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Abstract

Octane sensitivity (OS), de�ned as the research octane number (RON) minus the motor octane number
(MON) of a given fuel, has gained interest among researchers due to its apparent e�ect on knocking conditions
in internal combustion engines. Compounds with a high OS enable higher e�ciencies, especially with respect
to advanced compression ignition engines. RON/MON must be experimentally tested to determine OS;
however, the experimental methods utilized require a substantial amount of time, a signi�cant monetary
investment, and specialized equipment. To this end, predictive computational models trained with existing
experimental data and molecular properties would allow for the preemptive screening of compounds prior
to performing these experiments. The present work proposes two methods for predicting the OS of a given
compound: using arti�cial neural networks (ANNs) trained with quantitative structure-property relationship
(QSPR) descriptors to predict RON and MON individually to compute OS from RON/MON predictions
(derived octane sensitivity, dOS), and using an ANN trained with QSPR descriptors to directly predict
OS. ANNs trained to predict RON and MON achieved test set root-mean-square errors (RMSEs) of 10.499
and 7.551 respectively. dOS calculations were found to have a test set RMSE of 6.432 while predicting OS
directly resulted in a test set RMSE of 7.019, showing it is more bene�cial to obtain OS from RON/MON
predictions than predicting it directly. Furthermore, relationships between individual QSPR descriptors
and RON/MON/OS are discussed, highlighting correlations between speci�c molecular features and these
properties.
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1 Introduction

1.1 Octane Number, Octane Sensitivity

Octane number is representative of the ignition quality of a gasoline-like fuel in a spark ignition engine; speci�cally, it is
a measurement of the fuel's ability to resist knock (occurrence of autoignition before spark ignition due to high pressure)
[1]. Two distinct octane number indices are used to quantify knock, research octane number (RON) and motor octane
number (MON). RON is typically utilized to represent real-world engine conditions while MON is typically utilized to
represent high-performance engine conditions, and their experimental procedures re�ect this with respect to Cooperative
Fuel Research engine inlet temperature and revolutions per minute [2] [3]. Each procedure requires two reference fuels to
measure the RON/MON of a given compound, the most common being n-heptane and isooctane (2,2,4-trimethylpentane)
which form a 0-100 scale. Tetraethyllead may be introduced to isooctane to increase the range of the scale to 0-120. A
higher value of RON/MON indicates a higher resistance to knock. These experimental procedures require large quantities
of each reference fuel and the compound to be measured (approximately 500 mL), as well as a considerable amount of
time to carry out the procedures [4].

The octane sensitivity (OS) of a compound is de�ned as the di�erence between its RON and MON (RON −MON), and
is used to measure the di�erence in performance of the compound at varying engine conditions. Studies have shown that
the OS of a compound a�ects its ability to resist knock at varying pressures and temperatures [5] [6], speci�cally that
a lower sensitivity at low load/pressure and a higher sensitivity at high load/pressure both yield a higher resistance to
knock [7]. Knock is generally seen as a barrier for researchers who work towards increasing the e�ciency of spark-ignition

1



engines, and a comprehensive understanding of autoignition and knock has yet to be achieved. It is therefore paramount
that further studies of knock, including the nuanced role of OS, are performed to produce a better understanding of
knock and ultimately raise the e�ciency of spark-ignition engines.

1.2 Fuel Property Prediction

A diverse set of methods exists for predicting numerous combustion-related properties of hydrocarbons and oxygenated
compounds. Consensus modeling, comprised of non-linear and linear models, has been utilized to predict the cetane
number (CN) of alkanes and cycloalkanes [8]. Additional studies have shown that arti�cial neural networks (ANNs)
trained using experimental data and cheminformatic descriptors can accurately predict the CN of isopara�ns and diesel
fuels [9]. Furthermore, ANNs trained with experimental data and quantitative structure-property relationship (QSPR)
descriptors, numerical variables describing various physical, chemical, and electromechanical aspects of a given compound,
have been shown to accurately predict the CN of a variety of molecular classes including furanic compounds derived
from renewable resources [10]. ANNs have also proven to be successful in predicting the RON/MON of gasolines and
gasoline blends based on chromatographic analysis and volumetric content respectively [11] [12], however the application
of ANNs for predicting OS is currently very limited.

ANNs are capable of generalizing predictions for data not observed during training based on relationships it observes
between multidimensional (multivariate) input/target training data [13]. The present work utilizes ANNs trained with
experimental RON/MON/OS and QSPR descriptors to create predictive models for each property. QSPR descriptors
are employed due to the extensive range of attributes they describe for a given compound, allowing the ANN to form
complex correlations between multiple compounds and experimental RON/MON/OS. Additionally, using predicted values
of RON/MON to derive OS, or derived octane sensitivity (dOS) (RONpred − MONpred), is investigated, speci�cally
whether a higher accuracy can be achieved compared to using an ANN to predict OS directly. Furthermore, individual
relationships between QSPR descriptors and RON/MON/OS are illustrated, highlighting key components of compounds
that relate to these properties.

2 Experimental Procedure

2.1 Experimental Data

Experimental data for RON and MON was collected from a multitude of sources [1, 14�27], totaling in 344 unique
compounds each with an experimental value for RON and MON. It was determined that multiple sources reported
predicted RON/MON data [1, 15, 27], and this data was therefore not utilized during the ANN training procedure.
Furthermore, compounds that presented themselves as outliers were not considered during the procedure, speci�cally
n-dodecane with RON/MON values of -40, and undecane with RON/MON values of -35. Upon removing compounds
with predicted RON/MON values and outliers the data set consisted of 308 unique compounds. Their OS were calculated
given their experimental RON/MON values (RONexp −MONexp).

The 308 compounds in the data set were split into three subsets, denoted as the training set, validation set, and test set,
80%, 10%, and 10% of the total data set respectively. Compounds for each subset were chosen such that each subset
contained a proportionally equal number of compounds based on the range of experimental OS values. Each property
(RON/MON/OS) utilized these subsets for ANN training, and each subset remained constant to ensure an adequate
comparison of ANN accuracy, speci�cally the ability of the ANNs to generalize predictions for data not observed during
training (test set predictions). Simple molecular-input line-entry system (SMILES) strings were produced/aggregated
for all 308 compounds. alvaDesc was used to generate 5305 QSPR descriptors for each compound using the SMILES
strings, forming unique sets of quantitative values for each compound (https://www.alvascience.com/alvadesc/). QSPR
descriptors and known experimental data for each compound represent the input and target data used by the ANNs
during training.

2.2 Arti�cial Neural Network Training

Random forest regression from the Scikit-learn Python package was utilized to rank each QSPR descriptor by its corre-
lation to RON, MON, and OS, measured by a random forest regression-derived value, importance [28]. A higher value
of importance implies a larger correlation between a given QSPR descriptor and RON/MON/OS [29]. The sum of all
5305 QSPR descriptor importance values is equal to 1, for each property. Regression, and the subsequent ranking of
QSPR descriptors, was performed with respect to the training and validation subsets. The 250 most important QSPR
descriptors for RON, MON, and OS were chosen as input variables for each property's ANN to balance accuracy and
training time. Figure 1 shows the importance values of the 250 most important QSPR descriptors for RON, MON,
and OS. Including fewer QSPR descriptors decreases ANN accuracy, while including more QSPR descriptors increases
training time with relatively insigni�cant improvements in ANN accuracy. Appendix Tables A1, A2, and A3 list the 10
most important descriptors for RON, MON, and OS respectively.

ANNs were constructed using the ECNet Python package, an open-source Python package compiled speci�cally for
constructing predictive models for fuel properties [30]. The ANN architecture for RON, MON, and OS consisted of 250
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Figure 1: QSPR descriptor importance of RON, MON, and OS, ranked from most-to-least important

input neurons (one for each QSPR descriptor), two hidden layers with 128 and 64 neurons, and an output layer with 1
neuron (corresponding to RON, MON, or OS). The recti�ed linear unit activation function was used at each layer with
the exception of the output layer which utilized a linear scaling function. The backpropagation algorithm in conjunction
with the Adam optimization function were used for regression with hyper-parameter values of 0.9 for beta 1, 0.999 for beta
2, 1.0e− 8 for epsilon, 0.01 for learning rate, and 0.0 for learning rate decay [31]. ANNs for each property regressed with
respect to the training subset. After each training iteration (epoch), the mean squared error of the validation subset's
predictions were evaluated; training was terminated once performance ceased to improve for the validation subset to
prevent over�tting. Performance of the ANN was determined given the root mean-squared error (RMSE) of predictions
for the test set, providing a metric for how well the ANNs are able to generalize predictions for data not observed during
training. 25 ANNs were constructed for each property to ensure consistency in results.

In addition to constructing ANNs for OS, the ANNs constructed to predict RON and MON were used to derive OS from
RON/MON predictions, denoted as derived octane sensitivity dOS (dOS = RONpred − MONpred). 25 calculations of
dOS were performed for each subset as a result of the 25 ANNs trained for RON and MON. The RMSEs of each subset
were compared to the subset RMSEs resulting from ANNs trained directly with experimental OS data.

3 Results and Discussion

Figures 2(a-d) show parity plots for training, validation, and test set predictions, averaged across 25 trained ANNs, for
RON, MON, dOS, and OS. The test set RMSEs for RON, MON, dOS, and S were found to be 10.499, 7.551, 6.432, and
7.019 respectively. Center dashed lines represent 1:1 parity, and outside dashed lines represent ± the test set's RMSE.
It is seen that the test set RMSE for dOS is lower than the test set RMSE for OS, indicating that deriving OS from
RON and MON predictions is more bene�cial than predicting OS directly; however, it is apparent that both methods
for predicting OS are relatively similar in accuracy, highlighting the viability of both methods.

Figures 3(a) and 3(b) show the relationships between RON/MON and GATS2m, a QSPR descriptor of high importance
to both RON and MON. Geary autocorrelation indices, such as GATS2m, are quanti�able measurements of resemblance
in neighboring point values; when autocorrelation indices are used with respect to compound structure, they indicate
repeating patterns within a given compound [32]. Furthermore, a higher value of the autocorrelation index implies a
more signi�cant resemblance in neighboring atoms [33]. The visual relationships of GATS2m, an autocorrelation index
weighted by mass, to both RON and MON indicate that a compound with a more uniform distribution of mass (similar
mass distributions at neighboring atoms) leads to the compound having a lower value of RON/MON.

Figure 3(c) shows the relationship between OS and nCsp2, a descriptor with high importance relative to OS. nCsp2
measures the number of sp2 hybridized carbon atoms in a given compound. An sp2 hybridized carbon atom will have
(1) electrons with a higher potential energy than a non-hybridized carbon atom, and (2) trigonal structures, resulting
in three bonds to the hybridized atom and bond angles of 120 degrees. Figure 3(d) illustrates the distribution of OS
at varying values of nCsp2. For each distribution, top and bottom bars represent the minimum and maximum values
of OS, the center bar illustrates the median value of OS, and the width of distribution shows the overall distribution of
OS. It is observed that compounds with 2 and 4 sp2 hybridized carbon atoms tend to have higher values of OS; speci�c
interpretations of the signi�cance of a compound containing 2 or 4 sp2 hybridized carbon atoms as it relates to OS have
yet to be formulated, and warrants further studies into how compound structure a�ects OS.

3



Figure 2: Parity plots showing predicted vs. experimental values for the training, validation, and test subsets

for (a) RON, (b) MON, (c) dOS, and (d) OS

Figure 3: (a) relationship between RON and GATS2m (b) relationship between MON and GATS2m (c)
relationship between OS and nCsp2 (d) distribution of OS at varying values of nCsp2
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4 Conclusions and Recommendations

Based on the results outlined in the present work, it can be concluded that:

• Accurate predictive models can be constructed for RON and MON, with test set RMSEs of 10.499 and 7.551
respectively.

• Predictive models can be constructed for OS; moreover, while using RON/MON predictions to derive OS predic-
tions shows more accuracy than predicting OS directly, both methods prove viable.

• There is an inverse relationship between mass uniformity within a compound and its RON/MON.

• Compounds with 2 or 4 sp2 hybridized carbon atoms tend to have a higher OS.

It is recommended that (1) the proposed models be utilized for screening compounds theorized to result from renewable
resources to accelerate the discovery of cleaner, more e�cient, and economically viable alternatives to gasoline, and
(2) further analysis be performed with respect to QSPR-property relationships, speci�cally to identify key structural
components that relate to RON/MON/OS.

References

[1] A. Demirbas, M. A. Balubaid, A. M. Basahel, W. Ahmad, M. H. Sheikh. Octane Rating of Gasoline and Octane
Booster Additives. Petroleum Science and Technology, 33(11), pp. 1190-1197 (2015).

[2] ASTM D2699-18a Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel. ASTM Inter-
national (2018).

[3] ASTM D2700-18a Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel. ASTM Interna-
tional (2018).

[4] G. Mendes, H. G. Aleme, P. J. S. Barbeira. Determination of octane numbers in gasoline by distillation curves and
partial least squares regression. Fuel, 97, pp. 131-136 (2012).

[5] A. Yates, A. Swarts, C. Viljoen. Correlating auto-ignition delays and knock-limited spark-advance data for di�erent
types of fuel. SAW Technical Paper 2005-01-2083 (2005).

[6] M. Mehl, T. Faravelli, F. Giavazzi, E. Ranzi, P. Scorletti, A. Tardani. Detailed chemistry promotes understanding
of octane numbers and gasoline sensitivity. Energy Fuels, 20(6), pp. 2391-2398 (2006).

[7] J. P. Szybist, D. A. Splitter. Pressure and temperature e�ects on fuels with varying octane sensitivity at high load
in SI engines. Combustion and Flame, 177, pp. 49-66 (2017).

[8] E. A. Smolenskii, V. M. Bavykin, A. N. Ryzhov, O. L. Slovokhotova, I. V. Chuvaeva, A. L. Lapidus. Cetane number
of hydrocarbons: calculations using optimal topological indices. Russian Chemical Bulletin, 57(3), pp. 461-467 (2008).

[9] H. Yang, C. Fairbridge, A. Ring. Neural Network Prediction of Cetane Numbers for Isopara�ns and Diesel Fuel
Petroleum Science and Technology, 19(5-6), pp. 573-586 (2001).

[10] T. Kessler, E. R. Sacia, A. T. Bell, J. H. Mack. Arti�cial neural network based predictions of cetane number for
furanic biofuel additives. Fuel, (206), pp. 171-179 (2017).

[11] J. A. van Leeuwen, R. J. Jonker, R. Gill. Octane number prediction based on gas chromatographic analysis with
non-linear regression techniques. Chemometrics and Intelligent Laboratory Systems, 25, pp. 325-340 (1994).

[12] N. Pasadakis, V. Gaganis, G. Foteinopoulos. Octane number prediction for gasoline blends. Fuel Processing Tech-
nology, 87(6), pp. 505-509 (2006).

[13] S. Baluja, D. Pomerleau.Non-intrusive gaze tracking using arti�cial neural networks. Advances in Neural Information
Processing Systems, pp. 753-760 (1994).

[14] Knocking Characteristics of Pure Hydrocarbons, STP225-EB. ASTM International, West Conshohocken, PA (1958).

[15] T. E. Daubert, R. P. Danner. API technical data book-petroleum re�ning. American Petroleum Institute (API),
Washington DC (1997).

[16] P. Ghosh, K. J. Hickey, S. B. Ja�e. Development of a detailed gasoline composition-based octane model. Industrial
& Engineering Chemistry Research, 45(1), pp. 337-345 (2006).

[17] J. H. Mack, V. H. Rapp, M. Broeckelmann, T. S. Lee, R. W. Dibble. Investigation of biofuels from microorganism
metabolism for use as anti-knock additives. Fuel, 117, pp. 939-943 (2014).

[18] E. Christensen, J. Yanowitz, M. Ratcli�, R. L. McCormick. Renewable oxygenate blending e�ects on gasoline prop-
erties. Energy & Fuels, 25(10), pp. 4723-4733 (2011).

5



[19] R. W. Jenkins, M. Munro, S. Nash, C. J. Chuck. Potential renewable oxygenated biofuels for the aviation and road
transport sectors. Fuel, 103, pp. 593-599 (2013).

[20] S. R. Daly, K. E. Niemeyer, W. J. Cannella, C. L. Hagen. Predicting fuel research octane number using Fourier-
transform infrared absorption spectra of neat hydrocarbons. Fuel, 183, pp. 359-365 (2016).

[21] J. Scherzer. Octane-enhancing, zeolitic FCC catalysts: Scienti�c and technical aspects. Catal. Rev.: Sci. Eng., 31(3),
pp. 215-354 (1989).

[22] sandialabs/BioCompoundML. Retrieved from https://github.com/sandialabs/BioCompoundML/blob/ mas-
ter/bcml/data/RON.txt (2019).

[23] R. L. McCormick, G. Fioroni, L. Fouts, E. Christensen, J. Yanowitz, E. Polikarpov, K. Albrecht, D. J. Gaspar, J.
Gladden, A. George. Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for
Advanced Spark-Ignition Engines. SAE International Journal of Fuels and Lubricants, 10(2), pp. 442-460 (2017).

[24] R. L. McCormick, M. A. Ratcli�, E. Christensen, L. Fouts, J. Luecke, H. M. Chupka, J. Yanowitz, M. Tian, M.
Boot. Properties of oxygenates found in upgraded biomass pyrolysis oil as components of spark and compression
ignition engine fuels. Energy and Fuels, 29(4), pp. 2453-2461 (2015).

[25] . M. J. Pilling. Low-temperature combustion and autoignition. 35 (1997).

[26] A. De Klerk. Fischer-Tropsch Re�ning. John Wiley & Sons (2012).

[27] Cloud�ame. Retrieved from https://cloud�ame.kaust.edu.sa/fuel/octane_calc (2019).

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay. Scikit-learn: Machine
Learning in Python Journal of Machine Learning Research, 12, pp. 2825-2830 (2011).

[29] L. Breiman. Random Forests. Machine Learning, 45(1), pp. 5-32 (2001).

[30] T. Kessler, J. H. Mack. ECNet: Large scale machine learning projects for fuel property prediction Journal of Open
Source Software, 2(17), pp. 401 (2017).

[31] D. P. Kingma, J. Ba. Adam: A method for stochastic optimization. International Conference for Learning Repre-
sentation (2015).

[32] S. A. Klein, C. W. Tyler. Phase discrimination of compound gratings: generalized autocorrelation analysis. Journal
of the Optical Society of America A, 3(6), pp. 868-879 (1986).

[33] D. Chessel. The spatial autocorrelation matrix. Vegetation dynamics in grasslands, healthlands and mediterranean
ligneous formations, pp. 177-180 (1981).

6



Appendix

Table A1: 10 most in�uential QSPR descriptors for MON, their importances, and descriptions

Descriptor Name Importance Description

GATS2m 0.3927 Geary autocorrelation of lag 2 weighted by mass
SssCH2 0.0571 Sum of ssCH2 E-states
SpMaxA_EA(bo) 0.0215 normalized leading eigenvalue from edge adjacency mat. weighted by bond

order
X0Av 0.0132 average valence connectivity index of order 0
SIC1 0.0109 Structural Information Content index (neighborhood symmetry of 1-order)
CIC1 0.0102 Complementary Information Content index (neighborhood symmetry of

1-order)
ChiA_B(s) 0.0100 average Randic-like index from Burden matrix weighted by I-State
GATS6e 0.0086 Geary autocorrelation of lag 6 weighted by Sanderson electronegativity
GATS2e 0.0083 Geary autocorrelation of lag 2 weighted by Sanderson electronegativity
ATSC3s 0.0082 Centred Broto-Moreau autocorrelation of lag 3 weighted by I-state

Table A2: 10 most in�uential QSPR descriptors for RON, their importances, and descriptions

Descriptor Name Importance Description

ChiA_B(s) 0.2300 average Randic-like index from Burden matrix weighted by I-State
SssCH2 0.1957 Sum of ssCH2 E-states
GATS2m 0.1042 Geary autocorrelation of lag 2 weighted by mass
SpMaxA_EA(bo) 0.0373 normalized leading eigenvalue from edge adjacency mat. weighted by bond

order
Eta_L_A 0.0178 eta average local composite index
SIC1 0.0156 Structural Information Content index (neighborhood symmetry of 1-order)
SpMin1_Bh(s) 0.0126 smallest eigenvalue n. 1 of Burden matrix weighted by I-state
NssCH2 0.0085 Number of atoms of type ssCH2
BIC1 0.0084 Bond Information Content index (neighborhood symmetry of 1-order)
GATS6s 0.0074 Geary autocorrelation of lag 6 weighted by I-state

Table A3: 10 most in�uential QSPR descriptors for OS, their importances, and descriptions

Descriptor Name Importance Description

AVS_B(s) 0.0380 average vertex sum from Burden matrix weighted by I-State
nCsp2 0.0344 number of sp2 hybridized Carbon atoms
SIC1 0.0272 Structural Information Content index (neighborhood symmetry of 1-order)
Chi_Dz(p) 0.0268 Randic-like index from Barysz matrix weighted by polarizability
CIC1 0.0250 Complementary Information Content index (neighborhood symmetry of

1-order)
SpMax1_Bh(s) 0.0228 largest eigenvalue n. 1 of Burden matrix weighted by I-state
SpMax_B(s) 0.0225 leading eigenvalue from Burden matrix weighted by I-State
Eta_D_epsiB 0.0202 eta measure of unsaturation
Chi1_EA(ed) 0.0164 connectivity-like index of order 1 from edge adjacency mat. weighted by

edge degree
LLS_01 0.0161 modi�ed lead-like score from Congreve et al. (6 rules)
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