INTERMITTENT ELECTRIFICATION WITH BATTERY LOCOMOTIVES AND THE POST-DIESEL FUTURE OF NORTH AMERICAN FREIGHT RAILROADS

Alex Lu
John G. Allen
John P. Aurelius

TRB 2023
Train 121 with FEC 807 and 302 (LNG Fuel Tender)
Flickr User BBT609 photo (CC BY 2.0)
BATTERY-ELECTRIC VS. DIESEL

- 5,000 gals
 - 190 MWh
- 3,750 gals
 - 142.5 MWh
- 2,500 gals
 - 95 MWh
- 1,250 gals
 - 47.5 MWh
- Refuel

1,000 miles

- 14.5 MWh
- 200-mile Electrified Segment
- 200-mile Electrified Segment

- 4 hours
 - hauling @ 3.3 MW
 - (4,400 hp)
- 4 hours
 - charging @ 3.7 MW +
 - hauling @ 3.3 MW
- 4 hours @ 7.0 MW

Lineart by RailToonBronyFan3751 at DeviantArt (CC-BY NC 3.0)
Figure 3(a)

Cumberland Subdivision

Charge Remaining (MWh) vs Mile

- Theoretical Maximum (95%)
- Charge Rate Limited (C/4)
- No Regen (Worst Case)
CASE STUDY – INTERMITTENT
CASE STUDY – CONTINUOUS

Figure 5(c)
Figure 6(a,b)
Figure 6(c,d)
Lifecycle Cost Analysis (Sample Class I)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Base Case</th>
<th>B1-B4</th>
<th>C1-C3</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifecycle Cost ($ billions)</td>
<td>$0</td>
<td>$5</td>
<td>$10</td>
<td>$15</td>
</tr>
<tr>
<td>E.T. Infra.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Locos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Locos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal MOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comms MOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.T. MOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T&S MOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T&E Crews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scenarios:
- Base Case = Diesel Service Only
- B1-B4 = Intermittent + Battery Electric, Phases 1 thru 4
- C1-C3 = Continuous Electrification, Phases 1 thru 3
- Full = Total Mainline Electrification

Discount Rate = 5%

All Maintenance Costs are NPV.
PRACTICAL ISSUES

• Proving high-capacity battery-electric locomotives
• Clearances for double-stack trains
• Non-electrified routes for high/wide loads
• Effects of extreme climate in North America
• Impacts on signal systems and maintenance practices
Indian Western Railways operates a electric double-stack container train from Palanpur to Botad in Gujarat, June 10, 2020; Piyush Goyal photo (India Government Open Data License via indianrailways.gov.in)
Trees in the Comm and Signal Power Lines
Anthony Anderson photo
NEXT STEPS

• Federal assistance: demonstration programs
• Commodity flow analysis: where to build?
• Business case analysis: what’s in it for me?
• Joint network, capacity, and infrastructure planning by railroads with electric utilities
FIGURE 5
TRAFFIC DENSITY ON
SIGNED MAINLINES IN REGION

Rail Service in the Northeast and Midwest Region
U.S. Department of Transportation (1973)
INSTITUTIONAL MECHANISMS

• Tax credits
• Joint ventures
• Infrastructure improvement grants
• Cap-and-trade
• “Cash for clunkers” for diesel locomotives
CONCLUSIONS

• Discontinuous electrification is workable with battery-electric locomotives
• Technology is rapidly developing and should be ready for service within a few years
• Alternating about every 200 miles between electrified and non-electrified