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Abstract

Artificial neural networks (ANNs) are exceptional at forming non-linear correlations between multivariate
input and target variables; however, they are often seen as a “black box” approach, since how ANNs form
these correlations is somewhat ambiguous. Furthermore, the process underlying how ANNs learn from inlier
and outlier samples within the input dataset is not fully understood. Intuitively, it is expected that training
ANNs with inlier samples will increase prediction accuracy and training with outlier samples will reduce
prediction accuracy; though, in practice, this is not always true. The present work identifies and analyzes
inliers and outliers of existing experimental cetane number (CN) data encompassing a variety of compounds
and compound groups. It also investigates how ANNs trained to predict CN perform with and without
outliers included in the training data, and whether a relationship exists between inliers/outliers and ANN
prediction accuracy across the whole dataset and for individual samples. Additionally, individual outlier
compounds are analyzed, highlighting how they structurally differ from inlier compounds.
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1 Introduction

1.1 Fuel Property Prediction
Efforts to reduce carbon emissions and become less dependent on fossil fuels is a broad topic of study, encom-
passing clean energy production, carbon capture, and many other avenues leading to a cleaner future. One
such avenue is the pursuit of cleaner liquid fuels for use in existing engine architectures. Recent efforts explore
the use of biomass-derived fuels or drop-in fuel additives, such as those derived from lignocellulosic biomass [1].
Once a compound is synthesized, it must be determined whether it performs optimally in an engine. Various
methods exist to standardize and measure the compound’s propensity to form soot, its energy density, and its
behavior in an engine; however, these methods are more often than not costly and time-consuming, requiring
specialized equipment and a significant volume of the compound/fuel in question [2] [3]. To this end, methods
for determining characteristics of a compound before it is synthesized or even tested are needed. One such
method is to employ predictive models.

A wide variety of predictive models have been utilized in predicting physical/chemical characteristics of fuels,
bio-oils, and other hydrocarbons. The cetane number (CN) of a fuel, a measurement of ignition quality of the
fuel in a diesel engine, can successfully be predicted using consensus modeling and artificial neural networks
(ANNs) trained with cheminformatic descriptors [4] [5]. Further, ANNs trained with quantitative structure-
property relationship (QSPR) descriptors, which are numerical representations of a multitude of chemical and
physical characteristics of a given compound, have been shown to accurately predict the CN, yield sooting index,
energy density, as well as a variety of cold weather characteristics for a wide range of hydrocarbons [6-8].

1.2 Determination of Inliers/Outliers
Using QSPR descriptors for this regression task presents its own challenges. Experimental fuel property
databases are relatively small in size (numbering in the hundreds of compounds), and QSPR descriptor genera-
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tion software tools often produce descriptors numbering in the thousands. Subsequently, any regression task is
considered underdetermined, i.e., there is either no solution or infinitely many solutions. The inherent "flexibil-
ity" of underdetermined systems leads to variation in coefficient matrices linking predictors and observations,
and it is expected that similarity/dissimilarity between samples greatly affects this variation.

Numerous outlier detection methods aim to quantify the dissimilarity between samples. The most common
algorithms leverage a metric of distance (e.g. euclidean, cosine, Chebyshev, etc.) to measure how close two
samples are to each other in N -dimensional space. Any sample considered too "far away" from all other samples
is considered an outlier. One such method, local outlier factor (LOF), quantifies samples such that samples
with an LOF greater than one are considered outliers, and samples with LOF less than or equal to one are
considered inliers [9].

The present work aims to investigate the role of inlier and outlier samples in training ANNs with QSPR
descriptors to predict CN. Moreover, the ANN’s behavior upon removing outliers from training data is observed,
and the relationship between ANN prediction accuracy and LOF is examined.

2 Experimental Procedure

2.1 Data Preprocessing
Experimental CN data was obtained from a variety of sources including the NREL Compendium of Experi-
mental Cetane Number Data, totalling in 408 unique compounds [10-13]. Simple molecular-input line-entry
system (SMILES) strings were gathered/generated for all compounds and validated using compound entries on
PubChem [15]. 5305 QSPR descriptors were generated for each compound using the aforementioned SMILES
strings and the alvaDesc software package [14].

The data was then normalized and principal component analysis (PCA) was used to reduce the dimensionality of
the dataset while retaining nearly all information present in the original dataset and to ensure that each predictor
is statistically uncorrelated to all other predictors [16]. In addition to providing ANNs with an appropriate
number of input variables with appropriate scales, PCA also allows individual component-response variable
relationships to be observed. Given 408 samples, 408 principal components were generated (the maximum
possible number of components).

2.2 Artificial Neural Network Training
ANNs were trained using the ECNet Python package, an open-source tool tailored to predict fuel properties
[17]. To measure the ability of the ANN to successfully predict all samples in the dataset, the leave one out
(LOO) training methodology was utilized; each sample is removed from training to act as a "pseudo-test set".
Subsequently, 408 separate train/test splits are created. Additionally, ten ANNs are trained for each train/test
split to ensure consistency in results. Results are presented as mean values across all ten ANNs.

ANN architectures consisted of 408 input neurons (one for each principal component), one hidden layer of 256
neurons, and one output neuron (for the response variable, CN). The rectified linear unit (ReLU) activation
function and Adam optimization function were utilized [18], and ANNs were trained for 100 epochs (training
iterations).

2.3 Outlier Detection/Removal
Following the generation of principal components, the LOF algorithm was used to determine which samples are
outliers. To compare ANN performance with and without outliers, the outliers were removed from the dataset,
PCA was performed again, and the aforementioned ANN training procedure was repeated. Median absolute
error and the r-squared correlation coefficient were calculated for ANNs with and without outliers.

Further analysis of outlier samples was performed, such as visualization of principal component-response variable
relationships, comparison of compound structures, and whether a trend exists between inlier/outlier samples
and ANN prediction error.

3 Results and Discussion
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(a) Outliers included during training (b) Outliers not included during training

Figure 1: Parity plots, showing predicted CN vs. experimental CN

Figure 1.a shows the relationship between predicted CN and experimental CN for all 408 compounds, including
outliers (highlighted in orange). In the context of the present work, compounds are considered outliers if their
LOF value is greater than or equal to 2.0. The ten compounds deemed to be outliers are listed in Table 1. It
is observed that six outlier compounds are predicted adequately (within approximately one median absolute
error of parity, denoted by outer dashed lines), while four are predicted poorly. It is worth noting that all
but one of these compounds are oxygenated, contrasting with most samples in the original dataset which are
hydrocarbons. Additionally, most of these outlier compounds contain long carbon chains.

Table 1: Visualization of outlier compounds; keys correspond to highlighted samples in Figures 2.a-h

Name Formula CAS ID Structure Exp.
CN Key

Methanol CH4O 67-56-1 5.0

Hept-1-yne C7H12 628-71-7 22.0

Tributyrin C15H26O6 60-01-5 7.0

Linolenic acid C18H30O2 463-40-1 20.0

Alpha-linoleic acid C18H32O2 60-33-3 31.0

(Z)-octadec-9-enoic
acid C18H34O2 112-80-1 46.0

Stearic acid C18H36O2 57-11-4 62.0

Dihexyl phthalate C20H30O4 84-75-3 48.0

Trilaurin C39H74O6 538-24-9 100.0

Trimyristin C45H86O6 555-45-3 100.0
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(a) Principal component 1 (b) Principal component 2

(c) Principal component 3 (d) Principal component 4

(e) Principal component 5 (f) Principal component 6

(g) Principal component 7 (h) Principal component 8

Figure 2: Relationships between CN and first eight principal components
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After the outliers were removed from the dataset (398 remaining compounds), PCA was re-performed, and
the ANN training procedure was repeated. The resulting relationship between predicted CN and experimental
CN is observed in Figure 1.b. It is evident that ANNs trained after removing outliers perform inadequately
compared to ANNs trained with outliers included in the training data.

These results indicate a dependence on outlier samples to successfully regress on a given dataset; Blatná states
that outliers with respect to predictors, or "leverage points", can be beneficial to regression if the predictor
values are relatively removed from the majority of samples but lie close to the line/curve of regression defined
by the majority of samples [19]. In short, outliers such as these represent "extremes", but generally adhere to
trends defined by inlier samples.

This phenomenon can be visualized by examining the relationship between principal components and the re-
sponse variable, CN, for outlier compounds. Figures 2.a-h show the relationship between the first eight principle
components and CN. Outliers are indicated using stars of various colors. It is observed that every outlier, for one
or more principal components, exists both inside and outside general inlier trends. These results, in addition to
sub-par ANN prediction accuracy without using outliers in training data, suggests that these outlier compounds
are beneficial to ANN training.

Figure 3: Density map showing the relationship between local outlier factor and ANN prediction error

Figure 3 shows a density map which illustrates the relationship between LOF and ANN prediction error. It
appears that samples that are deemed outliers (higher LOF) tend to have lower prediction error; as previously
discussed, if outliers are beneficial to ANN training, then it can be expected that outliers would be key samples
leveraged heavily by the ANN during training to form correlation(s).

4 Conclusions
The present work analyzes how inliers/outliers affect ANN training, the relationship between outlier metrics and
ANN prediction error, and investigates individual outliers with respect to compound structure and principal
component-response variable relationships. In summary:

• Outliers are beneficial in ANN training, ultimately providing ANNs with information that is necessary to
form predictor-target correlations during regression

• A weak relationship exists between LOF and ANN prediction error; i.e., outliers are not consistently
predicted poorly

• Outlier compounds (in general) are oxygenated hydrocarbons, with long carbon chains
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