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Abstract

The development of new membranes, membrane materials, and membrane-based separation processes should
be accompanied by a standardization of the protocols applied for membrane characterization and for system
design by the community of academic and industrial stakeholders. For example, one of the obstacles to
the simple and effective use of the permeate flux equation across dense membranes is the fact that the
magnitude of concentration polarization depends on the flux itself, thus complicating the estimation of the
latter, given a certain membrane permeance and driving force (and, on the other hand, the estimation of
the membrane permeance from flux data in the presence of solutes in the feed solution). Here, a new,
streamlined equation for the calculation of the water flux in pressure-driven dense membrane processes is
presented. In contrast to the classic mathematical expression of the water flux, the proposed equation is
algebraic. This characteristic poses the advantage of simple calculation, whereas the classic equation needs
to be solved iteratively. Non-dimensional variables for water flux, driving pressure, and mass transfer are
introduced as parameters of the new equation. It is shown that membrane characterization and process
design are significantly simplified by deployment of the new algebraic equation and by manipulation of the
non-dimensional variables. In particular, the algebraic water flux equation and the non-dimensional variables
address the effect of concentration polarization and relate this phenomenon directly to a decline in water
flux, allowing for the definition of a filtration efficiency. In addition, a robust protocol for the experimental
characterization of the intrinsic properties of dense membranes is discussed and the results are compared to
those expected from the pure solution-diffusion model of species transport. The use of the non-dimensional
variables introduced in the new algebraic equation allows simpler calculation of the solute permeability
coefficient of the membranes without the need to estimate the solute concentration and the membrane-feed
interface or knowledge of the feed channel mass transfer coefficient.

Keywords: algebraic water flux equation; membrane characterization; non-dimensional water flux, pressure
and mass transfer; process design & optimization; reverse osmosis

1. Introduction

The design and the development of the next-generation membranes for reverse osmosis (RO), nanofiltration
(NF), forward osmosis, and other separation processes based on high selectivity between water and solutes
or among solutes, cannot do without robust membrane characterization protocols and transport modeling
tools [1, 2, 3, 4]. In turn, the deployment of current and future membranes in high-value applications5

require the ability to predict system performance, chiefly membrane flux, in the presence of transport-limiting
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phenomena, such as concentration polarization [5, 6, 7]. While significant efforts are made to synthesize new
dense membranes with materials previously unimaginable, these research endeavors are often accompanied
by unclear and highly differentiated characterization approaches, which limit the fair comparison between
membranes, impair their adoption, and not so rarely thwart the community’s confidence in their applicability.10

In the ideal situation, a standardized, straightforward but robust evaluation procedure including both an
experimental protocol and a data modeling strategy would be applied and would allow the evaluation of
clear, univocal results by all parties, from materials scientist to the final stakeholders.
In processes utilizing an applied pressure on the feed side (RO, NF), when the objective of the research
is the characterization of a membranes, the approach should provide values for the intrinsic permeability15

coefficients of the membrane, namely, that related to water transport (also known as water permeance), A,
and those related to each solute of interest, B [8, 9, 10]. According to the solution-diffusion transport model,
these parameters are solely related to the membrane properties and to the interaction between the membrane
and the relative species in the feed solution, and they do not depend on the experimental conditions or on
the modeling strategy [11]. On the other hand, when the objective of the work is to predict water flux in a20

variety of engineering conditions or applications, and to support the design of such systems, the approach
should provide values for the permeate flux, the system productivity, and/or the system hydrodynamics
properties [12, 4]. Unfortunately, reports on membrane characterization usually include permeate fluxes
and observed rejection rates which, while interesting and consequential for practical purposes, are strongly
dependent on specific testing conditions [13, 14]. Also, the related tests are rarely performed under reliably25

representative conditions of real applications, such as pressure values, hydrodynamics conditions, recovery
rates, feed composition.
One of the main obstacles for the calculation of intrinsic permeability coefficients, especially B, or for the
correct predictions of water flux and relevant rejection rates in real applications, is that concentration polar-
ization must be taken into account [15]. In fact, for conditions under which a solute concentrates significantly
at the membrane-feed interface, both the permeate flux and the observed rejection will be lower than ex-
pected. Accounting for concentration polarization means knowing or being able to predict the hydrodynamics
condition of the membrane housing, whether in laboratory setups or in full-scale modules [16, 17]. Moreover,
when hydrodynamics conditions are identified, from the convection-diffusion equations in the feed channel
follows the well-known water flux equation [18]:

jw = A

[
pf + πp − πf exp

(
jw
kd

)]
(1)

which is a so-called a transcendental equation, because the term jw cannot be isolated. As such, it has to be
solved iteratively, and this necessity somewhat complicates the evaluation. Such intricacy and the reliance on
manual calculations often invite errors, dubious approximations, inconsistency, and significant wasted time.30

An important movement has recently started to make membrane performance data and membrane evaluation
results more easily findable, accessible, inter-operable, and reusable. One such attempt is the Open Mem-
brane Database (OMD), a web-based interface that collects data about membranes worldwide and ”allow the
easy exploration and comparison of membrane performance, physicochemical properties, and synthesis con-
ditions” [19]. The ODM website also includes effective explanations and calculations tools for concentration35

polarization and membrane performance evaluation. Another parallel project is related to the development
of the so-called ”membrane-toolkit”, a software serving as a library of validated calculators, with thorough
documentation and high test coverage with the following goals: (i) automate routine tasks around membrane
investigation to save time and reduce human error, (ii) promote standardization of membrane characteriza-
tion, (iii) facilitate the creation and curation of large membrane data sets.40

This work fits within these ongoing efforts and its main aim is to propose and assess a simplified non-
trascendental algebraic equation used to relate water flux to membrane permeance and hydrodynamic condi-
tions in the presence of concentration polarization. The equation is grounded on the solution-diffusion model
and the main hypothesis is that the water flux equation from the model can be expressed in algebraic form
without loss of significant information following rational approximation. A second goal is to show how a45

robust experimental approach allows robust membrane characterization and assessment of how well differ-
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ent membranes adhere to the solution-diffusion model. The validity of the simplified water flux equation is
thus evaluated under an ample range of working conditions and tested against the results of experimental
characterization.

2. The algebraic water flux equation50

2.1. Dimension-less numbers for filtration efficiency, pressure modulus and transportiveness

The algebraic water flux equation presented in this section is an approximation to equation 1 in terms of
dimension-less numbers. These non-dimensional numbers allow for a better comparability of membrane
processes, as will be shown later. The filtration efficiency J is defined as the ratio of the absolute water flux
and the ideal water flux without concentration polarization. Depending on the magnitude of the concentration55

polarization, the filtration efficiency assumes a value between 0% and 100% and therefore poses a quantity
for assessing the efficiency of the filtration process. The pressure modulus P is defined as the ratio of the
net driving pressure and the feed osmotic pressure, which is positive for pressure driven processes. Finally,
the transportiveness K is a measure for effectiveness of mixing in the feed channel. It is defined as the mass
transfer coefficient, divided by the theoretical counter flow. A large transportiveness indicates good solute60

mixing. Only in the case of very saline solutes and at slow cross flow rates, may the transportiveness be
smaller than unity.

J =
jw

A(pf + πp − πf )
, P =

pf + πp − πf

πf
, K =

kd
Aπf

(2)

2.2. Equations for process design and membrane characterization

The dimension-less numbers above are used to derive simpler expressions for the water flux and related
quantities. The equations presented in this section are based on the mathematical derivation, which is found65

in the appendix.
Equation 3 represents the non-dimensional version of the classical water flux equation 1. This equation is in
itself not simpler, nor more expressive as the classical water flux equation, since it remains a transcendental
equation of the filtration efficiency. However, it states that the efficiency is one minus the very right-hand
term, which can therefore be directly linked to the effect of concentration polarization. In the limit of perfect70

solute mixing, K → ∞, the concentration polarization terms becomes zero and the filtration efficiency
equation reduces to J = 1. That relates to jw = A(pf + πp − πf ), i.e. a perfect filtration efficiency with no
concentration polarization [11].

J = 1− 1

P

[
exp

(
JP

K

)
− 1

]
︸ ︷︷ ︸
concentration polarization

(3)

The fundamental problem with this equation is its transcendental character, where the filtration efficiency J
is both on the left hand side and inside the exponential function. The following equation is an approximation
of equation 3, where the filtration efficiency J stands isolated on the left hand side. In contrast with the
classic water flux equation, this equation is algebraic, which can be conveniently solved, without the need
for iterative solvers. It is shown in Figure 1 and in the results section, that the algebraic water flux equation
4 is an excellent approximation to the original water flux equation. Similarly to the classical equation, it
seen that the concentration polarization term disappears, as we assume perfect mixing, K → ∞. It must be
emphasized that the algebraic water flux equation is not a novel filtration model. Since it is an approximation
to the classical water flux equation, it is still based on the classical convection-diffusion model.

J = 1− 1

1 +K
− PK

2(1 +K)3︸ ︷︷ ︸
concentration polarization

(4)
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In this form, the algebraic water flux equation expresses the filtration efficiency as ’one minus the effect
of concentration polarization’, that makes it especially convenient for the analysis of membrane processes.75

Suppose that a lab experiment or that a system is designed with P = 3 and K = 7, yielding a filtration
efficiency of J ≈ 85%. That directly implies that 15% efficiency is lost to concentration polarization. Section
4 presents a detailed account on how the algebraic water flux equation is used in characterization and
experiment design while Figure 1a displays the relative error resulting in applying the algebraic equation
compared to the classic water flux equation. There are two distinct regions, where the algebraic water80

flux equation produces inaccuracies. These regions relate directly to the two assumptions involved in the
derivation of the water flux equation, where the region R1 = (P > 5,K > 3) relates to assumption 1 and
the region R2 = (K < 3) relates to assumption 2, see appendix. Inaccuracies in R1 are insignificant, since
the range of applicable P values does not extend over the presented range. The inaccuracies in R2, however,
become significant and overwhelming below a certain threshold, where the error contours indicate a steep85

increase as K → 0. The region of severe inaccuracies is well captured by an empirically found threshold
4P = K(1 + K)2. This allows to define a practical condition for the validity of the algebraic water flux
equation, 4P > K(1 +K)2. The orange-shaded region in Figure 1a indicates the region where the algebraic
water flux equation is not valid and should not be applied. In practical terms, the condition basically renders
the water flux equation invalid for diminishing cross flows only. This limitation is of little practical significance90

and hence, the new equation accurately reproduces the prediction of water flux of the classic equation in a
wide range of P and K. Figure 1b present exemplifications of the position of the error contours for three
typical dense membrane applications, namely, seawater, brackish water, and wastewater desalination. Below
the respective contours in the kd vs. pf plots, the error is below the value indicated near each boundary.
Note that the values of kd corresponding to the 5% boundary are low compared to commonly adopted values95

of the mass transfer coefficient, given that the hydrodynamic regime in real systems is usually turbulent or
near-turbulent. In summary, only when concentration polarization is very high, the algebraic equation is not
accurate. However, such conditions are rarely found in real or in laboratory applications [20].
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Figure 1: Comparison with classic equation and validity in exemplary applications. (a) Relative difference (%)
between the results of water flux, J0 obtained from original water flux equation 3 and the values of water flux, J , obtained
with new water flux equation 4. (b-d) Exemplary combinations of pf & kd (or P & K) for typical dense membrane applications
showing the contours below which the error between the algebraic and the classic equations is below a certain value. The three
exemplary applications are: (a) seawater desalination using a membrane similar to SW-2; (b) brackish water desalination using
a membrane similar to BW-1; (c) wastewater desalination and reuse using a membrane similar to NF.

The mass transfer coefficient kd is a complex quantity in the sense that its value depends on the operation
condition, through the cross flow velocity, the feed concentration and the solvent’s diffusion coefficient, but100

also on the membrane geometry, through channel widths, spacers, fouling, etc [21]. A reasonable estimate for
the mass transfer can be written as a function of the other process variables. Similarly, within the framework
of the dimension-less process variables, the transportiveness K can be expressed as a function of the filtration
efficiency J and the pressure modulus P as:

K =
JP

ln( 1 + P (1− J)︸ ︷︷ ︸
CPmod

)
(5)

This expression for the transportiveness follows directly from the classical, non-dimensional water flux equa-105

tion 3, see derivation in the appendix. It is therefore not an approximation and no errors are introduced.
The argument in the logarithm function of 5 is identified as the concentration polarization modulus πm/πf ,
which yields this very simple expression the concentration polarization modulus:
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CPmod = 1 + P (1− J) (6)

Both, CPmod and K are quantities describing the general impact of the concentration polarization on the
process. Note that CPmod and K are determined without knowledge of osmotic pressure at the membrane110

πm. On the contrary, equation 6 can be used to estimate πm in a simple manner.

3. A robust protocol for the experimental characterization of dense membrane transport

The intrinsic transport properties of various polyamide membranes characterized by active layers of different
density were evaluated using a laboratory-scale cross-flow unit [22]. The unit comprises a high-pressure
pump, a feed tank, a flat membrane housing cell, and a chiller with heat exchanger coils immersed in the115

feed tank for temperature control. The effective membrane active area was 20.1 cm2 and the temperature
was constant at 23 ± 0.5 °C. Membranes suitable for processes classifiable as seawater reverse osmosis (SW),
brackish water reverse osmosis (BW), and nanofiltration (NF) were deployed. Prior to each experiment, the
membrane sample was immersed in water overnight. The filtration tests consisted of two different phases:
initially, deionized water was used as feed solution to evaluate the intrinsic water permeability coefficient120

of the membrane, A, (also known as water permeance); subsequently, an appropriate volume of NaCl stock
solution (stock solution concentration = 5 mol/L) or of MgSO4 stock solution (1 mol/L) was directly added
into the feed tank to evaluate the solute permeability coefficient, B. The pH was fixed at 8.0 by addition of a
minimal amount of buffer compound (NaHCO3) and via adjustment with NaOH. The solute concentrations
were consistent with those typically utilized by membrane manufacturer for standard membrane testing and125

commonly reported in the specification sheets.
In the first phase, the applied feed pressure, pf , was changed to obtain different values of the water flux as a
function of pf . In the second phase, both pf and the cross-flow velocity (cfv) were changed to obtain different
measurements of the permeate flux and of the solute rejection. Three cfv values were investigated referred to
as high, medium, and low cfv. The values of pf and solute concentration were chosen according to the density130

of the membranes, higher for the denser membranes and lower for the ones with lower expected rejection.
All the testing conditions can be found in Table 1. According to the solution-diffusion model, the observed
rejection, R, is a function of applied feed pressure and is also affected by concentration polarization, which, in
turn, is influenced by hydrodynamics conditions, e.g., cross-flow velocity. However, B is a univocal parameter
for each solute, being related solely to the properties of the membrane active layer and its interaction with135

the solute of interest [23].
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Table 1: Experimental conditions for the characterization of the six membranes

Membrane 

Compaction Phase 1 Phase 2 

Applied 
pressure 

(bar) 

Feed 
Solution 

Applied feed 
pressures 

(bar) 

Feed 
solution 
(pH 8.0) 

Step 1 
pf (bar) 

cfv (cm/s) 

Step 2 
pf (bar) 

cfv (cm/s) 

Step 3 
pf (bar) 

cfv (cm/s) 

Step 4 
pf (bar) 

cfv (cm/s) 

Step 5 
pf (bar) 

cfv (cm/s) 

SW-1 65 

deionized 
water 

55, 45, 35 
32 g/L 
NaCl 

55 
5.74 

55 
2.87 

45 
5.74 

45 
2.87 

35 
1.44 

SW-2 65 55, 45, 35 
32 g/L 
NaCl 

55 
5.74 

55 
2.87 

45 
5.74 

45 
2.87 

35 
1.44 

SW-3 65 55, 45, 35 
32 g/L 
NaCl 

55 
5.74 

55 
2.87 

45 
5.74 

45 
2.87 

35 
1.44 

BW-1 20 15.5, 10, 5 
2 g/L 
NaCl 

15.5 
5.74 

15.5 
2.87 

10 
5.74 

10 
2.87 

5 
0.77 

BW-2 10 8.6, 4.3, 3 
2 g/L 
NaCl 

8.6 
5.74 

8.6 
2.87 

4.3 
5.74 

4.3 
2.87 

3 
0.77 

NF 6 4.3, 3.4, 2 

2 g/L 
NaCl 4.3 

5.74 
4.3 

2.87 
3.4 

5.74 
3.4 

2.87 
2 

0.77 2 g/L 
MgSO4 

 

In the beginning of each test, the membrane sample was compacted with DI water as feed solution at the
highest value of applied pressure until the permeate flux reached a steady-state [24]. In this first phase
involving deionized water as feed solution, pf was then lowered in a step-wise fashion. In each step, the
water volume passed through the membrane was measured by means of a computer-interface balance; see
also Figure2a for an example of experimental data related to membrane ”SW-1”. The pure water flux was
calculated by dividing the volumetric permeate rate, obtained at steady-state, by the membrane active area.
A was determined as the slope of the best fitting line for the water flux data as a function of pf , with the
line passing through the origin (Figure 2b). In the second phase, after addition of solute in the feed solution,
different steps involved operating conditions consisting of five different combinations of the same values of pf
investigated in the first phase and of the three cfv (Table 1). Solute concentrations in the feed and permeate
streams were calculated from conductivity values measured using a conductivity meter (Oakton CON 450),
calibrated for each salt. The permeate flux, jw, was calculated by dividing the volumetric permeate rate by
the membrane area. R, was then computed from the concentrations determined in bulk feed, cf , and in the
permeate stream, cp, as

R = 1− cp
cf

(7)

The observed rejection and the permeate flux were always measured at steady state. Therefore, within each
step, i.e., for each combination of pf and cfv, the values of these parameters were always constant in time,
within experimental error. Two separate measurements were performed, distanced 10-20 min from each other
and the values were averaged. Except for collection periods, both the concentrate and the permeate streams140

were recirculated back into the feed tank.
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Figure 2: Results of characterization experiment performed with representative seawater reverse osmosis mem-
brane, SW-1, at near 0% recovery rate. (a) Measured flux as a function of time, showing the various phases and steps.
Phase 1 with deionized water as feed solution; phase 2 with 32 g/L NaCl as feed solution (pH 8.0). Empty circles in phase 2
refer to stabilization periods upon changes in feed pressure or cross-flow velocity. (b) Average and standard deviation of flux
data measured in the various phases and steps, as a function of applied feed pressure; note that the y-axis has a break from
18 to 28 Lm−2h−1 (LMH). (c) Average and standard deviation of (bottom) observed rejection (%) and (top) concentration
polarization modulus, computed for the various steps in phase 2, as a function of applied feed pressure. Note that the y-axis of
the inset related to the observed rejection has a break from 97.6 to 98.4%. In all graphs, grey circles refer to deionized water as
feed solution, downward blue triangles to steps with saline feed solution and feed pressure of 55 bar, upward green triangles to
steps with saline feed solution and feed pressure of 45 bar, red squares to a step with feed pressure of 35 bar and low cross-flow
velocity. For the two higher pressure values, colored symbols refer to high cross-flow velocity while empty symbols to medium
cross-flow velocity. Values plotted in (b) and (c) were obtained from individual data values, all under steady state conditions.
The temperature was constant at 23 ± 0.5 °C.

B, was computed from experimentally available data with the following protocol. J and P were calcu-
lated from the input or measured data of the experiment. Then, equation 6 was applied to calculate the
concentration polarization modulus. Finally, B was calculated as:

B =
jwπp

(CPmodπf − πp)
(8)
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which is obtained by substituting equation 6 into the definition of B:

B =
js

(cm − cp)
= jw

cp
(cm − cp)

= jw
πp

(πm − πp)
(9)

This equation does not require direct estimation of the concentration or osmotic pressure at the feed-
membrane interface from experiments, with the inevitable inaccuracies related to this latter method, but
instead it deploys readily available parameters, J and P included in the proposed algebraic equation. Note
that B could also be computed if the value of the mass transfer coefficient, kd, is known, with the following
equation:

B = jw
1−R

R
exp

(
jw
kd

)
(10)

This equation is once again transcendental, thus only solved through numerical or iterative methods. Also,
while kd may be estimated from empirical relationships if the geometry of the system and the cfv are known,
its value is not completely independent of the value of water flux and it is the opinion of the authors that the
experimentally-based protocol for the calculation of B represents a more straightforward and robust approach.145

Note that in this study, the value of kd estimated from empirical relationships was often significantly different
and typically lower (−5-50%) compared to the kd value that was back-calculated by reversing equation 10
and inserting the value of B obtained with equation 9. This discrepancy tended to increase with decreased
membrane active layer rejection capability.

4. Results and discussion150

4.1. Results of experimental membrane characterizations

Figure 2 presents the experimental results obtained with SW-1, as representative membrane. Figure 2a shows
the water flux data measured as a function of time in the various phases and steps of the experiment. The
average water flux data obtained at steady state is thus reported in Figure 2b as a function of pf , where
the best fitting line passing through the origin is shown for the calculation of A from flux values measured155

in the initial phase of the test. Figure 2c presents the values of CPmod and R (NaCl) evaluated in the five
steps of the second testing phase as a function of pf , in the presence of 32 g/L NaCl in the feed solution (pH
8.0). As expected from theoretical considerations, the permeate flux increased with increasing feed pressure.
Consequently, the observed NaCl rejection and the CP modulus also increased. More interestingly, flux and
rejection data increased slightly but significantly with increasing cfv at a given value of pf , thus the value of160

CPmod decreased. Higher cfv increasing the mixing in the feed channel, reducing the thickness of the unmixed
boundary layer and reducing the magnitude of external concentration polarization [25]. This phenomenon
translated into a lower solute concentration at the feed-membrane interface, cf,m, which in turns allows a
higher effective driving force and lower salt passage across the membrane active layer. These observations
were consistently achieved for all membranes, suggesting the reliability of the experimental protocol and the165

accordance between experimental results and conceptual understanding of the phenomena underlying mas
transport across dense membranes [18].
Figure 3 summarizes the results in terms of A and B for all membrane types. The data are plotted for the
six membranes, from the least permeable to the most permeable from left to right. As expected the highest
productivity is achievable with NF membranes, followed by BW and SW membranes, respectively. The values170

of B correlate well with those of the parameter A, except for SW-2, which displayed both better productivity
and rejection rate than SW-1. Note that the value of B estimated for NaCl with the NF membrane is
significantly higher than that estimated for MgSO4, since the latter solute consists of a divalent cation, thus
associated with better rejection [26]. More importantly, note that the standard deviations for the parameter
B are relatively small, i.e., low coefficient of variation, despite the fact that these are average of the five175

different steps conducted at varying feed pressure and cfv combinations. While R values changed in the five
steps, B should be constant, as in fact obtained in this study.
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Figure 3: Intrinsic transport parameters, A and B, computed from experimental values for the six membranes,
from the least permeable to the most permeable from left to right. Grey solid bars refer to A, while patterned bars
to B. All membranes were tested in the presence of NaCl in the feed solution, except the NF membrane, which was also tested
in the presence of MgSO4 in the feed solution. Note that the y-axis is in logarithmic scale.

4.2. Analysis of the filtration efficiency using the algebraic water flux equation

Figure 4 shows the experimental data in the framework of the dimension-less variables. The curves are
contours of the pressure modulus in a J-P map, calculated with the algebraic water flux equation. The180

experimental data are plotted in the corresponding color code, consistent with Figure 2. Apart from the
SW-3 data, all data reside in regions where the accuracy of the algebraic water flux equation is at least 99%
(97% for the BW-1 membrane). Hence, the figure indicates how well the experimental data adheres to the
solution-diffusion model of transport and to the convection-diffusion model of polarization, as well as how
robust the data are in terms of experimental estimation of the hydrodynamics parameters.185

A first take-home message from the graphs is that the experimental data are much more in line with the pure
solution-diffusion model as the density of the membrane active layer increases. Note that the scale of the
y-axis is different for the various graphs, with SW-1, SW-2, SW-3 utilizing a smaller range of J . This result
is consistent with theoretical expectations, since mechanisms of partition of the solvent and of the solutes in
the membrane and their diffusion across the active layer become relatively less important compared to other190

mechanisms of transport, e.g., Donnan exclusion, as the ratio between species and membrane pores is reduced
[27]. Even more importantly, in this work the model was computed assuming that the reflection coefficient
is equal to 1, i.e., impermeable solute, which is only a fair approximation for high-rejection membranes [28].
Note that the experimental data almost always sits above the theoretical curves for all membranes, i.e., higher
J values, and that for the NF membrane the consistency of the data with the theoretical curves improves195

for MgSO4 compared to NaCl. Both these observations indicate that higher rejection rates undoubtedly
allow the applicability of the pure solution-diffusion model and safely neglecting the reflection coefficient.
When considering the effect of K, namely, of cross-flow velocity, note that the width of the horizontal error
bars imply a certain uncertainty in accurately estimating the value of the mass transport coefficient, one of
the main obstacles of membrane characterization, also highlighted above. However, no significant effect is200

observed in terms of correspondence between experimental data and predictions for the pure solution-diffusion
model as a function of K.
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Figure 4: Experimental results plotted in terms of K and J, and comparison with the pure solution-diffusion
transport model. Data are plotted for different membranes in the various graphs, namely, (a) SW-1, (b) SW-2, (c) SW-3,
(d) BW-1, (e) BW-2, (f) NF with NaCl in the feed solution, (g) NF with MgSO4 in the feed solution. Data points are plotted
with the same symbols adopted in Figure 2. The three curves represent the results from the implementation of the algebraic
equation 4 for three different values of P . The water fluxes in (c) lie within the region, where the algebraic flux equation becomes
inaccurate.
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Additional noteworthy conclusions can be draw by assessing the absolute values of J , which may be thought as
a filtration efficiency or, in other words, how much of the nominal driving force actually goes into producing a
water flux. Looking at the behavior of three seawater membranes (SW-1, SW-2, SW-3), all tested at the same205

value applied feed pressure, the filtration efficiency dropped dramatically from the least permeable to the most
permeable membrane, despite the fact that the measured fluxes were obviously higher with the latter. This
observation implies that attempting to increase productivity above a certain range by applying a high applied
feed pressure, produces only marginal returns, as the increase in flux brings about a sustained concentration
polarization that in turn limits the flux increase itself. Therefore, the energy expense associated with higher210

feed pressures is not entirely justified, implying that the driving force should be adjusted for each membrane
permeance to be within a certain range, if the goal is to improve efficiency. In real applications, the system
productivity is often set by the needs of an industry or a community and the degree of freedom in that respect
may be lower. However, the results of this study suggest that an increase in membrane area may be more
advantageous that that of applied feed pressure, to maintain overall productivity while increasing efficiency.215

Indeed, economic considerations are outside the scope of this study and must be taken into consideration.
As the values of applied feed pressure were adjusted sequentially for more and more permeable membranes
(NF > BW-2 > BW-1 > SW),it was possible to restore filtration efficiency by working at the appropriate
range of flux to limit concentration polarization.

4.3. Application of the algebraic equation in process design and membrane characterization220

Figure 5 presents sensitivity maps from the implementation of equations presented above in terms of various
interdependencies among K, P , J , and CPmod. Specifically, Figure 5a is a map of equation 4, Figure 5d is
a map of equation 6, while Figures 5b,c are alternative representations of Figures 5d,a, respectively. Several
conclusions may be drawn about the strong or weak dependency of the variables on each other. For example,
at a fixed value of P , the filtration efficiency can only be increased by increasing the mass transfer coefficient225

in the feed channel, hence K. On the other hand, at a fixed value of K, the filtration efficiency can partly
be also increased by reducing P , that is, by working with a smaller driving force and a smaller overall
productivity. To exemplify this discussion, a hypothetical optimization strategy may be assumed, in which
an initial process with 80% filtration efficiency should be modified to reach a value of efficiency equal to 85%.
If the process is characterized by P = 6,K = 5.9 (see starting point for the two arrows in Figure 5a), the230

ECP can be reduced by moving into different directions. The red vertical arrow relates to the case where
the feed pressure is held constant and K is increased, i.e., the cross-flow velocity. The blue horizontal arrow
indicates the case whereby ECP is reduced by lowering the feed pressure at constant cross-flow. However,
Figure 5a suggests that the effect of K is more significant in influencing J than that of P . A strategy for
optimizing a process in terms of filtration efficiency would thus favor adjusting the cross-flow velocity rather235

than the pressure. Similar to Figure 1a, the orange region indicates ranges in P and K, for which the water
flux equation is invalid. It can be seen that the threshold coincides well with the 50% efficiency contour.
From that a rule of thump can be defined on the applicability: The algebraic water flux equation is valid for
calculated efficiencies of 50% and more.
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Figure 5: Sensitivity analyses of filtration efficiency and concentration modulus (a,c) contour plots of filtration
efficiency J as a function of the pressure modulus P and the transportiveness K (a) or the concentration modulus CPmod (c).
(b,c) contour plots of the concentration modulus for pressure modulus and transportiveness(b) of filtration efficiency(d). The
red shaped regions refer to operation variables, for which the algebraic water flux equation is not valid. The blue shaded regions
refer to typical application values for the pressure modulus, as defined in Fig1. The arrows depict two hypothetical optimization
scenarios.

Figures 5b,d indicate how the CP modulus changes in the same optimization process: The initial process with240

80% efficiency has a CPmod of 2.2. When reducing the feed pressure at constant cross flow (blue leftward
arrow), the CPmod drops to 1.1 when we reach a filtration efficiency of 85%. In the case of increasing cross-
flow at constant feed pressure, the CPmod is instead reduced from 2.2 to 1.9. This observation implies that
reducing the CPmod can be very efficiently done by lowering the feed pressure, while increasing the cross-flow
only has a limited effect. Note that the two outcomes in Figure 5a and Figure 5d are not in contradiction,245

but they actually suggest something less than trivial and related to the definition of filtration efficiency and
CPmod. J is a better parameter for assessing the impact of ECP, i.e., the process, while the CPmod is an
efficiency related to how rationally the membrane is being deployed. Figures 5c,d indicate the relation of
the filtration efficiency and the concentration modulus. CPmod indicates how much concentration exist at
the membrane-feed interface, but it does not necessarily indicate how much water flux is lost with respect to250

ideality. On the other hand, J does not indicate what the concentration is at the membrane-feed interface,
but rather how much the water flux will be reduced.
Furthermore, Figure 5 may be used to help design a membrane or a membrane system. If the goal is
maintaining a high filtration efficiency, thus allowing the correct exploitation of a certain driving force, the
combinations of P and K can be determined from the maps for a certain target value of J . Based on the255

membrane properties and on the needed system productivity, one can thus calculate the required values of the
absolute design variables, pf and kd. Or alternatively, the required value of A, that is, the most appropriate
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membrane for a certain application, can be estimated to achieve a certain fixed productivity or filtration
efficiency, known or hypothesized the operating conditions of a system.

4.4. Implication for membrane systems260

Having a simple equation that allows for the calculation of the water flux across dense membranes would
simplify preliminary system design and predictions around productivity. The deployment of the equation
proposed in this study allows for the streamlined exploration of a wide range of operating conditions to achieve
a first useful approximation of the potential functioning of a system deploying a particular membrane. On
the other hand, it also promotes understanding of the functioning of different membranes in a specific system,265

with implications about the rational choice of a membrane with suitable transport parameters. This type of
preliminary estimations are currently performed with the need of cumbersome iterations or with the use of
specific software, which often limits the scope of the investigations and of the design efforts by membrane
developers or system engineers. The algebraic equation includes non-dimensional parameters with physical
meaning and it is conceived so that its terms are strongly correlated to the efficiency of the process. Indeed,270

the highlight of the equation terms on system efficiency and the possibility to easily estimate the magnitude of
concentration polarization allow a better understanding of the performance of a system and of a membrane,
beyond sole assessment of productivity. Such considerations on efficiency, namely, the optimal functioning
of a system and the appropriate exploitation of a membrane to its true potential are often overlooked or
disregarded, as there is a tendency to focus on flux maximization rather then flux optimization. Therefore,275

other than simplifying flux prediction or experimental procedures, the deployment of the algebraic equation
proposed in this study may help make processes more rational.

5. Conclusions

In this work, a new algebraic equation was developed to predict water flux across dense membranes in the
presence of concentration polarization. The equation includes non-dimensional numbers that allow for a better280

comparability of membranes and membrane processes, namely, the filtration efficiency, J , defined as the ratio
of the absolute water flux and the ideal water flux without concentration polarization, the pressure modulus,
P , defined as the ratio of the net driving pressure and the feed osmotic pressure, and the transportiveness,
K, a measure for effectiveness of mixing in the feed channel. The equation is highly accurate (i.e., it does
not deviate significantly from the water flux classic equation) for a wide range of K and P , and its accuracy285

is lost only for a combination of low K and large P vales, that is, when concentration polarization is of very
high magnitude, conditions that are rarely found in laboratory or full-scale applications.
The results from the equation were also compared against a set of membrane transport data obtained by means
of a robust experimental protocol including various steps of pressure and cross-flow velocity combinations.
The protocol was deployed for six different membranes, from highly selective seawater RO membranes to290

looser NF membranes. The data from the experimentation were robust and consistent with the solution-
diffusion model of membrane transport and the convection-diffusion boundary layer model of concentration
polarization especially in the case of more selective membranes. For looser membranes, incorporation of the
reflection coefficient in the calculations becomes critical for a accurate description of the phenomena and the
proper membrane or system characterization.295

The streamlined implementation of the algebraic equation promotes understanding and optimization of a
membrane system in terms of efficiency of utilization of the driving force and of the membrane intrinsic
potential (beside the correct prediction of water flux, hence productivity) without the need for cumbersome
iterations or the use of a specialized software. Specifically, calculations using the proposed equation simplify
the choice of the correct combination of K and P , thus of the mass transfer coefficient in the feed channel300

and of the applied feed pressure in a given system. Or, alternatively, they simplify the identification of a
membrane with suitable transport properties for a certain target productivity. This work supports the current
ongoing efforts aimed at simplifying and standardizing the characterization and evaluation of membrane and
membrane systems, to promote further progress in this field.
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[22] G. Öner, N. Kabay, E. Güler, M. Kitiş, M. Yüksel, A comparative study for the removal of boron and
silica from geothermal water by cross-flow flat sheet reverse osmosis method, Desalination 283 (2011)
10–15.

[23] J. Wang, D. S. Dlamini, A. K. Mishra, M. T. M. Pendergast, M. C. Wong, B. B. Mamba, V. Freger,360

A. R. Verliefde, E. M. Hoek, A critical review of transport through osmotic membranes, Journal of
Membrane Science 454 (2014) 516–537.

[24] D. M. Davenport, C. L. Ritt, R. Verbeke, M. Dickmann, W. Egger, I. F. Vankelecom, M. Elimelech, Thin
film composite membrane compaction in high-pressure reverse osmosis, Journal of Membrane Science
610 (2020) 118268.365

[25] S. Kim, E. M. Hoek, Modeling concentration polarization in reverse osmosis processes, Desalination
186 (1) (2005) 111–128.

[26] M. Park, J. Park, E. Lee, J. Khim, J. Cho, Application of nanofiltration pretreatment to remove divalent
ions for economical seawater reverse osmosis desalination, Desalination and Water Treatment 57 (44)
(2016) 20661–20670.370
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Appendix375

Derivation of the algebraic water flux equation

The non-dimensional process variables are:

J =
jw

A(pf + πp − πf )
, K =

kd
Aπf

, P =
pf + πp − πf

πf
(11)

The classical water flux equation is expanded:
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jw = A

[
pf + πp − πf exp

(
jw
kd

)]
= A (pf + πp − πf ) exp

(
jw
kd

)
−A (pf + πp) exp

(
jw
kd

)
+A(pf + πp)

(12)

Dividing the above equation with A(pf + πp − πf ) and substituting jw/kd with JP/K yields:

J = exp

(
JP

K

)
− pf + πp

pf + πp − πf
exp

(
JP

K

)
+

pf + πp

pf + πp − πf

= exp

(
JP

K

)
−
(
1 +

1

P

)
exp

(
JP

K

)
+

(
1 +

1

P

) (13)

From the above equation follows the non-dimensional form of the classic flux equation 3:

J = 1 +
1

P

[
1− exp

(
JP

K

)]
(14)

Under assumption 1, JP < K, the exponential function can be written as a series:

J = 1 +
1

P

[
1−

(
1 +

JP

K
+

1

2

(
JP

K

)2
)]

= 1− 1

P

[
JP

K
+

1

2

(
JP

K

)2
] (15)

0 =
1

2

PJ2

K2
+ J

(
1

K
+ 1

)
− 1 (16)

Solving for J :

0 = J2 + J
2K

P
(1 +K)− 2

K2

P
(17)

J = −K

P
(1 +K)±

[(
K

P

)2

(1 +K)2 + 2
K2

P

] 1
2

=
K

P
(1 +K)

(
−1±

[
1 + 2

P

(1 +K)2

] 1
2

) (18)

The argument in the square root is greater than one. A positive-valued water flux J is expected and therefore380

only the + sign is considered in the above equation. Under assumption 2, 2P < (1 +K)2, the square root
can be expanded with

√
1 + α ≈ 1 + 1

2α− 1
8α

2.

J =
K

P
(1 +K)

(
−1 +

[
1 +

P

(1 +K)2
− P 2

2(1 +K)4

])
=

K

1 +K
− PK

2(1 +K)3

= 1− 1

1−K
− PK

2(1 +K)3

(19)

which concludes the derivation of equation 4.
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Derivation of concentration modulus equation

Solving the classical water flux equation for the exponent in the exponential function yields:385

jw
kd

= ln

(
p+ πp − jw

A

πf

)

= ln

(
πm

πf

)
= ln (CPmod)

(20)

Similarly, solving the non-dimensional water flux equation 14 for the argument in the exponent yields:

JP

K
= ln (1 + P (1− J)) (21)

Identifying JP/K = jw/kd imposes that the arguments in the logarithm function must be same. From that
follows:

CPmod = 1 + P (1− J) (22)
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