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Abstract

When rate-independent linear damping (RILD) is incorporated into a base-isolated structure, it

achieves a similar response displacement reduction effect with significantly lower floor response

acceleration compared with linear viscous damping (LVD) with the same loss factor. To address

the undesirable stiffness added to an isolation layer when we adopt a mechanical device compris-

ing a few branches of a spring-dashpot link to realize RILD, this study proposes canceling the

undesirable isolator stiffness by adding an inerter element and reducing the isolator stiffness. A

heuristic optimization method was developed to design the proposed mechanical device to mimic

the behavior of RILD. A parametric survey on the optimal designs of the device suggests that the

three branches of the spring-dashpot link work best in terms of practicality and feasibility. Seismic

control performance was assessed using a 10-story base-isolated building mounted on linear and

nonlinear isolation systems. Analyses of linear systems revealed that the proposed device achieved

lower inter-story drifts and approximately 40% reduction in floor response acceleration with a 4%

increase in isolator displacement compared with the LVD when subjected to high-frequency ground

motions. Analyses of the nonlinear systems showed that the displacement control performance of

the proposed model was slightly compromised when subjected to ground motions dominated by

low-frequency components, thereby identifying a further challenge in developing a causal RILD

device for nonlinear structures.
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1. Introduction

The 2011 Great East Japan Earthquake caused many low-frequency structures, such as base-

isolated and high-rise buildings (previously considered safe), to suffer from excessive displacement

and long-duration vibrations, causing interior and exterior damage [1]. Consequently, the pro-

tection of low-frequency structures, including their nonstructural components, from low-frequency5

ground motion induced by massive earthquakes is attracting increasing attention from engineers

and researchers.

Adopting conventional energy dissipators, such as viscous and hysteretic dampers(HDs), may be

ineffective in mitigating excessive displacement in base-isolated structures. A viscous damper can

generate insufficient control force against low-frequency vibration, whereas the maximum resistive10

force of an HD is constant, irrespective of the response displacement, thereby resulting in a decreased

equivalent damping ratio for excessive displacement. Magnetorheological dampers can provide

an adaptive control force [2] but may fail during strong earthquakes. Thus, there is a need for

alternative approaches that use a passive system that does not require an external power source,

is unconditionally stable, and is easy to maintain. Rate-independent linear damping (RILD), also15

referred to as structural damping, complex-valued stiffness, and linear or ideal hysteretic damping [3,

4, 5, 6] is an attractive option that provides effective damping performance when incorporated into

base-isolated structures [7].

The idea of RILD was first proposed to represent the damping properties of materials, such as

metals and soils, whose energy loss per cycle is independent of the frequency over a wide frequency20

range [8, 9]. The resistive force of the RILD is in phase with the velocity, resulting in energy dissi-

pation, whereas its amplitude is proportional to the response displacement, thus enabling the direct

control of the total displacement [10]. Nonetheless, RILD is a physically unsound mathematical

model that cannot be realized using a real-life device owing to its non-causality (i.e., it exhibits a

response even when no excitation is applied), as discussed in references [6, 8, 11, 12].25

To address the non-causality challenge, various causal RILD models have been examined in

previous studies. The first successful causal model was proposed by Biot [13] and consists of

infinite Maxwell elements. Reducing computational costs in the time domain of systems incorpo-

rating the Biot model has also been pursued [9, 14, 15, 16]. Makris [17] proposed a causal RILD

2



model by adding a frequency-dependent real part to the dynamic stiffness to satisfy the causal-30

ity requirement, thereby suggesting that a causal RILD model can be achieved at the expense of

increasing the storage stiffness. Later, Muravskii [18] constructed a causal linear damping model

with nearly frequency-independent dynamic stiffness in the time and frequency domains, by en-

tirely considering the structural system. Nakamura [19] proposed a causal model with constant loss

stiffness over a series of piecewise frequency ranges using causally approximated impulse responses35

of the imaginary unit function. Recently, Huang [20] presented a practical algorithm that provides

frequency-independent loss stiffness over the frequency range of interest. These causal RILD models

can mimic the constant-loss stiffness characteristics of an ideal model, although physical realization

is difficult.

The tuned Maxwell–Wiechert (TMW) model proposed by Genta and Amanti [21] is a viable40

option for physically realizing RILD with a minimum number of mechanical components. A TMW

model comprises a finite number of branches, whose relaxation parameters are distributed in a

geometric progression. The loss stiffness is nearly constant over a specified frequency range. Another

notable causal model was established by Luo and Ikago [7], who built a mechanical model comprising

a linear negative-stiffness element coupled in parallel with a Maxwell element, which is a mechanical45

realization of the causal approximation RILD method (called a first-order all-pass filter that has

a constant gain over all frequencies and a 90◦ degree phase advance at a prescribed frequency)

proposed by Keivan et al. [22].

A series of dynamic tests [23, 24, 25, 26, 27] have validated the performance of the passive

RILD model developed by Luo and Ikago [7]. In particular, Liu and Ikago [24] indicated that the50

inherent friction in the device components must be considered to further improve the accuracy of

the analytical model of the devices. Luo and Ikago [28] proposed a theory that connects causal

RILD models developed by independent researchers in a unified manner by extending the first-order

filter to fractional orders.

Previous studies on causal RILD models mainly focused on loss stiffness and paid less attention55

to storage stiffness [27]. The application of causal RILD to exploit its benefits in improving the

performance of a base-isolated structure, a large undesirable storage stiffness that compromises the

flexibility of the isolators may be present. In this study, we aimed to explore causal mechanical

models that achieve a constant loss stiffness and near-zero storage stiffness over a specified frequency

range.60
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To achieve this goal, a causal mechanical model consisting of a negative-stiffness element, inerter,

and TMW model is proposed, as shown in Fig. 1). The proposed model is designed in two stages.

First, a TMW model with multiple branches that exhibits frequency-independent loss of stiffness

over a specified frequency range was designed. Subsequently, the values of the negative stiffness

and inerter elements that ensure zero stiffness at the two specified frequencies were determined.65

The proposed model can be constructed using a combination of readily available devices or can

be obtained by making slight modifications. For example, Maxwell elements can be realized using

a combination of laminated rubber and a fluid damper connected in series. A viable option for

inerter elements is the rotary inerter damper, developed by Nakaminami et al. [29] (Fig. 2), which

can accommodate sufficient inertance and stroke to control seismically isolated structures. The70

maximum inertance and stroke of this device are 1250 tons and 0.6 m, respectively. Experimental

validation on a full-scale inerter device was conducted by Watanabe et al. [30] No special device

is required to realize the negative-stiffness element because reducing the horizontal stiffness of the

isolation layer by |kn|(< k0) is equivalent to adding a negative-stiffness element.

Figure 1: Proposed model

The novelty of this study lies in providing an effective means to eliminate undesirable storage75

stiffness to maintain isolator flexibility, proposing a heuristic method for finding the optimal re-

laxation parameters for TMW, and identifying a challenge that remains in the proposed system

when it is incorporated into a nonlinear system. The optimum design of the proposed system has

practically constant loss stiffness and near-zero storage stiffness within a specified frequency range,

achieving simultaneous reductions in displacement and floor response acceleration in a base-isolated80

structure.
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Figure 2: Rotary inerter damper (Nakaminami et al. [29])

The remainder of this paper is organized as follows. Section 2 presents a brief review of causal

RILD models. In Section 3, a literature review is provided, mathematical expressions of the pro-

posed model are derived, and the parameter design process is presented, followed by identification

of the appropriate number of branches of Maxwell elements. Finally, the proposed model was85

compared with other causal RILD models. Section 4 discusses and demonstrates the efficiency of

the proposed device in improving the performance of a base-isolated structure through numerical

analysis of linear and nonlinear isolation systems. Finally, Section 5 concludes the paper.

2. Mathematical models for RILD

This section provides a brief review of the RILD models. The damping functions of the ideal90

RILD, Biot, Makris, and TMW models were presented.

2.1. Ideal RILD

Let X(iω) be the displacement in the frequency domain at the angular frequency ω, where

i =
√
−1 is the imaginary unit. Subsequently, the velocity was expressed as iωX(iω). This implies

that the velocity depends on the frequency, and its phase is 90◦ advanced to the displacement. Here,95

we consider a signal whose amplitude is independent of frequency and whose phase is advanced by

90◦, which is a Hilbert transform of displacement. The mathematical expression is isgn(ω)X(iω),

where sgn( ) denotes the signum function.

The resistive force of a RILD element is proportional to displacement, independent of frequency,

in phase with velocity; thus, it can be expressed as kLisgn(ω)X(iω), where the real value kL,100

designated as the loss stiffness, has a dimension of stiffness.
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Arranging a real-valued linear stiffness k0 and a RILD element in parallel yields complex-valued

stiffness, as shown in Fig. 3(a). The force-deformation relationship in the frequency domain is

F (iω) = [k0 + ikLsgn(ω)]X(iω) = k0[1 + iηsgn(ω)]X(iω) = k0[1 + RQ(iω)]X(iω). (1)

where η = kL/k0 and RQ(iω) (the left subscript R is the first letter of the RILD element) represent

the loss factor and damping function of the RILD element, respectively.

The coefficient k0[1+RQ(iω)] as the ratio of the resistive force to the displacement is referred to

as the dynamic stiffness. The real and imaginary parts of the dynamic stiffness are referred to as105

the storage and loss stiffnesses, respectively. The storage stiffness k0 has the same meaning as the

conventional stiffness, whereas the loss stiffness kLsgn(ω) = ηk0sgn(ω) = Im[k0 RQ(iω)] is related

to energy loss or dissipation.

Figure 3: Noncausal and causal models

2.2. Biot model

The damping function of a Biot model with loss factor η can be expressed as [9]

BQ(iω) =
2η

π

[
ln

√
1 +

(ω
ε

)2

+ iarctan
(ω
ε

)]
, (2)

where ε is an arbitrary positive real number and subscript B is the first letter of the Biot model.110

2.3. Makris model

The damping function of the Makris model, MQ(iω) is [17]

MQ(iω) =
2η

π
ln
∣∣∣ω
ε

∣∣∣+ iηsgn(ω) (3)
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where subscript M is the first letter of the Makris model. This provides insight into the causal

approximation of RILD; the accuracy in loss stiffness is ensured at the expense of the addition of

undesirable storage stiffness, which is proportional to the logarithm of the frequency.

2.4. Tuned Maxwell–Wiechert model115

The TMW model [21, 31] is one of the most viable options for developing a physical device

using a minimum number of mechanical components. Assume a TMW model contains n branches

of Maxwell elements in which the stiffness and relaxation time of the j-th branch are jηmk0 and

τj = 2π/βj , respectively, as shown in Fig. 3(b). The damping function, TQ is

TQ(iω) =

n∑
j=1

iω

iω + βj
jηm, (4)

where subscript T is the first letter of the TMW model. βj = jkd/jcd is the angular frequency

derived from relaxation time τj , which is designated as a relaxation parameter.

3. Modified TMW model

This section develops an energy dissipation device for a seismically isolated structure that ef-

fectively reduces isolator displacement without compromising the floor response acceleration. Such120

control performance can be achieved using a device that selectively dampens low-frequency vibration

components. The development of the device proposed in this study is inspired by the constant-loss

stiffness characteristics with zero storage stiffness obtained from ideal RILD characteristics.

As Makris [17] demonstrated, adding undesirable storage stiffness is necessary to ensure the

causality of RILD. However, the loss stiffness becomes nearly proportional to the frequency in an125

attempt to ensure zero storage stiffness.

The proposed model is based on the TMW model, which has the inherent drawback of adding

undesirable storage stiffness in the frequency region, where its loss stiffness is nearly constant. We

used a constant negative stiffness element and an inerter element to reduce the undesirable storage

stiffness to maintain isolator flexibility. Combining the two types of negative-stiffness elements130

enables us to adjust the storage stiffness of the isolation layer to at least two specified frequencies.

Adding an inerter device provides negative stiffness proportional to the frequency’s square, whereas

reducing the isolator stiffness by replacing rubber isolators with sliders can achieve constant negative

stiffness.
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The most straightforward way to realize constant negative stiffness is to reduce the isolator135

stiffness by replacing the rubber isolators with sliders, such that the horizontal stiffness of the

isolation layer is reduced from k0 to k0 + kn as discussed by Luo and Ikago[7]. Another option is

to use mechanical negative-stiffness devices developed by Sarlis et al. [32, 33] and Sun et al. [34].

Luo and Ikago [7] further discussed the nonlinear effects of these devices when incorporated into a

seismic isolation layer along with a Maxwell element.140

3.1. Definitions and formulations of inerter-negative stiffness-TMW model

The proposed system is designated as the inerter-negative stiffness-tuned Maxwell–Wiechert

(INSTMW) model (Fig. 1) [35]. The terms related to the resistive forces generated by the inerter

and negative stiffness are added to Eq. (4) to yield the following damping function for the proposed

system.

IQ(iω) = −µω2 + ηn +

n∑
j=1

jηm
iω

iω + βj
, (5)

where the subscript I is the first letter of the INSTMW model. µ = md/k0 represents the ratio of

inertance md to the stiffness k0. ηn = kn/k0(< 0) is the ratio between the negative stiffness kn(< 0)

and the positive stiffness k0.

By separating the real and imaginary parts of the damping function, we obtain:

Re [IQ(ω)] = −µω2 + ηn +

n∑
j=1

ω2
jηm

ω2 + β2
j

, (6)

Im [IQ(ω)] =

n∑
j=1

ω jηm βj

ω2 + β2
j

. (7)

The inerter and negative stiffness elements modify the storage stiffness without affecting the loss145

stiffness because they do not dissipate energy. Eq. (6) suggests that the real part of the normalized

damping function approaches ηn(< 0) and −∞ when the excitation frequency approaches zero and

∞, respectively. This implies that the storage stiffness of the proposed model can be negative in low-

and high-frequency ranges. However, the storage stiffness of the TMW portion dominates, and the

total storage stiffness becomes positive in the intermediate-frequency range. The storage stiffness150

can be adjusted to zero at the two distinct frequencies. Thus, the proposed model is expected to

satisfy the requirements for the desired device such that it exhibits a rate-independent damping

property with only moderate changes in storage stiffness over the frequency range of interest.
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3.2. Optimization of the proposed model

Makris and Zhang [14] identified the stiffness values and relaxation parameters in Maxwell–155

Wiechert models using nonlinear regression. Spanos and Tsavachidis [15] proposed a recursive

algorithm to obtain an approximate damping kernel function for the Biot model using Prony’s

method. Liu and Ikago [27] used the fundamental natural frequencies of a control structure as

the target frequencies at which the loss stiffness should be adjusted. Another Maxwell–Wiechert

model-based method for approximating a given damping ratio distribution by using a proportional160

damping model was proposed by Lee [36].

The proposed system is designed in two stages. In the first stage, the parameters of a TMW

model, whose loss stiffness is approximately constant over a specified angular frequency range, are

determined. A heuristic approach is then adopted to determine the parameters; nonetheless, any

existing method is applicable.165

In the second stage, the constant negative stiffness and inertance are determined such that the

proposed system has zero storage stiffness at the two specified frequencies, defining the frequency

range of interest.

Step 1: TMW parameter identification

An optimum design problem was established to determine the parameters of the TMW model170

that provide a constant loss stiffness over a specified angular frequency range. The number of

Maxwell branches in the TMW model was n. Let the lower and upper bounds of the specified

angular frequency range be ωs and ωe, respectively. When the angular frequency range [ωs, ωe] is

divided into N segments with a uniform interval ∆ω = (ωs − ωe)/N , a series of discrete angular

frequencies ωℓ = ωs + ℓ∆ω (ℓ = 0, 1, 2, · · · , N) can be defined. The parameters of the TMW are175

sought such that the square root of the sum of the errors at frequencies ωℓ is minimized. Thus, the
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optimum design problem is formulated as follows.

find : jkd, jcd (j = 0, 1, 2, · · · , n)

to minimize : fobj =
1

η

√√√√ 1

N + 1

N∑
ℓ=0

(Im [IQ(iωℓ)]− η)
2

subject to :

jk
min
d ≤ jkd ≤ jk

max
d

jc
min
d ≤ jcd ≤ jc

max
d ,

(8)

where jk
min
d ,j c

min
d ,j k

max
d ,j c

max
d are the lower and upper bounds of design variables, respectively.

Step 2: Design of constant negative stiffness and inerter

A set of simultaneous linear equations involving two unknown parameters (µ and ηn) is derived

from the zero-storage stiffness condition at two specified angular frequencies, ω̂1 and ω̂2.

Re [IQ(iω)]ω=ω̂1,ω̂2
= 0. (9)

Substituting Eq. (6) into Eqs. (9) yields

−µω2 + ηn +

n∑
j=1

ω2
jηm

ω2 + β2
j

= 0, for ω = ω̂1 and ω̂2. (10)

The storage stiffness at zero frequency is.

k0Re [IQ(0)] = ηnk0 = kn. (11)

To ensure positive static stiffness for the entire system, the absolute value of the negative stiffness180

|kn| = |ηnk0| cannot exceed k0.

3.3. Particle Swarm Optimization

Many options can be used, including gradient-based and metaheuristic approaches. For example,

particle swarm optimization (PSO) [37, 38, 39] is a population-based metaheuristic optimization

technique that can solve complicated mathematical problems without information regarding the185

gradient and Hessian of the objective function. It also has other advantages, including insensitivity

to design variable scaling, fast convergence, high efficiency, and ease of implementation. Among

the many PSO variants, PSO with a linearly decreasing inertia weight is the most used; thus,
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we adopted it to solve the optimum design problem in this study. Appropriately adjusting the

individual and swarm best positions may be a viable alternative method for improving the ability190

of PSO to search for global optima [40]. A brief introduction to PSO is provided below for reference

purposes.

The position of an individual candidate solution (designated as a particle) is directly influenced

by its best position and the best position of the population of candidate solutions (designated as

a swarm) at each iteration step; it is also affected by three critical parameters: inertia weight

factor, cognitive parameter, and social parameter. Adjusting the value of the inertia weight factor

can prompt particles to have a greater tendency to move toward and explore the area with the

best objective value. Generally, higher values result in strong global search capability, whereas the

opposite holds for the local search capability. To ensure an efficient search, the dynamic inertia

weight was determined such that it decreased linearly [38], as presented in Eq. (12).

wp = (wi − wf )
Gmax − p

Gmax
+ wi. (12)

where wp denotes the inertial weight at the pth step. wi and wf represent the inertial weights in the

initial and final steps, respectively. Gmax denotes the maximum number of iterations. Regarding

the cognitive and social parameters, these two weigh the importance of the best previous experiences195

of individual particles and global swarm. The iterative PSO process is illustrated in Fig. 4 (step 1).

The entire search process is illustrated in Fig. 4. Step 2 must be performed after completing Step

1. The PSO parameters adopted in this study are listed in Table 1.

It is impossible to obtain a constant loss stiffness near the zero-frequency region using the TMW

model. However, it is important to consider the low-frequency components in this study. Thus, the200

lower bound of the angular frequency range ωs is chosen as 0.5 rad/s. Another critical parameter

applied in the optimization process is the angular frequency interval ∆ω, which has a nonnegligible

influence on the accuracy of the approximation. A small value of ∆ω ensures accuracy at the

expense of the computational burden. Conversely, a high value guarantees a faster calculation

at the expense of accuracy. An empirically obtained angular frequency increment of 0.05 rad/s is205

adopted in this study, as it can ensure practically acceptable accuracy and reasonable computational

demand.
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Figure 4: Flow chart of the design procedure

3.4. Number of branches and target frequency range

The effectiveness of the TMW model in achieving constant loss stiffness is directly affected by

the number of branches and also influenced by the width of the target angular frequency range210

(ωe − ωs). A wider target frequency range may require a larger number of branches. Whereas a

narrow range may compromise the overall performance. This poses the following questions:

(1) What is the appropriate target frequency range for a TMW model that uses a minimum

number of branches?

(2) How many Maxwell elements are required to ensure practically acceptable accuracy when215

approximating constant loss stiffness in the target frequency range?

To address these two questions, a parametric survey of TMW models was conducted. Table 2

presents the parameters used.

Let the optimum design be jk
o
d,j c

o
d. Further, let jη

o
m =j kod/k0 and βo

j = jk
o
d/jc

o
d. The mean

values (η̄) and coefficients of variation (CV ) of the loss factors of the optimally designed TMW220
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Table 1: PSO parameters

Parameter description Value

Inertia weight [wi; wf ] [0.9; 0.4]

Cognitive parameter 0.5

Social parameter 1.5

Population size 200

Maximum generation Gmax 500

Number of design parameters 2n

Tolerance function 10−6

Frequency interval ∆ω (rad/s) 0.05

models are defined as follows.

η̄ =
1

N + 1

N∑
ℓ=0

n∑
j=1

ωℓjη
o
mβo

j

ω2
ℓ + βo

j
2 , (13)

CV =
1

η̄

√√√√√ 1

N + 1

N∑
ℓ=0

 n∑
j=1

ωℓjη
o
mβo

j

ω2
ℓ + βo

j
2 − η̄

2

. (14)

5 10 20 50 150
0

4

8

12

5 10 20 50 150
0

4

8

12

Figure 5: Coefficients of variation of optimally designed TMW models with n branches

The CV values are close to those obtained with the objective function fobj defined in Eq. (8).

The difference between CV and fobj is that η̄ in Eq. (14) is not equal to the target loss factor, η.

Fig. 5 shows the relationship between the upper bound frequencies ωe and CV . Increasing the
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Table 2: Parameters used in the parametric survey

Parameter description Value

Number of branches n 2, 3, 4, 5

Lower bound of target angular frequency range ωs [rad/s] 0.5

Upper bound of target angular frequency range ωe [rad/s] 0.5∼150

Target loss factor 0.2, 0.4

jk
min
d [kN/m] 0

jk
max
d [kN/m] k0

jc
min
d [kN·s/m] 0

jc
max
d [kN·s/m] τmaxk0/2π

Maximum relaxation time τmax [s] 4.0

number of branches n from 2 to 3 reduces the approximation error. CV increases as the upper-225

bound frequency increases when ωe is greater than 50 rad/s for cases n = 2, 3, and 4.

Considering the trade-off between the acceptable accuracy and simplicity of the model, we

determined the number of branches and the upper bound angular frequency to be n = 3 and ωe = 50

rad/s, respectively. An upper-bound angular frequency of 50 rad/s was selected because angular

frequencies higher than 50 rad/s have a minimal effect on the model’s response.230

3.5. Comparison of causal RILD models

The INSTMW model was compared with the TMW, Biot, Makris, and RILD models, with the

same target loss factor of η = 0.4. The number of branches and the target angular frequency range

of the INSTMW and TMW models were n = 3 and [0.5, 50] rad/s, respectively. The other PSO

parameters used to determine the stiffness values and damping coefficients of the Maxwell elements235

are the same as those listed in Table 1. The first and second natural angular frequencies ω̂1 =

1.57 and ω̂2 = 13.57 rad/s of the base-isolated structure example introduced in the next section

were employed as the target frequencies to determine the inertance and negative stiffness of the

INSTMW model. Following suggestions in the literature[9, 12, 14] , ε = ω̂1/10 was used as a

practical choice for the Biot model, whereas ε = ω̂1 was used for the Makris model, such that it240

had the same dynamic stiffness at the frequency ω̂1.
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Figure 6: Comparison of properties among different causal damping models and RILD

Fig. 6 shows the dynamic stiffness, damping function, and impedance function (transfer function

from the velocity to the damping force) of the different damping models. The Biot model has a

frequency-insensitive loss stiffness over the range ω > ω̂1. The INSTMW and TMW models exhibit
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practically constant loss stiffness in the target frequency range as intended, whereas considerable245

differences appear in the storage stiffness. The storage stiffness values of the Biot and TMW models

were significantly higher than those of competing models. The storage stiffness of INSTMW is

identical to that of RILD at the two specified frequencies as intended. However, it decreases

rapidly over the region ω > ω̂2 and falls below zero at approximately 30 rad/s, owing to the inerter

element effect.250

Fig. 6(b) indicates that the magnitude of the damping function of the INSTMW model is similar

to that of RILD over the angular frequency range ω < ω̂2. Moreover, the phase of its damping

function is closer to that of RILD than either the TMW or Biot models. Fig. 6(c) shows that the

real parts of the impedance functions of the TMW-based models disagree with those of RILD in

the low-frequency range, whereas those of the Biot and Makris models agree well with RILD over a255

broad frequency region. As for the imaginary parts of the impedance functions, the INSTMW and

Makris models show good agreement with RILD in the specified angular frequency range.

Thus, these results demonstrate that the INSTMW model can achieve the desired frequency-

independent loss stiffness over the specified frequency range while improving the storage stiffness

compared to other causal RILD models.260

4. Design example of INSTMW device for a multi-story base-isolated structure

This section presents a design example of an INSTMW device for a 10-story base-isolated

building. The performance of the proposed device was compared with those of the TMW, LVD,

and RILD models. A case in which all the components in the base-isolated building, including the

damping devices, are linear is discussed, followed by a case study in which an HD is incorporated265

into the isolation layer.

4.1. Base-isolated building structure

The seismic response control performances of the proposed and other damping models were

examined using a 10-story base-isolated building model, as shown in Fig. 7. The superstructure is

a shear building, and its fundamental natural period is 0.8 s when its base is fixed. As reported by270

Ryan and Polanco [41] and Anajafi, Medina, and Santini-Bell [42], mass-proportional damping can

lead to an underestimated seismic response. Thus, stiffness proportional damping is considered,

with an inherent damping ratio of 3% assigned to the first mode of the superstructure when its base
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is fixed following recommendations in the literature [41, 42] The isolator stiffness k0 is determined

such that the fundamental natural period of the entire system is 4.0 s. The inherent damping in275

the isolation layer was neglected. Tables 3 and 4 list the specifications and modal parameters of

the 10-story base-isolated model.

Here, all model components, including the superstructure, isolator, and damping devices, are

assumed to exhibit linear responses under seismic excitation. Nonetheless, the seismic performance

of the proposed model under nonlinear conditions should be examined. Hybrid damper systems280

with an HD are common in practice. In addition, combining an HD with a base-isolation layer offers

two advantages: controlling the isolator displacement induced by the static component representing

the wind load and providing a fail-safe mechanism when the linear damping system fails. Thus,

HD is introduced in the base-isolation layer to provide nonlinearity to the system.

For simplicity, HD was assumed to be a perfect elastoplastic material with a yield displacement285

of 0.03 m. The yield load coefficient α is defined as the ratio of the yielding load to the total weight

of the superstructure, including the base mass. The yielding load was determined such that the

HD remained elastic for a 500-year wind load return period. Thus, the yield load coefficient α was

determined as 3.2%.

Figure 7: Basic 10-story base-isolated structure equipped with different damping models
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Table 3: Specifications of the 10-story base-isolated building

Story # Base(0) 1 2 3 4 5 6 7 8 9 10

Mass mi (ton) 388.8 388.8 388.8 388.8 388.8 388.8 388.8 388.8 388.8 388.8 388.8

Stiffness ki,s(×103 kN/m) 10.6 1400 1296.3 1192.6 1088.9 985.2 881.5 777.8 674.1 570.4 467.7

Damping ci,s(kN·s/m) 0 11247 10414 9581 8748 7914 7081 6248 5415 4582 3749

Height (m) 2.73 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Table 4: Modal parameters of the 10-story base-isolated building

Mode number 1 2 3 4 5 6 7 8 9 10 11

Frequency (rad/s) 1.57 13.6 26.3 38.5 49.9 60.1 69.2 77.8 86.8 96.8 108.8

Modal damping ratio (%) 0.59 5.20 10.08 14.77 19.13 23.04 26.53 29.85 33.30 37.13 41.72

4.2. Historic ground motions290

Four seismic records with different magnitudes were selected. The first two are near-fault pulse-

like ground motions that can cause considerable structural damage owing to their excessively strong

velocity pulses: (1) the North–South component of the 1995 Kobe Earthquake recorded at the

Japan Meteorological Agency at Kobe (hereinafter referred to as the 1995 Kobe N–S record) and

(2) the North–South component of the 1994 Northridge Earthquake recorded at the Sylmar Country295

Hospital (SCH) (hereinafter referred to as the 1994 Northridge SCH record). The other two are long-

duration ground motions and contain abundant low-frequency components: (3) the North–South

component of the 1968 Tokachi-oki Earthquake recorded at the Hachinohe Harbor (hereinafter

referred to as the 1968 Hachinohe N–S) and (4) the 2011 Great East Japan Earthquake recorded

at Tohoku University N–S (hereinafter referred to as the 2011 Tohoku N–S record). Table 5 lists300

the detailed properties of these four seismic records. Fig. 8 shows the acceleration time history.

4.3. Equations of motion

Consider a superstructure with n stories (n = 10 in this study) mounted on a BIS containing

supplemental damping devices. The base mass, isolator stiffness, and isolator displacement were

m0, k0, and x0, respectively, as shown in Fig. 7. The equations of motion for the base-isolated305

structure equipped with supplemental damping models when subjected to ground acceleration ẍg
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Table 5: List of ground motions used in this study

Seismic records Magnitude Duration (s) PGA (cm/s2) PGV (cm/s)

1995 Kobe N–S 6.9 20 818 91

1994 Northridge SCH 6.7 20 826 129

1968 Hachinohe N–S 7.9 234 231 33

2011 Tohoku N–S 9.0 250 333 50
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Figure 8: Time-histories of the selected ground motions

are expressed as follows:

Mẍ+Cẋ+Kx+ ϕdFd + ϕhFHD = −Mϕẍg, (15)

where x = [x0, x1, · · · , xn]
T , M = diag[m0,m1,m2, ...,mn]. The damping and stiffness matrices

are as follows:

C =



c1,s −c1,s O

−c1,s c1,s + c2,s −c2,s
. . .

−cn−1,s cn−1,s + cn,s −cn,s

O −cn,s cn,s


, (16)
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K =



k0 + k1,s −k1,s O

−k1,s k1,s + k2,s −k2,s
. . .

−kn−1,s kn−1,s + kn,s −kn,s

O −kn,s kn,s


. (17)

The vectors ϕd = [1, 0, · · · , 0]T(n+1)×1 and ϕ = [1, 1, · · · , 1]T(n+1)×1 denote the coefficients of influence

of the supplemental damping models and input seismic excitation, respectively. Fd is the force

generated by RILD, LVD, INSTMW, or TMW, which is expressed as follows:310

[RILD].

Fd = ηk0x̂0(t) (18)

[LVD],

Fd = ηMtotalω0ẋ0 (19)

[INSTMW].

Fd = mdẍ0 + knx0 +

3∑
j=1

jcdẋd j (20)

jcdẋd j = jkd(x0 − xd j), (j = 1, 2, 3) (21)

[TMW],

Fd =

3∑
j=1

jcd t ẋd j (22)

jcd tẋd j = jkd t(x0 − xd j), (j = 1, 2, 3) (23)

where Mtotal = m0 +
∑n

i=1 mi denotes the total mass of the isolated structure. jcd t and jkd t

are the damping coefficient and stiffness in the jth branch of the TMW model, respectively, as

shown in Fig. 7. Similarly, jcd and jkd are the damping coefficient and stiffness in the jth branch

of the INSTMW model, respectively. ω0 is the angular frequency of the entire system when the

superstructure is considered a rigid body. x̂0(t) denotes the Hilbert transform of x0(t).315

Moreover, the term FHD represents the resistive force generated by the HD that provides non-

linearity to the system and is expressed as

FHD =


Fy

xy
(x0 − xp), |FHD| < Fy

sgn(ẋ0)Fy, |FHD| = Fy

(24)
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where xp denotes the plastic deformation of the HD.When HD is incorporated, ϕh = [1, 0, · · · , 0]T(n+1)×1.

Otherwise, ϕh = 0(n+1)×1;

The equations of motion are integrated into the frequency domain for a system containing RILD

because of its noncausality. Otherwise, Newmark’s β method (β = 1/4) was used as the integration

scheme.320

4.4. Linear base-isolation system

The target loss factor η for all damping systems was set to 0.4, following the common design

practices for base-isolated buildings in Japan. The coefficients of the RILD and LVD models were

obtained using equations (1) and (19), respectively.

It is worth mentioning that a model with as few branches as feasible that achieves satisfac-325

tory performance is preferable in practice. Following the recommendation presented in Section 3.4,

three branches of Maxwell elements can achieve practically constant loss stiffness over a specified

frequency range (Fig. 6(a)). Therefore, a TMW model with three branches was considered, and the

target angular frequency range was set to [0.5, 50] rad/s, which encompasses the first five eigen-

modes. The parameters of the three Maxwell elements can be determined using the optimization330

method introduced in Section 3.3. The PSO parameters are listed in Table 1. Then, for an IN-

STMW model, the inertance and negative stiffness are determined such that the storage stiffness

of the INSTMW is zero at the first two natural frequencies (i.e., ω̂1 = 1.57 rad/s and ω̂2 = 13.57

rad/s). Table 6 summarizes the parameters of the four damping models.

4.4.1. Frequency domain analysis335

The performance of the damping models was first compared in the frequency domain in terms of

the transfer functions and response power spectral densities (PSDs). Thus far, the 1995 Kobe N–S

record was used as the input ground motion. Fig. 9 depicts the Fourier amplitude spectrum and

PSD. The frequency responses of the isolator displacement and floor response acceleration at the

rooftop and the damping force coefficient (damping force divided by the total weight of the base-340

isolated structure) of the corresponding response PSDs (the product of the square of the transfer

functions and the PSD of the 1995 Kobe N–S record) are shown in Fig. 10.

As shown in Figs. 10(a) and (c), the squares of the displacement and damping force transfer

functions of the INSTMW system are greater than those of the LVD and RILD systems in the

angular frequency range below ω0, which is attributed mainly to the negative stiffness element.345
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Table 6: Properties of the damping models (target loss factor η = 0.4)

Model
md kn 1kd 2kd 3kd 1cd 2cd 3cd

(ton) (kN/m) (kN/m) (kN/m) (kN/m) (kN·s/m) (kN·s/m) (kN·s/m)

INSTMW 34 -4178
7226 4561 6319 5422 455 105

TMW – –

LVD
damping coefficient (kN·s/m)

ηMtotalω0 = 2686

RILD
complex-valued stiffness (kN/m)

iηk0 = 4221i
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Figure 9: Fourier amplitude and PSD of the 1995 Kobe N–S record

Under the same loss factor, the damping forces of the INSTMW, LVD, and RILD systems are

similar near ω0; thus, their response displacement PSDs are comparable, suggesting that these

systems yield similar displacement responses.

Nonetheless, the rooftop floor response acceleration PSD of the LVD system was significantly

greater than that of the other systems around the second natural frequency, as shown in Fig. 10(e).350

This is attributed to the high acceleration transmissibility of the LVD system and the ground

acceleration components in the vicinity of the second mode, as shown in Figs. 10(b) and 9(b). The

first modal frequency of the TMW system was shifted to the right owing to the added storage

stiffness, whereas the negative stiffness and inerter remained unchanged in the INSTMW system.
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Figure 10: Transfer function and power spectral density (1995 Kobe N–S record)

The response PSDs shown in Figs. 10(d)–(f) demonstrate that the INSTMW system performs as355

well as the RILD system in suppressing the floor response acceleration and damping force without

compromising the isolator displacement.

4.4.2. Response time-histories

The seismic performances of the INSTMW, TMW, LVD, and noncausal RILD models incorpo-

rated into the linear base-isolated structure were compared in terms of the relative isolator displace-360

ment, absolute rooftop floor acceleration, inter-story drift, and energy response history, as shown

in Figs. 11, 13 and 14. Fig. 12 shows the hysteresis loops of the four damping models under input

seismic records. Newmark’s β method (β = 1/4) was used as the numerical integration scheme for

the LVD, INSTMW, and TMW systems, whereas frequency domain analysis was conducted for the

RILD system because of its non-causality.365

As depicted in Fig. 11(a), the isolator displacement response histories of the INSTMW, LVD,

and RILD systems were similar under the four input ground motions. This is because they are

designed based on the same loss factor and thus have a comparable damping force near the first
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Figure 11: Displacement and rooftop floor acceleration response histories of linear base-isolated structures

Figure 12: Hysteresis loops of different damping models in conjunction with linear base-isolated structures

structural mode that dominates the structural displacement response.

Conversely, the rooftop floor response accelerations yielded by the LVD model were substantially370

higher than those of the INSTMW and RILD models when subjected to the 1995 Kobe N–S and 1994

Northridge SCH records. This is attributed to the excessively large damping force induced by the

high-frequency component in these two ground motions and the high acceleration transmissibility
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Figure 13: Inter-story drifts of linear base-isolated structures

Figure 14: Energy response histories of linear base-isolated structures

near the second structural mode, as shown in Figs. 10 (b) and 12. Fig. 13 demonstrates that

the INSTMW device achieves inter-story drifts comparable to those of RILD, outperforming the375
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LVD and TMW models. Although the large damping force generated by the LVD can dissipate

a substantial amount of seismic energy, it results in a large seismic energy input to the structural

system, as shown in Fig. 14.

The ability of the INSTMW model to suppress the control force while maintaining the isolator

displacement control effect is evident when the model is subjected to earthquakes dominated by380

high frequencies (1995 Kobe N–S and 1994 Northridge SCH), as shown in Figs. 12(a) and (b). The

INSTMW model cuts off high-frequency components that generate a high control force while barely

contributing to the displacement response. In contrast, when subjected to earthquakes containing

abundant low-frequency components (1968 Hachinohe N–S and 2011 Tohoku N–S), the benefit

diminishes, as shown in Figs. 12(c) and (d).385

Moreover, in Fig. 12, although both the TMW and INSTMW systems are designed to achieve

constant loss stiffness in the specified frequency range, their hysteresis loops appear different owing

to the differences in their storage stiffness. By adding the negative stiffness and inerter used in the

INSTMW system, the RILD hysteresis loop can be successfully reproduced.

Although the TMW system is designed such that its loss stiffness is close to that of RILD390

in the specified angular frequency range, its maximum response displacement and floor response

acceleration are the largest among the four damping systems under input excitation(except for

2011 Tohoku N–S). In addition, the inter-story drifts were significantly larger than those of the

other damping models. In contrast, the response control performance of the INSTMW system

is comparable to that of an RILD system, highlighting the importance of adjusting the loss and395

storage stiffness.

In conclusion, the INSTMW system benefits base-isolated structures by reducing the response

displacement, floor response acceleration, inter-story drifts, and seismic energy input to a greater

extent than the LVD system when subjected to ground motion dominated by frequencies higher

than the fundamental natural frequency. The proposed system is never outperformed by the LVD400

and TMW systems if the dominant excitation frequency is higher than the fundamental natural

frequency, which is ensured by designing the isolation frequency to be lower than the dominant

frequency of excitation. Adjusting the storage stiffness is crucial for achieving a response control

performance similar to that of an ideal RILD system. Using negative stiffness, an inerter is a viable

and efficient option for adjusting the storage stiffness.405
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4.5. Nonlinear base-isolation system

This section considers a hybrid isolation system operating with an HD and linear damping

system. With respect to linear damping systems, the INSTMW, TMW, and LVD models were

employed, and their properties were the same as those listed in Table 6. For simplicity, hybrid

damping systems that combine HD with the INSTMW, TMW, and LVD models are designated as410

H-INSTMW, H-TMW, and H-LVD, respectively. The notations HD-1, HD-2, and HD-3 in the plots

represent the damping force of HD in the H-INSTMW, H-TMW, and H-LVD systems, respectively.

The analysis is conducted in the time domain because of nonlinearity.

Fig. 15 plots the displacement and acceleration response time histories of nonlinear base-isolated

structures equipped with different hybrid control systems subjected to four seismic records. Figs. 16415

and 17 show the hysteresis loops of supplemental damping models and HDs, respectively. The inter-

story drift of the superstructure is shown in Fig. 18.

Figure 15: Displacement and rooftop floor acceleration response histories of nonlinear base-isolated structures

It is observed that H-INSTMW yields similar displacement response time histories to those of the

H-LVD, whereas its maximum accelerations (see Table 7) and inter-story drifts of the superstructure
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Figure 16: Hysteresis loops of damping models in conjunction with nonlinear base-isolated structures

Figure 17: Hysteresis loops of HDs
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Figure 18: Inter-story drifts of nonlinear base-isolated structures
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Figure 19: Energy response histories of nonlinear base-isolated structures

are lower than those of the H-LVD under the 1995 Kobe N–S and 1994 Northridge SCH records, as420

shown in Figs. 15 and 18. This is because the damping forces generated by the proposed model are

lower, whereas the maximum resistive forces yielded by the HDs are the same, as shown in Figs. 16

and 17. Moreover, the INSTMW model dissipates less energy because of its lower damping forces,

which also introduces less seismic energy to base-isolated structures than LVD, as shown in Fig. 19.

The ability of the INSTMW system to suppress the control force while maintaining the isolator425

displacement control effect in a nonlinear system is evident when the system is subjected to earth-

quakes dominated by high frequencies (1995 Kobe N–S and 1994 Northridge SCH), as shown in

Figs. 16(a) and (b), whereas the benefit diminishes when it is subjected to earthquakes dominated

by low-frequency components (1968 Hachinohe N–S and 2011 Tohoku N–S), as shown in Figs. 16(c)

and (d).430

To quantitatively compare the seismic responses yielded by different damper systems incorpo-

rated into linear and nonlinear isolation systems, Table 7 summarizes the maximum displacement

and floor response acceleration values, in which the percentages of reduction of each response value

compared with the LVD are shown in parentheses.
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Table 7: Maximum response values of linear and nonlinear base-isolation systems

System Seismic records
Max isolator displacement (m) Max rooftop floor acceleration (m/s2)

INSTMW TMW LVD RILD INSTMW TMW LVD RILD

Linear

case

1995 Kobe N–S 0.25(+4.2%) 0.28(+16.7%) 0.24 0.25(+4.2%) 1.23(-39.4%) 1.88(-7.4%) 2.03 1.14(-40.8%)

1994 Northridge SCH 0.45(+9.7%) 0.50(+22.0%) 0.41 0.43(+4.9%) 1.69(-29.3%) 2.88(+20.5%) 2.39 1.53(-36.0%)

1968 Hachinohe N–S 0.16(+6.7%) 0.18(+20.0%) 0.15 0.15(0) 0.54(-22.9%) 0.94(+34.3%) 0.70 0.49(-30.0%)

2011 Tohoku N–S 0.28(0) 0.26(-7.1%) 0.28 0.29(+3.6%) 1.00(-20.0%) 1.26(+0.8%) 1.25 0.95(-24.0%)

Nonlinear

case

1995 Kobe N–S 0.24(+9.1%) 0.27(+22.7%) 0.22

—

2.72(-15.5%) 3.25(+0.9%) 3.22

—
1994 Northridge SCH 0.41(+5.1%) 0.49(+25.6%) 0.39 2.60(-30.7%) 3.30(-12.0%) 3.75

1968 Hachinohe N–S 0.13(+18.2%) 0.13(+18.2%) 0.11 1.03(-10.4%) 1.12(-2.6%) 1.15

2011 Tohoku N–S 0.17(+6.3%) 0.17(+6.3%) 0.16 1.72(+0.6%) 1.78(+4.1%) 1.71

Evidently, the best performance in mitigating the isolated structural response is attained by435

RILD, which is incorporated into a linear isolation system that achieves similar displacement re-

ductions with significantly lower response accelerations compared to LVD, particularly under the

1995 Kobe N–S and 1994 Northridge SCH cases. Similar results were observed for the INSTMW

model, proving that the proposed model can causally realize the benefits of RILD. The perfor-

mance improvement of the proposed system is attributed to the introduction of negative stiffness440

and inerter elements.

Specifically, compared with the LVD model under the 1995 Kobe N–S and 1994 Northridge SCH

records, the floor response acceleration reductions of the INSTMW model were approximately 39%

and 29% in the linear case and approximately 16% and 30% in the nonlinear case, respectively,

with a slight increase in isolator displacements. Under the other two ground motions containing445

abundant low-frequency components, the floor response acceleration reductions were approximately

20% in the linear case, with similar displacement responses. Its control effects are less effective when

applied to a nonlinear isolation system, particularly under the 2011 Tohoku N–S record.

For a linear base-isolation system, the numerical analysis results demonstrated the superiority

of the proposed system over the TMW and LVD models in controlling displacement with lower450

demand for control force and reduced response indicators regarding floor response acceleration,

inter-story drift, and earthquake energy input when subjected to ground motions dominated by

high-frequency components. The results obtained from the nonlinear system demonstrate that the

proposed system outperforms the TMW model. Compared with LVD, further challenges are identi-

fied for the proposed system in mitigating the responses of the isolated structure with nonlinearity455
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when subjected to ground motions containing abundant low-frequency components.

5. Conclusions

RILD benefits low-frequency structures by performing selective damping in the low-frequency

region, particularly at the fundamental natural frequency of the structure, to effectively suppress

response displacements while cutting off the high-frequency components responsible for undesirable460

large floor response accelerations.

The noncausality of RILD hinders its realization as a mechanical device to exploit this benefit.

Causal approximation methods of RILD in the literature have focused on achieving constant loss

stiffness and paid less attention to storage stiffness. A causal constant-loss stiffness model can be

achieved at the expense of adding an undesirable storage stiffness proportional to the logarithm of465

the frequency.

Biot’s model is the most successful in approximating the constant-loss stiffness characteristics of

RILD, particularly in the high-frequency region. However, it requires infinite branches of Maxwell

elements, making it impossible to realize it as a mechanical device. The TMW model is the most

viable option for realizing RILD among the known causal RILD models because it can achieve prac-470

tically sufficient accuracy in achieving constant loss stiffness within the specified target frequency

with finite branches of Maxwell elements. Questions remain regarding the number of branches

required and the method used to eliminate the undesirable storage stiffness added to the isolation

layer.

To address the former question, a series of optimum designs was conducted to determine the475

relaxation parameters for Maxwell elements by varying the number of branches and the target

frequency range in which constant loss stiffness is achieved. The results show that three branches

enable the TMW model to achieve practically sufficient accuracy. The latter question is addressed

using negative stiffness and inerter elements. Combining these two elements with different fre-

quency dependencies allows us to adjust the isolator stiffness to exactly what we desire at least two480

independent frequencies.

Linear simulation analyses using a 10-story base-isolated structure model demonstrated that the

proposed INSTMW model outperformed the LVD and TMW models in reducing the floor response

acceleration and inter-story drifts while maintaining the isolator displacement control effect when

subjected to ground motions dominated by high-frequency components and its seismic performance485
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was not compromised even when excited by ground motions containing abundant low-frequency

components. Furthermore, an HD that remained elastic for a 500-year wind load return period

was incorporated into the isolation layer to examine the performance of the proposed model when

incorporated into a more realistic nonlinear isolation system. The results demonstrated that the

proposed model outperformed the TMW model, whereas floor response acceleration reduction was490

achieved at the expense of compromised isolator displacement compared to LVD.

In the future, we plan to design and manufacture a full-scale prototype of the proposed device

and conduct a full-scale dynamic validation test to study the potential application of the device to

real-life building structures.
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