Experimental Natural Frequency evaluation of Carbon and Glass/Polyester Composite moderately thick plates

Mosadak Kadem* Corresponding author
Mazaya University College, Nasiriyah, Iraq
Email(concurrent007@gmail.com)

Abstract
This study examined two methods for producing carbon and glass/polyester composite plates and discussed which one was best based on mechanical properties for different volume fractions, random stacking sequences, and ply angles (using MATLAB’s random estimation program). It also determined the three natural frequencies experimentally and with the aid of ANSYS. Less than 6% separated the experimentally determined natural frequencies from the calculated results.

Keywords: composite preparation, random fiber design, natural frequency, moderate thick plates.

1. Introduction
During the last three or four decades, computer simulations of physical processes of composite materials have been expanded to very close values to real experimental results.[1][2][3][4][5][6] However, the manufacturing method may exert a variation in the verification of the results due to manufacturing process conditions and environments. This brief is aimed at examining manufacturing environmental effect on plate characteristics and evaluating the natural frequency for the application in hand (i.e., moderate thick composite plate). Fiber-reinforced composite materials are continuing to replace the conventional metals in primary and secondary aerospace structural elements owing to their best mechanical properties
Currently not just aerospace companies use composite in most of their work, cars companies, civil construction companies, sport equipment companies, etc. use composite in most of its works and its use efficient and face significant problems. Fiber-reinforced composite materials are continuing to replace the conventional metals in primary and secondary aerospace structural elements owing to their best mechanical properties
Currently not just aerospace companies use composite in most of its work, cars companies, civil construction companies, sport equipment companies, etc. use composite in most of its works and its use efficient and face not significant problems.
The moderate thick plates are widely used in many things such as cars, aircrafts, civil constructions and the use of first-order shear plate theory give very good result in the design and optimization of moderate thick plates and commonly use in all over the world because of the behave of the moderate thick plates that make the neglecting of the effect of normal stress that perpendicular to the plate possible.
At 1981 Zafer Gurdal et al. [7], developed a programming solution using Fortran77 based on linear programming to find the optimal design for composite laminates for buckling constraints. Their work based on few cases to pike one of them as best solution, and they noticed that the linear programming alone and with its simple form not enough for complex design of composite plates.
Seung Jo Kim and Nam Seo Goo, [8] studied in 1992 the use of fuzzy environment to find optimal design of laminated composite plates. Their goal was minimized weight design for composite laminate plates. For them the fuzzy environment was satisfy for predesigned plates but with more lamina the process gets harder and need more time.
At 1993 T. Y. Kam et al. [9] published their paper that deals with dynamic programming with finite element method to find the optimum aspect ratio for laminated moderate thick composite
plates that give maximum stiffness and low weight and find the natural frequencies for the plates. The FEM analysis gave optimization process good tool of numerical analysis but the need of matrices made the time is not dependent factor in their design. Dynamic programming more powerful of linear programming but its still ordinary and classic method of optimization and not efficient like other evolutionary methods of optimization.

Young Shin Lee et al [10], published their paper at 1994 on optimal design of hybrid laminated composite plates with static and dynamic constraints and take ply angle and ply thickness as design variables. They use a linear programming method and nonlinear optimization problem for various hybrid rectangular composite plates with arbitrary boundary conditions.

At 1994 C. Huang and B. Kroplin, [11] presented their research that deals with multi-objective function to minimize while satisfying constraints such as the structural deformation and the limits on design variables, and they performed the stiffness analysis by the finite element method for optimal design of a rectangular thick and moderate thick laminated plate.

For multiobjective function, it was need ignore and cancel terms and not necessary (according researcher viewpoint), and that make the accuracy approaching to optimum not easy to achieved.

At 2001 Pavel Y. Tabakov [12] used improve genetic algorithm to multi-dimensional design optimization combine with finite element method to find best analysis for stacking laminates and show that the stability of evaluation in direct coding less than for binary coding but the first coding much fast in find solution.

At 2004 Roberto Brighenti [13] used genetic algorithm with finite element method to perform the distribution and orientation of the laminates in the composite plates to had best distribution for desire bending load.

At 2005 Erik Lund et al. [14], used discrete material optimization for laminate hybrid composite to find optimal design for desired buckling loads.

A. N. Bambole and Y. M. Desai [15] published their paper at 2007 that dealted with using a novel 27-node three dimensional hexahedral hybrid-interface finite element model to analyze composite sandwich hybrid moderate thick and thick plates using minimum potential energy principal and optimize the thickness and orientation of laminates for bending in plates with multi-supporting conditions.

At 2005, B. Pluch et al. [16], combined finite element method with genetic algorithm to optimize composite hybrid moderate thick and thick structures with variable thickness.

M. Kemal Apalak et al. [17], studied at 2007 layer optimization and stacking sequence using a model of hybrid artificial intelligence method based on a genetic algorithm foundation and accelerated by using artificial neural network with the use finite element method as a evaluation technique to find the maximum fundamental frequency. They also made a numerical sequence to optimize layer sequences for maximum fundamental frequency using genetic algorithm with evaluation technique that Ritz-based layerwise

2. Composite Plate Components

2-1 The Matrix

There is one type of resin used in this research to construct the models of hybrid composite plates that is:

Polyester Resin

The use of Polyester resin (NCS 942), that made by SRBS Company. The mixture need to 24 hours or more (according to environmental conditions) to solidification, and the mixture done by 1 unite volume of hardener to 100 unite volume of resin.

2-2 The Reinforcement
The reinforcement of hybrid laminated composite plates should contained at least two different types of reinforcements, so it was use

a) **Fiber Glass Reinforcement**

The fiber glass that used was made by TGI Company and it was from E-glass type. It is commonly use in Iraqi’s markets and consider cheap comparing with other type of reinforcements that used in composite structures manufacturing. Fiber glass has many advantages, such as, good physical properties, high strength to weight ratio, good resistance to chemical agents and it's relatively not costly.

b) **Carbon fibers reinforcement**

Using carbon fibers as other reinforcement associated with glass fibers to make hybrid composite plates.

2-3 Specimen Preparations

For composite plates making, there is many ways to do that and each method or way specify to specific purpose, so the mass production manufacturing differ from laboratory specimen made. Hand lay up is the method that used in this study to make laboratory specimens.

The balance that used was made by (Nahuhunda company) and it calibrated using 1 litter of distill water. After calibration of balance and made it ready for use, it was required to find the density of fibers

\[
D = \frac{w}{vol}. \tag{1}
\]

Where \(d\) is density, \(W\) and \(V\) are weight and volume respectively (the densities which have been used in this work are shown in Table (1)), and that be by first determine of weight to amount of fibers then emerge if in distill water contained in beaker and find out the change in volume before and after fibers emerging and do that to matrix after solidification too. The weights of fibers sample and sinker apparatus found using balance made by EHB Adams company.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density(Kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/F</td>
<td>1509</td>
</tr>
<tr>
<td>G/F</td>
<td>2340</td>
</tr>
</tbody>
</table>

Where C/F was Carbon fiber and G/F was Glass Fiber.

Suitable mold is one of important thing to do to make composite plates, it should be chemical stable for composite materials (no chemical reaction between mold and composite materials) and have good shape (and that depended on method of making composites). To proceed with preparing, first it should heat the mold to remove moisture and the appropriate temperature that used is about 100oC using domestic oven for two minutes, and then (after it cold) coats the inner sides of mold and edges with insulator material and waits it to dry. The dry may take 25 to 55 minuets, so the use of low speed of hair dryer to dry molds is saving the time.

Other method used to prevent sticking of made plates with molds that using wax. The mold heated and put wax on its warm surface, the wax melt and spread out all over mold surface. The heating done using the oven. The second step is to cut fibers bands with in the range of wanted length, and the third step is to mix resin's components (monomer and polymer). The mixing must be good and fast to assure the full distribution of hardener all over resin material to result good and homogeneous polymer. Then paint first layer of resin inside the mold then spread fibers carefully and press them gently, then put the second layer or resin and then fibers until have the desired composite. That the fourth step.

The next step was made by to ways

- **The first used way**
The cast of laid composite layers was covered by a 6 mm glass sheet the weight of glass sheet is and pressed by using 50 kilograms of athletics weights and after 72 hours in open atmosphere (the made of samples done in ranged of temperature between (60-140) C at January the thirteen so the range of preparing time changed according to temperature and environmental conditions).

- The second used way

Use the experimental device to precede solidification of composite plate.

The mold press to make the (Hardener) loss as minimum as possible and to force air bubbles to leave and the pattern using insulated plate of glass (6mm) and weights about 10 kilograms and put inside sucking chamber to insure evacuation of air bubbles, as well as heating sucking chamber. The heating is by use a secondary container with hot water flow in it from electric boiler (30 litter water capacity) to control temperature.

The sucking chamber is a pressure pot connected with fitted 7.5 cm steel tube after removing the one way valve of the pot and sealed with epoxy steel (manufactured by MJM Company), wrapped with rubber of a tube of Bike then wrapped by medical gypsona.

Use a medical sucker (manufactured by MEDAP, Model P820, West Germany) as a device to induce negative pressure in the pot using -0.2 bar according to its gage see Fig. (1).

Fig. (1) Schematic diagram for sucker device

The sucker operation is put on and off with a timer of 5 on and 5 off minute alternatively to avoid damage in the sucker. The pressure pot put in plastic sunk which is used as a hot bath to keep the pressure pot at temperature (50-60) o C. Providing the sunk with two plastic taps one above and one bellow to provide a current of hot water flow 150 drops per minute to keep the path hot at (50-60)o C for 48 hours. The plastic sunk is covered by double layers of plastic sheet used in agricultural green houses and from around and below, the plastic sank wrapped with a wool blanket. Use room (2*2 square meter area *3 meter height) provided with a square window (45 cm side length) closed with a glass sheet and fitted with industrial cork use in packing fridges then sealed of a peace of clothe. The room is warmed by 1000 watt electric heater (manufactured by National company) according the availability of electricity. The lower space of door and key opening filled with ordinary domestic sponge. After 48 hours the specimen is ready to extract from mold and that is by easy depending on good coating of insulator and mold shape. The cutting of samples of test was made using angel grinder that manufacture by HORCE Company with use cutting wheel (100 mm, A-30-S), and drill made by Reshan company with grinding head. The wasted material is difficult to be calculated because of -manual processing -shattering and spreading of the materials particles.

3. Mechanical Properties Determination
The tensile test device used in this research made by (TSG) company, and its feature was drawing data on special paper. The strain gage device used associated with tensile test apparatus. The strain gage that used manufacture by omega Company made of Nickel foil and its resistance was 25 ohms with tolerance around 25 ohms, the calibration done with specific known mechanical characteristics steel specimen in temperature of woke and it was about 250°C. The cleaning of surface of composite specimen required with a special cleaner liquid. After cleaning the envelope of strain gage removed and stamped the gage slowly and takes a few hours to inshore good adhesion then the test began.

The nine independent elastic material properties required for a 3D lamina based analysis were listed as (E1, E2, E3, G12, G13, G23, ν12, ν13, and ν23). Preparing a tensile test samples based on ASTM 2003 standard (D638) to evaluate young modulus for all three directions (E1, E2, E3). The first samples set cut with the direction of fiber to calculate E1 and a second set cut perpendicular to it to calculate E2.

For tensile test the apparatus draw a relation between calculated force and its action representing with elongation, and the original area and length are known so

\[
\sigma = \frac{P}{A_o}
\]

Where

F=force in Newton and Ao area in m²

\[
\varepsilon = \frac{\Delta L}{L_o}
\]

Where

\(\Delta L\) = change in length and \(L_o\) is original length in m

So

\[
E = \frac{\sigma}{\varepsilon}
\]

An assumption used to calculate E3 that E2 equal E3, so they are both perpendicular to fibers direction. A strain gages used associated with tensile test by put it in 90° to tensile direction for calculating (ε2) to find out Poisson’s ratio (ν12), (ν23)

Where

\[
\nu = \frac{\varepsilon_{lateral}}{\varepsilon}
\]

The value of (ν12) assumed equal to (ν13). Equation (6) used to find G12

\[
G_{12} = \frac{1}{4E_{45}} \left(\frac{1}{E_1} + \frac{2\nu_{12}}{E_2} \right)
\]

Where E45 is modulus of elasticity to sample cut with angle 45° from fibers direction. The assumption of equality of G12 and G13 used in this work, and G23 could be found from equation (7)

\[
G_{23} = \frac{E_2}{2(1 + \nu_{23})}
\]

4. Vibrational Tests

A frame made to achieved simply supported case. The frame consist of two sharp knife edges jaws and hold together by four screws

Using the results of optimizations programs, the hybrid laminated composite plates constructed, then using home made force vibration device to vibrate the plate with known frequencies and
recording the response to find out first three natural frequencies. Use MATLAB Simulink to build wave generation system to generate controlled sin wave goes to the vibrator in addition to build recording system to record the respond wave induced in simply supported plate. The recording done by home made small micro phonic recording system stick on upper middle side of the plate

Test done by generate waves and record it to out put files as audio files. The generations raise in frequency by 100 Hz every step, and then comparing outputs using audio analyzer software to find out at what frequency the amplitude of recording files is the largest one, so the frequency is the natural frequency. The estimation of starting frequency and end frequency based on ANSYS results.

5. Model Formulation in ANSYS Program
Building a finite element model requires more of an ANSYS 5.4 use's time than any other part of the analysis. First, job name and analysis title are specified then preprocess is used to define the element types, element real constants, material properties, and the model geometry.

5-1 Defining Element Types
The ANSYS element library contains more than 100 element type. The element type determines among other thing:
1 - The degree of freedom set
2 - Weather the element lies in two dimensional or three dimensional space
The element type that used in this work was SHELL99 (see Fig. (2) and for more information see ANSYS help)

![Fig. (2) ANSYS5.4 element type that used](image)

5-2 Defining Element Real Constants
Element real constants are properties that depend on the element type, such as cross-sectional properties of a beam element, for example area, moment of inertia, initial strain, height, etc.

5-3 Defining Material Properties
Depending on the application, the material properties may be:
1. Linear or non-linear
2. Isotropic, orthotropic, or anisotropic
3. Constant temperature or temperature depended.

5-4 Creating the Model Geometric
Once the material properties have been defined, then generating a finite element model–nodes and elements that adequately describe the model geometry. With solid modeling, the geometric shape of model is described, and then instructs the ANSYS program to automatically mesh the geometry with nodes and elements, and then control the size and shape of the elements that the program creates.

5-5 Apply Loads and Obtain the Solution
In this step, the solution processor is used to define the analysis type and analysis options,
apply loads, specify load step options, and initiate the finite element solution. The main goal of a finite element analysis is to examine how a structure or component responds to certain loading conditions. The element used SHELL99 (for more descriptions see ANSYS help). The mathematical model was FSDT with Navier’s solution.

6. Results

This section deals with experimental and numerical results and discussion which are found out in this thesis as follows:
- Mechanical properties results of composite plates experimentally
- Optimal design results of composite plates numerically through three programs
- Natural frequencies results of composite plates experimentally and numerically with comparison.

Tensile strength in the fiber direction a unidirectional fiber-reinforced composite material deforms as the load increases in the following four stages, more or less, depending on the relative brittleness or ductility of the fibers and the matrix:
A) Both fibers and matrix deform elastically
B) The fibers continue to deform elastically, but the matrix deforms plastically
C) Both the fibers and the matrix deform plastically
D) The fibers fracture followed by fracture of the composite material

6-1 Mechanical Properties Results

As said before, two different ways used to prepare hybrid composite plates, and they discussed in chapter four. The test done to samples of plates made by the two mentioned ways and using testing apparatus.

In this research three volume fractions used to achieve best mechanical properties and they are 30%, 40%, 50%, and using the necessary methods.

6-1-1 First Method of Preparing Group

Taking three volume fractions percentage, gave the following results

<table>
<thead>
<tr>
<th>Glass Fibers\Polyester</th>
<th>Carbon Fibers\Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1(GPa)</td>
<td>23</td>
</tr>
<tr>
<td>E2(GPa)</td>
<td>7.2</td>
</tr>
<tr>
<td>E3(GPa)</td>
<td>7.2</td>
</tr>
<tr>
<td>(\nu_{12})</td>
<td>0.39</td>
</tr>
<tr>
<td>(\nu_{23})</td>
<td>0.43</td>
</tr>
<tr>
<td>(\nu_{13})</td>
<td>0.39</td>
</tr>
<tr>
<td>G12(GPa)</td>
<td>2.93</td>
</tr>
<tr>
<td>G23(GPa)</td>
<td>2.83</td>
</tr>
<tr>
<td>G13(GPa)</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Table (3) Mechanical properties of first method of preparation For 40% volume fraction

<table>
<thead>
<tr>
<th>Glass Fibers\Polyester</th>
<th>Carbon Fibers\Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1(GPa)</td>
<td>29.73</td>
</tr>
<tr>
<td>E2(GPa)</td>
<td>9.06</td>
</tr>
<tr>
<td>E3(GPa)</td>
<td>9.06</td>
</tr>
<tr>
<td>(\nu_{12})</td>
<td>0.35</td>
</tr>
<tr>
<td>(\nu_{23})</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Glass Fibers \ Polyester</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
</tr>
<tr>
<td>E1 (GPa)</td>
<td>22.8</td>
</tr>
<tr>
<td>E2 (GPa)</td>
<td>6.</td>
</tr>
<tr>
<td>E3 (GPa)</td>
<td>7.1</td>
</tr>
<tr>
<td>v12</td>
<td>.38</td>
</tr>
<tr>
<td>v23</td>
<td>.42</td>
</tr>
<tr>
<td>v13</td>
<td>.38</td>
</tr>
<tr>
<td>G12 (GPa)</td>
<td>2.91</td>
</tr>
<tr>
<td>G23 (GPa)</td>
<td>2.8</td>
</tr>
<tr>
<td>G13 (GPa)</td>
<td>2.91</td>
</tr>
</tbody>
</table>

Table (5) Mechanical properties of second method of preparation For 30% Volume Fraction

<table>
<thead>
<tr>
<th></th>
<th>Glass Fibers \ Polyester</th>
<th>Carbon Fibers \ Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 (GPa)</td>
<td>24.1</td>
<td>E1 (GPa) 111.8</td>
</tr>
<tr>
<td>E2 (GPa)</td>
<td>7.1</td>
<td>E2 (GPa) 2.18</td>
</tr>
<tr>
<td>E3 (GPa)</td>
<td>7.1</td>
<td>E3 (Gpa) 2.18</td>
</tr>
<tr>
<td>v12</td>
<td>.32</td>
<td>v12 .28</td>
</tr>
<tr>
<td>v23</td>
<td>.38</td>
<td>v23 .4</td>
</tr>
<tr>
<td>v13</td>
<td>.32</td>
<td>v13 .28</td>
</tr>
<tr>
<td>G12 (GPa)</td>
<td>3.1</td>
<td>G12 (GPa) .896</td>
</tr>
<tr>
<td>G23 (GPa)</td>
<td>2.72</td>
<td>G23 (GPa) .92</td>
</tr>
<tr>
<td>G13 (GPa)</td>
<td>3.1</td>
<td>G13 (GPa) .896</td>
</tr>
</tbody>
</table>

Table (6) Mechanical properties of second method of preparation For 40% Volume Fraction

<table>
<thead>
<tr>
<th></th>
<th>Glass Fibers \ Polyester</th>
<th>Carbon Fibers \ Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 (GPa)</td>
<td>32.133</td>
<td>E1 (Gpa) 149.06</td>
</tr>
<tr>
<td>E2 (GPa)</td>
<td>9.46</td>
<td>E2 (Gpa) 2.906</td>
</tr>
<tr>
<td>E3 (GPa)</td>
<td>9.46</td>
<td>E3 (GPa) 2.906</td>
</tr>
<tr>
<td>v12</td>
<td>.32</td>
<td>v12 .28</td>
</tr>
<tr>
<td>v23</td>
<td>.38</td>
<td>v23 .4</td>
</tr>
<tr>
<td>v13</td>
<td>.32</td>
<td>v13 .28</td>
</tr>
<tr>
<td>G12 (GPa)</td>
<td>4.13</td>
<td>G12 (GPa) 1.19</td>
</tr>
<tr>
<td>G23 (GPa)</td>
<td>3.62</td>
<td>G23 (GPa) 1.22</td>
</tr>
<tr>
<td>G13 (GPa)</td>
<td>4.13</td>
<td>G13 (GPa) 1.19</td>
</tr>
</tbody>
</table>

Table (7) Mechanical properties of second method of preparation For 50% Volume Fraction

<table>
<thead>
<tr>
<th></th>
<th>Glass Fibers \ Polyester</th>
<th>Carbon Fibers \ Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 (GPa)</td>
<td>40.16</td>
<td>E1 (Gpa) 186.33</td>
</tr>
<tr>
<td>E2 (GPa)</td>
<td>11.83</td>
<td>E2 (Gpa) 3.633</td>
</tr>
<tr>
<td>E3 (GPa)</td>
<td>11.83</td>
<td>E3 (Gpa) 3.633</td>
</tr>
</tbody>
</table>
6-2 Vibration Characteristics Results
ANSYS program used to find out the natural frequencies and modes for prepared plates and using the device that discussed in section three, and the results are:

Stacking sequence and Ply angles

<table>
<thead>
<tr>
<th>Stacking sequence</th>
<th>v12</th>
<th>.34</th>
<th>v12</th>
<th>.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12(GPa)</td>
<td>5.16</td>
<td>G12(GPa)</td>
<td>1.493</td>
<td></td>
</tr>
<tr>
<td>G23(GPa)</td>
<td>4.55</td>
<td>G23(GPa)</td>
<td>1.533</td>
<td></td>
</tr>
<tr>
<td>G13(GPa)</td>
<td>5.16</td>
<td>G13(GPa)</td>
<td>1.493</td>
<td></td>
</tr>
</tbody>
</table>

Table (8) Three Natural Frequencies Numerically and Experimentally

<table>
<thead>
<tr>
<th>Theoretical first three natural frequencies (Hz)</th>
<th>Experimental first three natural frequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6566.2</td>
<td>10333</td>
</tr>
<tr>
<td>7066.7</td>
<td>11165</td>
</tr>
<tr>
<td>6566.1</td>
<td>10378</td>
</tr>
<tr>
<td>6835.7</td>
<td>10744</td>
</tr>
<tr>
<td>6706.5</td>
<td>10527</td>
</tr>
<tr>
<td>6835.7</td>
<td>10799</td>
</tr>
<tr>
<td>6955.8</td>
<td>10927</td>
</tr>
<tr>
<td>6706</td>
<td>10571</td>
</tr>
<tr>
<td>10431</td>
<td>11182</td>
</tr>
<tr>
<td>10386</td>
<td>10872</td>
</tr>
<tr>
<td>10680</td>
<td>10871</td>
</tr>
<tr>
<td>10818</td>
<td>11083</td>
</tr>
<tr>
<td>10635</td>
<td>6400</td>
</tr>
<tr>
<td>10000</td>
<td>10300</td>
</tr>
<tr>
<td>10200</td>
<td>10300</td>
</tr>
<tr>
<td>10700</td>
<td>10700</td>
</tr>
<tr>
<td>10200</td>
<td>10300</td>
</tr>
<tr>
<td>10700</td>
<td>10700</td>
</tr>
<tr>
<td>10100</td>
<td>10100</td>
</tr>
<tr>
<td>10800</td>
<td>10800</td>
</tr>
</tbody>
</table>

The simulations of the three modes of vibration could be seen in Fig. (3)

Fig. (3) Three Modes of Vibration for Rectangular Plate

7. Discussions
The experimental results taking for two kinds of plates prepared by two different ways, and tested by tensile test apparatus for each tensile test it took the average of five specimens, and other mechanical properties calculate using the equations (5),(6). It can show from Table (2) to (7) that the brittleness increases with the increasing of the volume fraction and for more discretion the relation between chosen characteristics for first plate preparation method were taken as example (see Figs. (4) and (5))
Second way of preparation gave better results than first way, because of negative atmospheric pressure that help evacuate air from lamina. Mechanical properties of second plate preparation method (that been noticeable in Tables (2) to (7)) better than first method of preparation of plates, so the mechanical properties database chosen in optimization programs be of the second plate preparation method. The effect of volume fraction on mechanical properties obvious from results tables (Table (2) to (7)), the increase in volume fraction increases the value of strength and also increase Poisson's ratio. Programs data base build on volume fraction 30% so it was more ductile and that give it more flexibility of response with loads comparing with other volume fraction plates. Excited frequencies, (natural frequencies), are a property of the system. Amplified vibration, called resonance, occurs when a generated frequency is tuned to a natural frequency. An excited natural frequency is a resonant condition. Resonance in rotating machinery is the same as an amplifier in electronics. Therefore, excessively high vibration amplitudes are often encountered. ANSYS program used to identify and calculate natural frequencies, and mode shapes. A vibrator used to induce natural frequencies in prepared plates that analyzed using ANSYS as discussed in chapter four. The results showed high values of natural frequencies and that agreed with ref. [18-25]. The difference in natural frequencies results between experimental and theoretical values about 6%.

9. Conclusions
Following are the main summarized conclusions drawn from this paper:
1- It could be seen that the second method of preparing of composite plates was more efficient from the first way, and that could be because of the effect of the negative atmospheric pressure that make lose of air bobbles more easy and efficient.
2- During putting loads on plates in the first method the layers and fibers moved clustering in places, so load distribution on all over plate been unequal and made it more weaken.
3- The difference between the experimental and numerical finding of natural frequencies were less than 6%. The high value of natural frequencies could be noticed, because of the complex
composition of plates in the microstructure, so every fiber and even the chain of matrix materials give a special response in its direction and the wide variety of play angle gave its this specialty.

4- The mechanical properties of composite plates are used in this thesis which has been found out experimentally and compared with its relevant used in ref. [26], found almost same behaviors.

References