete Fourier transform (DFT)
usually implemented as some fast Fourier transform (FFT)
algorithm, simply use the opposite kind of DFT, i.e., use a

forward transform when an inverse transform is indicated
and vice versa, but correcting the amplitude scaling as nec-
essary since these algorithms can have different amplitude
scaling for the two kinds, forward or inverse.

3 Version History

• July 27, 2018. First published.

• July 12, 2019. Add this section. Correct several typo-
graphical and typesetting errors. Correct definition of
f and ν. Expand radar comment. Minor textual fixes
and improvements. Add a reference. Minor formatting
changes.
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