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ABSTRACT

We provide an overview of Machine learning (ML)
and its role in hydrology and hydraulic. The aim is
to ease the access of researchers in the latter fields
to the techniques in ML.

1 INTRODUCTION

Machine Learning (ML) has received increasing
attention in the later years. It promises to ease
the problem of modeling from observations. It is
a heavily mathematized field, with strong statisti-
cal jargon. Therefore, it can be difficult to access
for researchers from the fields of hydrology and
hydraulics (hydro-research). A bird’s-eye view of
ML and its role, can be beneficial for the hydro-
research community. Herein we address the ques-
tion of what is ML in general terms and what are
its role in hydro-research. We discuss some impor-
tant features in each of these roles

Machine learning at a glance ML could be de-
scribed as "the use of a set of observations to un-
cover an underlying process". The process is usu-
ally stated as a mathematical relation between the
observations. Herein we consider only the case in
which observations include the inputs and outputs
of the process, i.e. supervised learning. The sought
functional pattern, called unknown target function
establishes the relation between the inputs and the
outputs, i.e. is a model of the process. The training
examples, are input-output samples from the un-
derlying process and they represent all the direct
information we have about it. Fig. 1 illustrates the
structure of ML in this case [1].
To search for the target function we choose an

extensive set of functions, which we call the hy-
pothesis set. For example, we could choose all the
linear functions between inputs and outputs (i.e.
linear models), or all the functions generated by a
given neural network. The key point is that the hy-
pothesis set is built so as to contain the unknown
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Figure 1: Bird’s eye view of ML. Taken from "Learning
from data" by Yaser S. Abu-Mostafa et al.

target function or at least a very good approxi-
mation for it. This choice is based on our previ-
ous experience and the available expert knowledge
about the underlying process, e.g. mathematical or
phenomenological models. The learning algorithm
uses the training examples to select the best candi-
date function from the hypothesis set, i.e. the final
hypothesis. Since all prior information about the
unknown target function is encoded in the hypoth-
esis set, the quality of the best candidate heavily
depends on the elements in the set.
All fundamental research in supervised ML con-

sist in developing new learning algorithms (mainly
optimization algorithms), novel or concise descrip-
tions of different hypothesis sets, and useful repre-
sentations for input-output data (encodings).

2 ML IN HYDRO-RESEARCH

ML as described before can be useful for hydro-
research in at least three situations: i) (artificial
science) learning new models from measured data;
ii) (scientific numerical modeling) using data to
find the value of parameters of known models; iii)
(emulation) replacing a model with a simpler ver-
sion while maintaining the quality of the predic-
tions.
The relation between these situations is summa-

rized in Fig 2.
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Figure 2: Three uses of ML in hydro-research. Emulation is
a subset of pure ML (artificial science), and it intersect with
numerical modeling when prior knowledge is exploited.

Artificial science This is the realm of pure ML
in which a relation is learned using only data. We
use ML to discover new natural laws based only on
experimental data. Many popular ML techniques,
specially artificial neural networks, have been seen
as the grail to perform artificial science, but none
have been up to the task. There is a long stand-
ing discussion about the topic but the main issue
is that these tools fail to create abstractions the
way human researchers do. [2, 3] The quest is a
valid scientific endeavor, but the question itself still
eludes a scientific formulation and scientist should
be aware that we are far from obtaining such tech-
nology. Nevertheless, it was very popular in hydro-
research during the last two decades. Besides the
mentioned issue, three other difficulties can be
identified: (i) there is a lack of measured data in
the majorities of case studies; (ii) there are signif-
icant uncertainties in measuring variables related
to hydro-research; (iii) even in gauged case studies,
observed data exist usually in regular conditions,
because either extreme conditions are rare or the
extreme conditions have as consequence the fail-
ure of the measurement system. Therefore, learn-
ing scientific models under these circumstances is
at least problematic.

Scientific numerical modeling When learning
models from data all scientist will come with their
own bag of beliefs. In this case we move from ar-
tificial science to scientific modeling, in which our
beliefs are informed by data. We discard models
and hypothesis based on their ability to predict
observations.
Scientific numerical modeling is the current

dominant use of ML in hydro-research applica-
tions. Modern numerical models can resolve fine
spatial and temporal scales, mainly thanks to the
exponential increase of computational power. Con-
comitantly, although open challenges still exist, ef-
forts to improve our fundamental understanding of
hydro-sciences are decreasing, e.g. improving the-
ories, collecting data, validating models, etc.
The most common use of ML is for model cal-

ibration (a.k.a. system identification), in which
model’s parameters are determined using mea-

sured data. These parameters often enjoy a phys-
ical interpretation and this forms the basis for se-
lecting or rejecting models. Although ML offers a
large variety of optimization and calibration tools,
these are not frequently used in applied hydro-
research, even in the cases in which observed data
exist. This might be partly due to the fact that the
level of detail on fine-scaled models impose large
runtime for each model evaluation, and optimiza-
tion based on sampling becomes unfeasible.

Emulation In this component, instead of dealing
with measured data, we use a simulator or model
to sample input-output examples. With the data
sampled from a known model we learn a new model
which is numerically simpler than the original one.
Emulation is a subfield of ML and the inter-

section with scientific numerical modeling is given
by emulators that use prior scientific knowledge.
Not all methods of ML permit easy inclusion of
this sort of prior knowledge, the best know to the
authors are kernel methods (which includes many
known ML methods).
Emulation is related to model order reduction

(MOR) [4] , both produce fast surrogate models.
We distinguish the two based on the dimensional-
ity of the output of the surrogate. A MOR surro-
gate will generally provide as many states as the
original simulator. Emulators on the other hand
provide outputs of smaller dimension, [5] e.g. wa-
ter depth at certain locations. This makes emu-
lators less general than reduced models, but this
specification of the former generally renders them
faster than the latter. In practice the selection be-
tween reduced models or emulators is dictated by
the application at hand and its engineering con-
straints (memory, processing power, accuracy, time
budget, etc.)
The large runtime needed to sample fine-scaled

models was already mentioned in the previous
component. Sampling for emulation needs to gen-
erate good enough emulators with sparse datasets,
here is were a reduced output dimension and prior
knowledge play a crucial role. Once an emula-
tor is learned, taking new samples becomes very
cheap and optimizations technique for model cal-
ibration can be applied exhaustively, allowing not
only model calibration but also real-time control,
optimal design, uncertainty quantification, etc.
Emulation merges artificial science and scientific

numerical modeling, with it we are able to discover
hidden input-output relations while exploiting all
available information about the phenomena.
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