
Evaluation of FPGA reconfiguration after service
launch
Yoji Yamato

NTT Network Service Systems Laboratories
NTT Corporation

Musashino-shi, Tokyo 180–8585, Japan
Email: yoji.yamato.wa@hco.ntt.co.jp

Abstract—In order to make full use of heterogeneous hard-
ware, it is necessary to have a technical skill of hardware such
as OpenCL, and the current situation is that the barrier is
high. Based on this background, I have proposed environment-
adaptive software that enables high-performance operation by
automatically converting application code written for normal
CPUs by engineers according to the deployed environment and
setting appropriate amount of resources. Until now, I only
considered conversions and settings before the start of operation.
In this paper, I verify that the logic is reconfigured according
to the usage characteristics during operation. I confirm that the
application running on the FPGA is reconfigured into another
application according to the usage characteristics.

Index Terms—Environment Adaptive Software, Automatic Of-
floading, FPGA, Reconfiguration during Operation, Cost Perfor-
mance.

I. INTRODUCTION

From the deceleration prediction of Moore’s Law, a multi-
core CPU, GPU (Graphics Processing Unit) or FPGA (Field
Programmable Gate Array) increases, which is not only in-
creasing the degree of semiconductor integration and the
number of clocks of one core CPU (Central Processing Unit)
. This type of heterogeneous hardware has come to be used
for normal application operation. Microsoft is making efforts
such as searching with FPGA [1], and Amazon provides FPGA
and GPU instances [2] using cloud technologies ([3]-[8]). In
addition, the use of small devices such as IoT devices is
increasing (e.g., [9]-[18] as heterogeneous hardware.

However, in order to efficiently use heterogeneous hardware
that is not a single core CPU, it is necessary to create and set
programs according to the hardware specification, which is a
high barrier for most engineers. High knowledge and skill of
OpenMP (Open Multi-Processing) [19] for multi-core CPU,
CUDA (Compute Unified Device Architecture) [20] for GPU
to achieve GPGPU (General Purpose GPU) [21], OpenCL
(Open Computing Language) [22] for FPGA, assembly for
IoT devices, or so on are often required. Even if we use high
level description techniques such as [23]-[25], performance
improvement needs much skills.

In order to increase the use of heterogeneous hardware,
we think that a platform that enables even ordinary engineers
without high knowledge to make the best use of them is nec-
essary. A platform analyzes software that describes processing
with the same logic as a normal CPU, appropriately converts

and sets it according to the environment of the deployment
destination (multi-core CPU, GPU, FPGA, etc.), and adapts to
the environment. In the future, these platforms will be required
to perform the adaption.

Therefore, I have proposed environment-adaptive software
which automatically converts, sets resources, determines the
placement and others of the program code once written for
normal CPU so that the GPU, FPGA, multi-core CPU that
exist in the environment of the placement destination can
be used, and makes the applications high performances. At
the same time, as elements of environment-adaptive software,
I have proposed and evaluated a method of automatically
offloading loop statements and functional blocks of codes to
GPUs and FPGAs, and a method of appropriately assigning
the amount of processing resources such as GPUs [26]-[31].

However, my environmental adaptation has been based on
the premise that adaptation processing such as conversion is
performed before the start of operation of the application, and
it was not studied that it will be reconfigured according to
changes in usage characteristics after the start of operation.

This paper focuses on the reconfiguration of FPGA logic,
while reconfiguring software according to the usage char-
acteristics during operation. Except for special applications
such as the circuit reconfiguration of artificial satellite while
using FPGA for accelerating normal applications, there is no
example in the commercial cloud, which reconfigures FPGA
logic according to usage characteristics during application
operation. FPGA reconfiguration during application operation
is difficult and effective, we think. First, we offload a normal
CPU program to the FPGA and start operation, analyze the
request characteristics, propose to change the FPGA logic
to another program, and examine and evaluate a method for
reconfiguration with less user effect. The effectiveness of the
proposed method is confirmed through the FPGA configura-
tion of the existing application and the reconfiguration during
operation.

II. FPGA RECONFIGURATION DURING OPERATION

A. Review of the automatic FPGA offload method before
operation start

I review the automatic FPGA offload method of the loop
statement that has been verified by my previous papers [31]
simply.



Fig. 1. Automatic FPGA offload of loop statements

For the automatic FPGA offload of the loop statement is
made some offload patterns and exploring high speed patterns
through Clang [32] analysis and verification environment mea-
surement by focusing on loop statements with high arithmetic
intensity and loops numbers (See, Fig. 1). At the time of the
GPU, the combination was performed in most loop statements
by Genetic Algorithms [33], and the measurement of 1000
times scale was performed to explore the optimal pattern. In
FPGA, it takes more than 6 hours to compile, so the number
of times measurements is narrowed down.

B. Basic policy for FPGA reconfiguration during operation

By II.A method, the application specified by the user can
automatically offload the loop statements suitable for FPGA
to FPGA.

After offload to the production environment used by the
user, the user can check the actual performance and price in
the production environment, and the user will start or not using
the application. However, the performance optimization test
case used in II.A (the item to be measured when comparing
the performance in multiple offload patterns) uses the assumed
usage data specified by the user before the operation starts. It
is possible that it will be greatly separated from the data that
will be used after the operation starts.

Therefore, in II.B, the usage after the operation starts is
different from the initial assumption, and the performance may
be improved by offloading other logic to FPGA. At this time,
it is considered to be reconfigured with a low user impact
of FPGA logic. The reconfiguration may be changed to a
different loop statement offload in the same application, or
may be changed to offload of different applications.

There are two types of FPGA reconfiguration: dynamic re-
configuration and static reconfiguration. The former is a tech-
nology that changes the circuit configuration while running the
FPGA and the time for rewriting is msec order, the latter is a
technology that stops the FPGA and then changes the circuit
configuration, and the break time is about 1 second. Depending
on the degree of user impact of the break time, we can select a

reconfiguration method provided by FPGA vendors. However,
either method has a break time, and it requires a test for
operation confirmation after reconfiguration, therefore, I do
not think that it should be reconfigured frequently. To restrict
frequent reconfiguration, reconfigurations are only proposed
when the improvement effect is higher than the threshold.

The reconfiguration processing begins with an analysis of
request tendency for a certain period such as one month.
The functions of the proposed method analyze the request
tendency and understand whether there are applications which
load are higher or the same than that of the currently offload
application. Next, applications with high load are executed
in the verification environment for the FPGA offload opti-
mization using data actually used in production use instead
of the assumed usage data. Here, it is determined whether the
new offload pattern found by verification has a much higher
improvement effect than the current offload pattern or less
comparing the threshold value. If the improvement exceeds the
threshold, a reconfiguration is proposed to the user. After the
user acceptance, the production environment is reconfigured.
At the time of reconfiguration, it is reconfigured to reduce user
impact as much as possible.

C. Method proposal of FPGA reconfiguration during opera-
tion

Based on the basic policy of II.B, II.C proposes a concrete
reconfiguration method. The reconfiguration method consists
of 6 steps, and each step is explained in detail. In particular,
step 1 is complicated, so I will add supplementary explanation
it at the end.

1. For a certain period of time (long term), production
request data is analyzed, and multiple applications with high
processing time load are identified and production representa-
tive data when using the applications are acquired.

1-1. The actual processing time and the number of usage
times from each application usage history for a certain period
are calculated.

However, for an application that is offloaded to FPGA, the
processing time is calculated assuming that it is not offloaded.
From the test history in the assumed usage data before the
start of operation, (actual processing time with CPU processing
only)/(actual processing time with FPGA offload) is calculated
to set the improvement coefficient. Next, the total processing
time is used for comparing to calculate the sum value of (the
improvement coefficient)*(the actual processing time).

1-2. The total actual processing time with all applications
are compared.

1-3. Based on the total actual processing time with all ap-
plications, multiple applications with high load are identified.

1-4. Request data for a certain period (short term) of
the high load applications are obtained. The distributions of
request data according to the data size are created.

1-5. From the actual request data corresponding to the Mode
value of the data size distribution, one data is selected as the
production representative data.



2. Offload patterns are extracted through verification envi-
ronment measurement, which speeds up the test case of pro-
duction representative data for multiple high load applications.

2-1. 4 for statements with high arithmetic intensity are
selected for each high load application.

2-2. 4 OpenCL with high arithmetic intensity loop are
created and pre-compiled. Resource usage of each OpenCL
are showed, then 3 OpenCL with high values of arithmetic
intensity/resource usage are selected.

2-3. 3 OpenCL is measured with production representative
data. Then, an OpenCL that combines 2 for statements with
top 2 performances is created and additionally measured the
performance as well.

2-4. The highest speed offload pattern in 4 measurements
is selected as a final solution for each high load application.

3. The processing time of the current offload pattern and
the extracted multiple new offload patterns are measured
using production representative data, and the performance
improvement effects based on the frequency of production use
are calculated.

3-1. Calculation with the current offload pattern (actual pro-
cessing time reduction in verification environment)*(frequency
of production use).

3-2. Calculation with multiple new offload patterns (ac-
tual processing time reduction in verification environ-
ment)*(frequency of production use).

4. The reconfiguration proposal is determined by the perfor-
mance improvement effect of the new offload pattern is more
than the threshold of the current offload pattern.

4-1. (3-2)/(3-1) of each high load application is calculated,
and calculated values are checked if the value is higher than
the threshold. If the value is more than the threshold, the
reconfiguration is proposed, and nothing is done if the value
is below the threshold.

5. A reconfiguration of FPGA is proposed to the contract
user and the user responses OK or NG.

6. A static reconfiguration is conducted by starting new
OpenCL in a production environment.

6-1. New offload pattern compilation.
6-2. Stop operation of the current offload pattern.
6-3. Start the operation of the new offload pattern.
The method selects high load applications in step 1. For the

current FPGA offload application, the processing time is cal-
culated by applying the improvement coefficient to calculate
where it is not offloaded to compare other applications which
are processed CPU only. When choosing a representative data,
the average data size may vary significantly from the actual
production data, I use the mode value of the data size.

III. EVALUATION

A. Evaluation conditions

1) Evaluated applications: The evaluated applications are
mainly signal processing and image processing, which are
expected to be used by many users in FPGAs.

The time-domain finite-impulse response filter (tdFIR) for
signal processing is a type of filter that cuts off the output when

an impulse function is input to the system in a finite time.
There are various implementations, but the C code of [34]
is used. When considering an application that transfers signal
data from a device to a network in IoT or other situations,
it is assumed that the data will be sent to the cloud after
processing signals such as filters in order to reduce network
costs. Therefore, I think that the automatic speed-up of signal
processing in FPGA has a wide range of applications.

MRI-Q [35] is an MRI image processing that calculates the
Q-matric that represents the scanner settings for calibration.
MRI-Q is used in a 3D MRI reconstruction algorithm in non-
Cartesian space. In IoT or other situations, image processing
is often required for automatic monitoring of camera images,
and performance of image processing throughput is required
to be enhanced. In the performance measurement at the time
of offload pattern extraction, MRI-Q performs 3D MRI image
processing and depends on the data size, but in the assumed
usage, the processing time is measured using 64*64*64 size
data.

In addition, the Himeno benchmark [36] for uncompressed
fluid analysis, Symm (Symmentry matrix manipulation) [37]
for symmetric matrix calculation, and DFT (Discrete Fourier
transform) [38] for discrete Fourier transform calculation are
run on the same server and execution requests are received.

2) Evaluation methods: I confirmed the proposed method.
Before the start of operation, the user specifies the offload of
tdFIR and automatically offloads it to FPGA. In the production
environment, only tdFIR is offloaded to FPGA, and MRI-
Q, Himeno Benchmark, Symm and DFT are run by CPU
only processing. A request load is applied to the production
environment server for a certain period of time, the requests
are analyzed, a reconfiguration to a new offload pattern with
a high performance improvement effect is proposed and the
reconfiguration is performed after user approval.

The conditions for FPGA offload are as follows.
Offload target: Number of loop statements. tdFIR 6, MRI-Q

16, Himeno 13, Symm 9, DFT 10.
Narrow down of Arithmetic Intensity: Narrowing down to

the top 4 loop statements in arithmetic intensity analysis of
ROSE framework [39]

Narrow down of resource efficiency: Narrow down to the
top 3 loop statements in resource efficiency analysis

Number of measured offload patterns: 4 (The first measure-
ment measures 3 offload patterns with high resource efficiency,
and the second measurement measures the combination pattern
of the 2 loop statement offloads that are high performance in
the first measurement.)

The operational conditions for FPGA reconfiguration are as
follows.

Request frequency: tdFIR 300 req/h, MRI-Q 10 req/h,
Himeno 3 req/h, Symm 2 req/h, DFT 1 req/h requests are
applied for 2 hours.

Types of data: 3 types of data are prepared. Small size of
sample data, large size of sample data, and double of large
data which copies and adds large sample data once. In tdFIR
and MRI-Q, requests for small, large and double large sizes



Fig. 2. Evaluation environments

are requested at a ratio of 3:5:2. Himeno, Symm and DFT are
only requested the data which are same with equipped sample
data.

Long term during load analysis: 2 hours
Short term when selecting representative data: 1 hour
Number of high load applications: 2
Threshold of performance improvement effect: 2.0
During the reconfiguration, the performance improvement

effect and the processing time of each step associated with
the reconfiguration are acquired.

3) Evaluation environments: Intel FPGA PAC D5005 (Intel
Stratix 10 GX FPGA, Logic Element 2,800,000) is used as
the evaluation FPGA. The server equipped with Intel FPGA
PAC D5005 is DELL EMC PowerEdge R740 (CPU: Intel
Xeon Bronze 3206R * 2, RAM: 32GB RDIMM * 4). Intel
Acceleration Stack Version 2.0 is used for FPGA control. By
dividing the C language program into a kernel program and a
host program according to the OpenCL syntax, FPGA offload
processing is performed by OpenCL, and reconfiguration to
another OpenCL program is also processed by Intel Acceler-
ation Stack.

Figure 2 shows the evaluation environment and specifica-
tions. Here, the note PC specifies the application code to be
offloaded, extracts the offload pattern through performance
measurement in the verification environment, and then deploys
it to the production environment. Execution requests are made
to the production environment applications from the note
PC periodically. The production environment requests are
analyzed, new offload patterns are extracted using the verifica-
tion environment, and after user confirmation, the production
environment is reconfigured into the new offload pattern.

B. Results

Figure 3 shows the degree of improvement in the pro-
cessing time of the offload application before and after the
reconfiguration and the total processing time (corrected for the
improvement coefficient) for a certain period. First, tdFIR was
offloaded before the reconfiguration, the degree of improve-
ment in the assumed data before the start of operation was
2.07, and the load of 300 req/h was applied after the start of

Fig. 3. Comparison of performance improvement through reconfiguration of
the proposed method

operation. 159 seconds which calculated from the total actual
processing time of the request * 2.07 is the total corrected
processing time, and 600 is the total number of uses. Next,
MRI-Q has a load of 10 req/h after the start of operation. 549
seconds of the total actual processing time of the request is the
total processing time, and 20 is the total number of uses. These
two are the applications with the high load. These two searches
for new offload patterns using production representative data.
The processing time for one time in the new offload pattern is
reduced from 0.266 seconds to 0.129 seconds for tdFIR and
from 27.4 seconds to 2.23 seconds for MRI-Q. By multiplying
the number of production uses, the processing time is reduced.
The degree of performance improvement is 41.1 seconds/h for
tdFIR and 252 seconds/h for MRI-Q.

From Fig. 3, the change from tdFIR offload to MRI-Q
offload increases the performance improvement by 6.1 times
and exceeds 2.0, so reconfiguration is proposed to the user.

The size of the request analysis is small because only several
hours data is analyzed in this time, but it will take longer
in proportion to the size. This time, it takes about only 1
second for request analysis and production representative data
selection, about 1 day for improvement effect calculation, and
about 1 second for reconfiguration. Regarding the offload trial
before the start of operation, the trial of the new offload
patterns searches during operation, and the time to compile
the new offload pattern one the production environment, since
one FPGA compilation takes 6 hours or more, the number of
measurements is 4 takes more than a day for one application.
Most of the processing such as analysis, including the trial
of the new offload patterns searches, is performed in the
background during application operation in the production
environment, so there is no user impact. The only thing that
can be confirmed is that the break time of the application is
necessary for production reconfiguration. However, the static
reconfiguration of OpenCL takes about only 1 second, and
there is almost no effect. If a shorter break time is required,
it is possible to use the dynamic reconfiguration function of
FPGA vendors.

I confirmed the FPGA reconfiguration according to the
usage characteristics during operation by changing from tdFIR
offload to MRI-Q offload during operation. Through the recon-
figuration, the degree of performance improvement increased
above the threshold value, and it was shown that the break
time was sufficiently short.



IV. CONCLUSION

In this paper, as an element of it, I have proposed an
FPGA reconfiguration method that reconfigures the appro-
priate FPGA logic during operation according to the usage
characteristics after the application operation starts.

Before starting operation, the application loop statement is
automatically offloaded to the FPGA. In the proposed method,
the applications with large CPU processing times are analyzed
from the actual request data at regular intervals, and the
corresponding representative test cases are gathered. Next,
the offload patterns that speed up representative test cases
are extracted through trial measurement in the verification
environment for large load applications. This is almost the
same as offload before the start of operation. Next, the
processing time of the current offload pattern and the extracted
new offload pattern are measured, and the processing time
improvement based on the frequency of production use is
calculated. Here, if the new offload pattern has an effect greater
than the threshold of the current offload pattern, our method
proposes to the users to carry out reconfiguration. Once user
consent is obtained, our method reconfigures FPGA logic us-
ing OpenCL reconfiguration in a production environment. The
application that was automatically offloaded to the FPGA, and
the FPGA logic was reconfigured during operation to another
application in the experiment. The reduction in processing
time was improved by reconfiguration, and reconfiguration was
performed with a short interruption time of about 1 second.
Thus, the effectiveness of the proposed method was confirmed.

REFERENCES

[1] A. Putnam, et al., ”A reconfigurable fabric for accelerating large-
scale datacenter services,” Proceedings of the 41th Annual International
Symposium on Computer Architecture (ISCA’14), pp.13-24, June 2014.

[2] AWS EC2 web site, https://aws.amazon.com/ec2/instance-types/
[3] O. Sefraoui, et al., ”OpenStack: toward an open-source solution for cloud

computing,” International Journal of Computer Applications, Vol.55,
No.3, 2012.

[4] Y. Yamato, ”Automatic system test technology of virtual machine
software patch on IaaS cloud,” IEEJ Transactions on Electrical and
Electronic Engineering, Vol.10, Issue.S1, pp.165-167, Oct. 2015.

[5] Y. Yamato, et al., ”Fast Restoration Method of Virtual Resources on
OpenStack,” IEEE Consumer Communications and Networking Confer-
ence (CCNC2015), Las Vegas, pp.607-608, Jan. 2015.

[6] Y. Yamato, ”Automatic verification for plural virtual machines patches,”
The 7th International Conference on Ubiquitous and Future Networks
(ICUFN 2015), pp.837-838, Sapporo, July 2015.

[7] Y. Yamato, ”Proposal of Optimum Application Deployment Technology
for Heterogeneous IaaS Cloud,” 2016 6th International Workshop on
Computer Science and Engineering (WCSE 2016), pp.34-37, June 2016.

[8] Y. Yamato, et al., ”Fast and Reliable Restoration Method of Virtual
Resources on OpenStack,” IEEE Transactions on Cloud Computing,
DOI: 10.1109/TCC.2015.2481392, Sep. 2015.

[9] M. Hermann, et al., ”Design Principles for Industrie 4.0 Scenarios,”
Rechnische Universitat Dortmund. 2015.

[10] Y. Yamato, ”Proposal of Vital Data Analysis Platform using Wearable
Sensor,” 5th IIAE International Conference on Industrial Application
Engineering 2017 (ICIAE2017), pp.138-143, Mar. 2017.

[11] Y. Yamato and M. Takemoto, ”Method of Service Template Generation
on a Service Coordination Framework,” 2nd International Symposium
on Ubiquitous Computing Systems (UCS 2004), Nov. 2004.

[12] Y. Yamato, et al., ”Proposal of Real Time Predictive Maintenance
Platform with 3D Printer for Business Vehicles,” International Journal
of Information and Electronics Engineering, Vol.6, No.5, pp.289-293,
Sep. 2016.

[13] H. Noguchi, et al., ”Distributed Search Architecture for Object Track-
ing in the Internet of Things,” IEEE Access, DOI: 10.1109/AC-
CESS.2018.2875734, Oct. 2018.

[14] Y. Yamato, et al., ”Security Camera Movie and ERP Data Matching
System to Prevent Theft,” IEEE Consumer Communications and Net-
working Conference (CCNC 2017), pp.1021-1022, Jan. 2017.

[15] Y. Yamato, et al., ”Proposal of Shoplifting Prevention Service Using
Image Analysis and ERP Check,” IEEJ Transactions on Electrical and
Electronic Engineering, Vol.12, Issue.S1, pp.141-145, June 2017.

[16] Y. Yamato, et al., ”Analyzing Machine Noise for Real Time Main-
tenance,” 2016 8th International Conference on Graphic and Image
Processing (ICGIP 2016), Oct. 2016. 　

[17] Y. Yamato, ”Experiments of posture estimation on vehicles using wear-
able acceleration sensors,” The 3rd IEEE International Conference on
Big Data Security on Cloud (BigDataSecurity 2017), pp.14-17, May
2017.

[18] P. C. Evans and M. Annunziata, ”Industrial Internet: Pushing the Bound-
aries of Minds and Machines,” Technical report of General Electric (GE),
Nov. 2012.

[19] T. Sterling, et al., ”High performance computing : modern systems and
practices,” Cambridge, MA : Morgan Kaufmann, ISBN 9780124202153,
2018.

[20] J. Sanders and E. Kandrot, ”CUDA by example : an introduction to
general-purpose GPU programming,” Addison-Wesley, 2011.

[21] J. Fung and M. Steve, ”Computer vision signal processing on graphics
processing units,” 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Vol. 5, pp.93-96, 2004.

[22] J. E. Stone, et al., ”OpenCL: A parallel programming standard for het-
erogeneous computing systems,” Computing in science & engineering,
Vol.12, No.3, pp.66-73, 2010.

[23] S. Wienke, et al., ”OpenACC-first experiences with real-world applica-
tions,” Euro-Par 2012 Parallel Processing, pp.859-870, 2012.

[24] M. Wolfe, ”Implementing the PGI accelerator model,” ACM the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units, pp.43-50, Mar. 2010.

[25] E. Su, et al., ”Compiler support of the workqueuing execution model
for Intel SMP architectures,” In Fourth European Workshop on OpenMP,
Sep. 2002.

[26] Y. Yamato, et al., ”Automatic GPU Offloading Technology for
Open IoT Environment,” IEEE Internet of Things Journal, DOI:
10.1109/JIOT.2018.2872545, Sep. 2018.

[27] Y. Yamato, ”Study and Evaluation of Automatic GPU Offloading
Method from Various Language Applications,” International Journal of
Parallel, Emergent and Distributed Systems, Taylor and Francis, DOI:
10.1080/17445760.2021.1971666, Sep. 2021.

[28] Y. Yamato, ”Study and Evaluation of Improved Automatic GPU Offload-
ing Method,” International Journal of Parallel, Emergent and Distributed
Systems, Taylor and Francis, DOI: 10.1080/17445760.2021.1941010,
June 2021.

[29] Y. Yamato, ”Proposal of Automatic Offloading for Function Blocks
of Applications,” The 8th IIAE International Conference on Industrial
Application Engineering 2020 (ICIAE 2020), pp.4-11, Mar. 2020.

[30] Y. Yamato, ”Study of parallel processing area extraction and data
transfer number reduction for automatic GPU offloading of IoT
applications,” Journal of Intelligent Information Systems, Springer,
DOI:10.1007/s10844-019-00575-8, 2019.

[31] Y. Yamato, ”Automatic Offloading Method of Loop Statements
of Software to FPGA,” International Journal of Parallel,
Emergent and Distributed Systems, Taylor and Francis, DOI:
10.1080/17445760.2021.1916020, Apr. 2021.

[32] Clang website, http://llvm.org/
[33] J. H. Holland, ”Genetic algorithms,” Scientific american, Vol.267, No.1,

pp.66-73, 1992.
[34] Time domain finite impulse response filter web site,

http://www.omgwiki.org/hpec/files/hpec-challenge/tdfir.html
[35] MRI-Q website, http://impact.crhc.illinois.edu/parboil/
[36] Himeno benchmark web site, http://accc.riken.jp/en/supercom/
[37] Polybench symm website, https://web.cse.ohio-

state.edu/ pouchet.2/software/polybench/
[38] DFT website, http://programming.blogo.jp/c/fourier transform
[39] ROSE compiler framework web site, http://rosecompiler.org/


