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Abstract—Structural design problems considering strength,
buckling, and damage could be computationally demanding. In
order to overcome the computational challenge, the global-local
approach has been developed. In this method, first, an approx-
imate analysis of the entire structure is performed. Following
this, a smaller area of interest in the structure is selected, and a
detailed analysis is performed considering boundary conditions
from the global analysis. This article provides a brief overview
of such global-local techniques used by different researchers for
structural design.

Index Terms—Structural Design, Buckling, Global-Local Anal-
ysis

Design of structural components are constrained optimiza-
tion problems which requires analysis and constraint deter-
mination related to strength and buckling [1]–[20]. Structures
subjected to compressive load can fail due to buckling before
reaching the compressive strength limits. Once the structure
buckles, its deformed configuration changes consistently as
well as its stiffness reduces. This means that the behavior of
the structure is nonlinear or equivalently that the stiffness of
the structure depends on the deformed configuration. This type
of behavior of structures is known as post-buckling behavior.

Generally, experimental tests related to the instability of
structures (i.e., flat panels) are performed by fully constraining
two edges of the structure whereas the other two edges may
be unsupported or supported [21]. The structure is then end-
loaded under compressive force. Actually, this is the con-
figuration used for the measure of the residual strength of
a composite structure after an impact (or Compression after
Impact tests).

Pietropaoli and Riccio [21] conducted buckling and post-
buckling analysis of composite stiffened panels using Finite
Element Analysis. Numerical tools like Finite Element Method
provide a very general and flexible modeling approach. How-
ever, including damage into the composite structure increases
the degree of complexity of the finite element models and
requires enormous computational time and storage space. As a
solution to this limitation, the global-local analysis technique
could be used. The global-local analysis is a technique that

helps in reducing the high computational complexity of struc-
tural problems without affecting the accuracy of the results
[22]. During the last four decades, this technique has gained
popularity among researchers for solving complex structural
problems. The procedure starts by an approximate analysis of
the entire structure. Then, a smaller area of interest in the
structure is selected (for example the damage location) and
it is called local region or local zone. A detailed analysis
is performed to this local zone considering the boundary
conditions resulting from the output of the global analysis.
An extensive review of the global-local analysis technique
has been provided by Kapania, et al. [23] and Haryadi, et
al. [24]. A. K. Noor [25] has applied the global/local tech-
nique for predicting nonlinear and post-buckling responses of
stiffened and unstiffened composite panels. Global-local FEM
approaches are generally used in several technical applications
such as managing 3-D stress analysis in the case of bonded
joints, computing J-Integrals in Fracture Mechanics problems
[26], or obtaining Stress Intensity Factors (SIFs) in corners or
fillets [24], [27]–[29].

Mote Jr. [30] is one of the first few researchers to apply
the global-local method to solve the structural problems. He
developed a combined global and local dependent variable
representation, which couples the traditional finite element
and Ritz methods. He illustrated the method by solving
a beam and a plate vibration problem. Zienkiewicz, et al.
[31] and Belytschko, et al. [32] used a combination of fi-
nite element and boundary element methods for global-local
analysis. Belytschko, et al. [33] developed a methodology
for enhancing the accuracy of finite element solutions of
problems with higher gradients by superimposing the spectral
approximation on subdomains. Many researchers have applied
the global/local computational approaches successfully for
composite structures [34]–[37]. In most of these works, the
structural zooming was performed in order to obtain a higher
level of accuracy in the stress state at the selected regions and
the characterization of the different damage mechanisms that
can lead to the structural collapse. Ransom and Knight [34]
applied the global/local technique to composite panels. In their
approach, they used spline interpolation functions to determine
the boundary condition from the output of the global analysis



and use it in the local analysis. Reinoso, et al. [37] applied
global/local techniques to model the response of composite
structures including degradation process at the interfaces.

Jara-Almonte and Knight [38] described a new approach
of modeling the sub-regions of interest. They specified the
stiffness and force from the whole model solution at the nodes
of the boundary of the sub-region. Hirai, et al. [39] found
out stress concentration factor around a circular hole in a
rectangular plate under in-plane load using a finite element
zooming technique. This method involves several zooming
steps. In each zooming step, the zooming area becomes
smaller and displacements at the boundaries are taken from the
previous zooming step. Multiple zooming steps were proposed
for a better accuracy of the result. However, this model is not
always satisfactory because all the previous steps are needed
to go to a new step [23].

Kapania, et al. [23] used a simple and accurate global-
local method for stress analysis of stepped, simply supported
isotropic and composite plates under the action of a static
uniform transverse pressure. In the first step, they determined
the response of the plate in the absence of the hole. This
solution was augmented using a perturbation function to
account for the presence of the hole. In the second step, a small
area around the hole was analyzed using the finite element
method for accurate analysis around the hole. Displacements
and rotational boundary conditions for the local region were
obtained from the Ritz method used in the first step. Subse-
quently, Haryadi, et al. [24] used this approach for the analysis
of a composite plate with a crack under the action of a uniform,
transverse static pressure. Islam and Kapania [40] discussed
the efficiency and accuracy of the global/local finite element
method applied to a curvilinearly stiffened panel with cracks.
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