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Abstract

Finding the optimal number and location of measurement points for modal tests and virtual sensing
applications is a natrivial task. The numerical mode shapes of tds object, if available, can assist in
picking the optimal sensor number and locations. As in any optimization problem, an objective function is
formulated. The typical objective functions are the determinant of the Fisher Inforivkion, the sum

of the offdiagonal elements of thReutoMAC matrix, the condition number of the mode shape matrix, etc.

The optimization problem is posed as distributing the given number of sensors in the candidate locations to
maximize (or minimize) the chosen objectivadtion. Thisbinaryoptimization problem igypically solved

by using sequential sengaacemenbr genetic algorithmsThis study suggests the relaxation of the binary
optimization problem by introducing sensor density: in each candidate locationntie seallowed to

have a density varying from 0 (no sensor) to 1 (there is a sensor). In this case, the derivative of the objective
function with respect to sensor configuration exists, and powgragdientbasedoptimization algorithms

can beemployed The study elaborates on the suggested method and demonstrates its advantages in
application to test objects of different complexity.

1 Introduction

Whenplanning a campaign fatructural dynamicsneasurementdt is always aask to findthe optinal
number and location omeasurement point®d common practiceis to placea sufficient number of
measurement points a fashiorthat generates a regular mesh on thedigigict[1]. The wireframe model

built on top of the meslallows thetestengineerto animate the operational deflection shapes and mode
shapesn asubjectively easy toomprehendvay. If thenumber of measurement points exceedsitimber

of available sensorthesensorroving techniquas employedtheavailablesensorareconsequentlynoved
between the desirddcatiors, thusthe sensors shortagecompensated by tlextended measurement time
This approach isacceptabldor in-situ andlab measurementsvhere the typical tasks am®ubleshooting
andnumerical modelalidation

In the last decad¢heincreasedvailability of sensorsmeasurement channednd data processing/storage
capacitiesmadethe permanentvibration monitoringof civil and mechanical structurdeasible In this
scenario, the sensors grermanentlynstalledon the structureand the data acquisitidakes place during
the entire lifeof the structureThe main applications of vibration monitoringere structural health
monitoring (SHM) and condition mawiring (CM).More recently, following theveralldigitalization trend
vibration monitoringopecomes an element tife digital twin (DT) conceptwhere for examplethevirtual
sensingmethodsprovidethe input to the fatigue evaluationalgorithmand canbe used foestimating the
remaininglifetime of the structures.

It is important to not¢he key difference betwedaboratorymeasurementnd vibration monitoringn the
former caseonlyonefii n st a n test objedid onlyt tHowghtfully testednce This canjustify a big
often redundanthumberof measurement poinfglaced in the nodes of a regular melhthe case of
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vibration monitoring,all manufacturedinits of the test object are monitoreldiring their entire lifetime.
Themeasurement point redundancy is not economiquahjfiablein this caseandtheminimumnecessary
number ofsensors mugie used andthey need tdeplacedatthe optimallocations.

The problem ofoptimal sensorplacement (OSPin structural dynamicsas postulated in 199Kammer
[2] introduced the problermndestablishedhe classical OSP formulatiobased omumerical mode shapes
(for example thoseresulting from a FE modelpy selecing fia given number of sensor locatidnem an

i niti al muanraxinhizesongeatility oftleetméasurement systeltnwas also noted thateé OSP
problemconsists otwo challenges:

1) Which utility to choose
2) How to solve théinary(also known asliscrete boolean andcombinatoria) optimization problem

Objective function. To answer the first questioanemustrefer to theapplication,namely thepurpose of
the measurement systemuring the three decades since the OSP prolgestulation all the above
mentionedstructural vibratiorapplicatiors wereattemptedrom the OSRriewpoint and a vashumberof
studies wer@ublished a feware mentionethelow: Kammer in[2] consideredhe experimental validation
of the FE modelShihet al [3] concernedhe OSPto improvethe modal identificationC. Papadimitriou
made a significant contributico the generalization of th©SPin application tovide-rangingparametric
systemidentificationproblems for example[4], [5]. In [6], Mendleret al. optimizedthe sensor locations
to increase damage detectability statistical damage detectio@ther OSP formulations for SHMere
reviewed in[7]. The OSP for virtual sensing applicatiomasstudiedin [8], [9], where the lattegpaperalso
took thesensorsinstallation cosinto considerations.

Optimization method. The second OSP challengémwvto solve the optimization problerfihe difficulty

is that the optimization problem is binaiy:any possiblsensoitocation, thereshould beeithera sensor or

no sensarthat is the design variabl@at eachpossible sensor locatios 1 p . It means m
mathematical termthatthe objective function is not a continuous function of the senéstribution its
gradientw.r.t. the latter does not exist, and fast gradisged optimization algorithsicannot be applied to
this case. Different approaches were suggested to solve this prohleexhaustivesearch (also known as

a bruteforce method), where all possible sensor configurations are attempted, is not appléc#ine
number of the possibleombinations is astronomic even for ssfe problemsWhen introducinghe
OSP problenin [2], Kammeralsosuggestedhe algorithm forsolving the optimization problen$tarting
from the full sensor configuration, where the sensors are placall possible locatiog the algorithm
sequentially one by oneremoves thesensorthat contributes least to the objective functibater, this
approach was generalizdsy Papadimitrou, [10], who abko introducedthe termiis equent i al
pl ac e me nahdsuggeSeairo)SSP typesBSSP backwardSSB and FSSP forward SSB. As the
namesuggeststhe latter approach staftem a not instrumented test object aode by oneaddsa sensor

to thelocationswhere it contributes most to the objective functiStudy[9] suggested combination of

the FSSP and BSSP techniqu@fie same studgemonstrated a good performance of the SSP methods,
exemplifyingthis by comparinghe SSRwith the results of thexhaustive searabn arelatively smallOSP
problem.Kim and Parkin [11] suggested way to reduce the number of iteratiotisat BSSPneedsto
converge tanoptimal solutionand thus boost the performance of the technique

Though he SSRelated methods are efficiemddemonstratgood performance, theyannot guarantee
find a globaloptimum of the objective function due to their sequential nataréiis sense,lte gemtic
algorithms(GA, also known as evolutionary algorithyasean alternative to SSBince the first application
of GA tothe OSP problemnin [12], GA hassuccadully competal with SSPin OSP(for example [13],
[14]).

Both SSP and GAbased OSP can be extendednulti-objective optimizatiorvia the Pareto approach,
[15]. In this case, several objective functions can be miaerd the algorithm will be able to capture several
optimal points along the Pareto front.

The present studgmploysa different, relaxedoptimization approachinstead ofthe binaryformulation
1 mi)p , we introducehe sensor densitywhich cancontinuouslyvary fromzero(no semsor) to o
(there is a sensor): mip . This approachwas inspired by theachievemerstin topology optimization
(for example www.topopt.dtu.dk) where the binary relaxatiois employedfor designing lightweight


http://www.topopt.dtu.dk/

structures and mechanismath given static and yhamic properties.It turned out that the relaxation
approachhasalreadybeenapplied tothe OSPproblem it was introduced if16] under the nameonvex
optimizationandapplied toOSP forSHM in [17] and toBayesianrOSPin [18].

The presented papés thoughtto representa practicing est engineér siew on the OSP. Assuming the
mode shapes are available frtime FE analysisit applies thdBSSPand thesenor densitapproacHirst to

a simple structure (a rectangular plate) and thentypical3D test objectThe numerical mode shapes for
the latter test obje@redefined atabout24,000 nodesThe paper also addresghe choiceof the optimal
numberof sensors and the use of monoaxial senaBD structuresfocusing orthear orientation These
issues thoughtheir practical importanceare often ignoredin the OSP literatureFinally, the paper
demonstratethe application of the sensor density approatimore traditionakengineeringormulations
such as reducing the correlation between the modes (minimization of tdeagdhal elements of the
AutoMAC matrix) andsolving the inverse problenThe latteiis acommontask insomeengineering tools
for examplethe orthogonality check

2 Theoretical background

The presented study emplotfse objective function introduced [2] andthe paragraphbelow briefly
describe it following iténterpretation givein [5] for thebinary formulation and then extendatthesensor
density formulation.

Letusassume N A is a mode shape matrbwilt of 0 mode shape vectodefined at) degreesof-

freedom (DOFsand matriXEN = is the observation matrixwherel is the number ofhe observed
DOFs Matrix Eis compised ofzeros and ones awdn be constructed frothe sensoconfiguration vector
N w with element$ p at the observed DOFs dnd Tt otherwise[4]. The matrix isconstructed

in suchaway that the producE ~ 4 provides the mode shape vestat the observed DOFand
QQCEE  #. The Fisher Infamation Matrix(FIM) is defined as
"E E EE E , (1)

where is the covariance matrix of the prediction erféollowing Kammer|[2], Papadimitrio19], [4]
introducedthe information entropy normas the measuref the uncertaintyin the experimentalmodel
parameteestimationand showed thdhe information entropy depends on the determinant of Fdalso
proved thamportantpropositionimplying thatfithe information entropy reduces as addgiosensors are
placed in astructur®, [4]. It was proven thaminimizing the uncertaintyn the experimental model
parameter estimatids equivalent to maximizing the determinanttf1. Thus,the determinant of FIM is
a popular objectiveunctionin OSP, and BSSP and GA are the popaligorithmsto find the optimal sensor
configuration maximizingt.

The presented studmploysthe samebjective functionhowever it assumes that the sensors jlaced
in all possible DOFs of the structufé: A, andeachsensoiis assigned with the sensor dengitythat
can vary between 0 and”l: 1P . The sensor densitiese organized in avectgN = . The density
defines thesensingability of asensor by affecting its measurement uncertainty andaffectsthe  matrix
It is assumed that , Where Q" QcE"QFor” p, the corresponding element of thematrix
is 1 andfor small values of the correspondingensor measurement uncertaiigya big numberThese
considerationyield

= . )

It is easy to show that ithe limit casewhen” takes only O or 1 values, the Flldomputed vig?2) is the
same asia (1) (assuming A.

The considered optimization problehat should leatb the optimalsensor configuratior” is formulated
as

z’ A?Cim : 3)



subject to
” N .,_[rp
z 0

The last constrainlimits the amount ofsensingto be distributedthough in the finaldesignsit is not
necessary thai 0. The list of the constrata can be extended ke applicationspecific constraits,
which will be discussed later.

AsA A"@ is now a functiorof thecontinuous variables, it is possible t@nalyticallyderiveits sensitivities
w.r.t.z. It is convenient t@resenthe determinant 6Eas the product of itsigenvalues. i p&d :

AA€  _h (4

and the derivatives of the eigenvalues wzr &re readily available.

Efficient gradientbased optimization routinesan now be employeih the examples considered below, the
method of moving asymptot¢sIMA) [20] was used.

The optimization startwith even distribution ofhe available amount of sensirig all DOFs:” 670,
thus the constraints (3) are fulfilled. Normally, the algorithmconvergedo the solution withsensor
densities being ones and zenmssome casesvhen additional applicatiespecific constraints are involved,
the sensor densitiesay haveintermediate values between 0 and leffhithe finalsensor systerdesign

§ ,'Q p&), is formed by applying threshold

” m ? ”
Ho ©)

This manipulationmay cause a slight difference between tr@ues of theobjective function andhe
constraintof the final design and those observed during the optimization process

3 Application to a simple mechanical system

A freely supported uniform rectangular plate whkttatio of the long and short sid€/27 wasmodeled in

aFE softwareand he first 10flexuralmassmatrix normalizednode shapesere obtained. Only the DOFs
normal to the plate surface were consideegd the dimension of the mode shape matrix w@g3%®. The

mode shapesere input tothetwo OSPalgorithms: BSSP i mp| ement ed i n®sHfv&e s BK
and the presentesensor densitpased algorithmThe resulting sensor configurations are preseiried
Figurel.

It appears that the two OSP algorithms generate almost identisan$®@r designs, though the BSSP
produces the one with a slightly better objective function value. For comparison, a regular 4x3 sensors
configuration is shown as well, it is characterized by 50 times lower objective functicomuihferior
off-diagonal term of the AutoMAC matrix.

It must be noted that the optimization formulati@® does not involve any optimization for AutoMAC,
however, a reasonable AutoMAC matrix is a typical side effettttincertaintyninimization pursued by

(3). The formulation(3) can be extended to pursue a better AutoMAC by adding a corresponding constrain,
which will be discussed later.



Figurel: Optimized sensor configurations and the corresponflingMAC. Left: BSSP middle
sensor density approgaiight: regular mesh

4 Applicationto a 3D structure

To demonstrate thalgorithns on a more realistidest object, &E model of a dlimensional objecivas
generated(Figure 2). Fourteen first numerical mode shapesdisplacement,flexural, massmatrix
normalized)definedin three directions 23851 nodesforming the mode shape matrix with dimensions
23851x3x14were input to the two OSP algorithms.

Figure2: Testobject and its FE modéFemap / NX Nastran)



4.1 Placement of triaxial sensors

First, the algorithms were set find the optimal locations fdriaxial accelerometers, thalke optimization
problem had 23851 design variablgst = for BSSPandz N s for the sensor density
based algorithms

The two algorithmgjeneratd almost identicatonfigurationscomprisingl 2 triaxial accelerometersiat is
36 measured DOFsFigure3. Only theoutput of thesensordensitybasedalgorithm is shown

4.2 Principal measurement directions

It is evidentthat some measurement directions are less informative than oWerbave utilized this
knowledgein the plate example (Secti@), where we retainrdy the DOFsthat arenormal to the plate
surface For the second examptbe engineering intuitiomdicateghatthe Z-directionshould be muckess
informative tharthe X- and Y-directionsand the test engineeould use 12 biaxial accelerometers instead
of triaxial ones savingl2 measurement channelgthout anyinformation los. However, for complex 3D
structuresvith noapparentnass and stiffness distributiosuchintuition-basedudgmentscan berisky.

Below, a simple apraach to evaluate the importancEmeasurement directionsasitlined The approach
is based othe principal component analysis of the mode shape mathi®.sngular value decomposition
(SVD) isapplied tathe mode shape matrithe matrix iseformulatelas N ,wherep O o
is the spatial dimensionalityf thetest object, in the considered c&e ¢ andl is the number ohodes
wherethe sensors can be installfthen for eacimodee p8 U ,theO 0 matrix  is extractedand
SVD is applied to it:

N nn 8 (6)
Inthe commortasevhenO U , the left singular vetorsforming the matrixy ~ s can be considered
as a neworthogonalbasisdefining theprincipal measuremendirections(PMD) and thesingular values
forming the diagonabf } define thescaling of the principal directionhe latter can be used to denote
therelativeimportanceof the principal directionsTherj matrix can also be consideredaatation matrix

thatconvertsthe mode shage to the new principal direction coordinate system n . Figure
4 showsthe principal measurement directions for the optimal sensor locations.

Figure3: Theoptimized sensor configuration for triaxegnsoraccording to the sensdensity
approachThe suggested accelerometer positions are shown dststhdthe measurment directions
as the red/green/blue lines.



Figure4: Top: The optimized sensor configuration for triaxial accelerometers. The suggeste:
accelerometer positions are shown as red dots, the measurement dinedtien®incipal coordinates
denoteds red the first principal directiongreen the secondplue the third Bottom insetszoomed

in views.

It becomes apparent that tfiest and most importantprinciple measuremendirections arecloseto the
vectors that arem o r ma | t o t he Tfofvilietegt ohject’es mrdicipatdd dtellgast important
measirement direction is along thedkis. Obviously, wherlooking for the optimal positionsof triaxial
sensors, theutput of theOSP algorithmss not affected byemployingor not employingthe principal
directions. However, the principdirections can bkeelpful when considerintpe OSP of monoaxial sensors,
which isconsidered in the following sectiol.is worth noing that the principal direction concepts can be
employed for botlBBSSP and the sensdensity approach.

4.3 Placement of monoaxial sensors

Though it is more convenient to use triaxial sengbese are cases wheaenonoaxial accelerometerthe
preferable choiceThis is especiallythe casein vibration monitoring, where the measurement system is
permanentlynstalled on thenonitored objectandthesensors and measurement chanoaisitdefinesthe
economic feasibility of thenonitoringsystem.

In the case of monoaxial sensdtse OSP problerbecomes a problem of findirtge optimal placement
andorientationof the sensorfOSP&Q0) The methodconsidered in the presented study igtalude the
measurement directiorfsom the optimization problem buwttachthem to some predefined coordinate
systenfs) (CS), whichis often callel a measurement CS (MCSyor example, this eadd be the CS where
the mode shapes are defined (which is typically the global CS) or the CS definedRiyibhar some
otherMCS.

In contrast to the case of triaxial sensomymve consider all DOFs separateBndthusthe optimization
problem size increasegN = for BSSPandz N g for the sensor densHyased algorithm



The outputs of the BSSP and the sensor density approaches for different MCS formulations aie shown
Figureb.

a)

b)

c)

d)

Figure5: The optimized sensor configuration for monoaxial accelerometers. a) B§&bah
CS; b) sensedensity approach in global CS; ¢) BSSP in PMD MCS; d) sefesasity approact
in PMD MCS.



When the sensor orientation is fixedrtmtchthe global CS,he resultsof both algorithms are slightly
counterintuitive(Figure5a, b): the algorithmsuggest usg 16 sensorandoriening all of them along the
Y -direction.Visually the results are veglose,but the resulting objeaté function is slightly better for the
BSSP algorithm.

In the case wiretheorientation of the sensa fixed to the PMDBSSP suggests15sensodesign Figure
5c), and the sensatensity algorithntonverges t@ 16-sensoiconfiguration(Figure5d). It is interesing to
note thatfrom the resulting objective functionperspective the 15-sensor confuration (Figure 5c)
outperforms the 18ensomnesshownin Figure5a, b. This does not contraditiie propositionproven by
Papadimitriou in[4] as the configuratioshownin Figure 5¢ uses the different (andnore informative
measurement directions

The PMD isavaluableindicator of themeasurement directiomsformativity. However from the practical
viewpoint, it might bedifficult to mount the sensors according to MID. In Figure 6a, the sensor
configurationfrom Figure 5c is shown from the tapt is noticeable thathe directiors of some sensors
mount ed o narethbr®rmdl to dssuyfate andeproducinghe suggestetheasurement direction
in practice will bechallenging

If it is possible tocalculate thesectorsnormal to the test object surfaaeevery nodendconstruct the
MCSsbased on these vectoitds practicalto usetheseM CSsfor the OSP algorithnT hus,the mode shapes
matrix in (2) shall be recalculated toansform the mode shapes to the selected NFEfbire 6¢c shows
the optimizedl5 sensos configurationbased on sucMCSs, Figure6b is the top viewandFigure6d the
correspondingAutoMAC. The value of theobjective functionfor this configuration is slightly worse
compared to the oria Figurebc, though the designs are very similar

a)

Figure6: Optimal sensor configurationa) PMD-based MCS top view, b, ¢, d flushmounted
sensorstop view, configuration, and AutoMAC, respectively.



Utility function

2 I L I I L I
15 20 25 30 35 40

No. of sensors

b) C)

Figure7: Sensor amount for BSSP. a) The ultility function, the dots indicate the two configuratiol
the recommended 1€ensor configuration; @1-sensor configuration (sensor clustering).

It is worth notingthat the sensedensity approacbanlogically extend tahe OSP&O problem. In this case
the sensomrientation, expressed in thermsof Euler angles oguaternionsganbe considered amnextra
design variablén addition to the sensaensity. This is the field of future research.

5 Notes about the optimal sensor count

The twotypical questios a test engineenayask are:1) how many sensotsneed and 2) where to place
them. The BSSP algoritin does not answer the first question: at each iteration, it produsessor

configurationandleaves the choice of the optimal one to the UBee.sensedensity approachlso requires
theifavail abl e a mautmight-bahdsideefrthd astcapsiraint in(3).

For the BSShhased OSPhe present study suggests an empgigiproachwhichis based on thiollowing
utility functioncomputed at each itation of BSSP

6 g I E , (7)

wherethe superscriptQindicates the iteratioandll 8 is the condition number of trErgumenmmatrix.
The function is the inverse of tipeoduct of the condition number of theode shape vectors at the observed
DOFsand the number of the observed DOHse usefulness of the condition numbenaseasure ofhe
utility will be discussed later.

The peak of thetility function indicatesherecommendedonfiguration.This appoad was employed for

all previous illustrations of the BSSfethodand it i s i mpl e me n ?sftvare. the HBK 6 s



utility function computed for the 1a&8 iterations of the BSSB shown inFigure7a followed by two sensor
configurations, the recommended one with 15 senisoEgure 7b and anotherconfiguration with 21
sensors,Figure 7c. In general, all configurations witla sensor count greater thakb arelike the
recommended onéutinstead of placing theessordn the not instrumentedreas the algorithm tends to

ficl ust er 0 mo ralecady gated omgigura7dc)oTunn ds A s en s oaknosvh antfact er i n g
of the FIM-based objective functionfr example[21].

The same applies to the sendensity approactSelecting a high value 6fin (3) leadsto sensor clustering.
It is recommendetb attempt® 0 andadjust the value if necessary.

To force the algorithm tplace thesensoran the notinstrumented area#t is advisable to increase the
number of modes taken into consideratiBigure 8 showsthe optimizedsensorconfigurations for) =18,
22 and24 obtained using the sensdensity approach

a)

b)

c)

Figure8: Sensor configurations by the sensor density approacthaingAutoMAC. a) 20sensor
for0 18; b) 22sensor configuration far ¢ ¢c) 26sensor configuration far ¢ T



6 OSP for MAC and the condition number

Though the nformation entropy and FIM arealid objective functiondor OSE and this is rigorously
proven for testengineers theserms are not easy tmnprehend Typically, test engineers evaluate the
informativeness of the sensor configurationexamining theanode shape matrix quality features such as
the off-diagonalelements of thé&utoMAC matrix andbr the condition numbgiCN) of the mode shape
matrixll 'E , see(1). The formeris the measure of the mutual correlation between the mode shagdes
it, despite allits shortcomingq22], is perhapsone ofthe most populatools of the experimental modal
analysisThe lattefindicates the quality dhepseudoinverseE in terms of the sensitivity of thaverse
problemto the measurement errara kigger CN may causeamplification ofthe measurement erravhen
solving the inverse problenThe abovementioned inverse probleremployedin commonengineering
toolssuchasSEREP $ystemEquivalentReduction Expansion Proce$23], orthogonality check24] and
virtual sensingitilizing theModal Decomposition and Expansion approgs.

However,employingthe off-diagonal elements of thRutoMAC matrix or theCN asthe objective function
is rather difficult. Whilst adding & extra sensorat any pointof the test objectlways increaseshe
determinant of FIMas it follows from Proposition firoven in[4], p.930, this isnotthe casdor thetwo
former featuresAdding a sensor at any poiaf the test object a n A wtherAst@ViAG matrix and
increase th€N. Appendix 1 illustrates thiith a simpleexample

When solving an OSP problem bymaximizing the determinant of FIMwe do not directly contrahe
AutoMAC matrix and the CN, howevethe perience sbws thatthey often converge to reasonable
numbers However, if the results are not satisfactory, one can consider-objgtive optimization.
Papadimitriou iM15] suggested the Pareto approacintdude other objectives to tl@SP problemThe
presented paper suggeststendingthe sensor densitynethod via adding extra constraints tioe
optimization(3).

First, one caextend(3) by seting a constraint on the condition number:
I e, (8)

wherell* is the requestedatondition number of the mode shape matFixjure 9a shows the sensor design
and the correspondinutoMAC matrixfor I*  @8Compared with the initial 6-sensoidesigngenerated
without the constraintFigure5d), now the algorithm converges to a-$8nsor desigrwith the condition
numberimprovedfrom 9.3to 6.2.The optimiation takesnore iterations as the algorithmeeds tdalance
between maximizing the objective functiandkeeping the constraifitlfilled ; the convergence history has
a typical sawtooth shap&he convergence histories for both cases are showigime9b.

As was mentioned befordue tothe approach the final sensor system design is gendftetie final
condition number maglightly differ from the requested one

Along with the CN constraint, it is possible to introduce a constraint related to ttliagéinal terms of the
AutoMAC matrix. There are different congtraformulations such as

1 constraining the value of the specific element of the AutoMAC matrix. This is a good choice
when a Aproblematico el ement of the matrix

9 constrain the biggest element of the AutoMAC. Thigicé can cause a problem when two or

more elements of the AutoMAC are of approximately the same values, and the optimization

routine can be confused by switching between them.

1 constrain the mean of the affagonal elements. In this case, the danger is that the optimization

routine can leave one of the elements relatilaigerthan the others while keeping the mean
below the set limit.



b)

Figure9: a) The19-sensor configuratioomptimized fodow condition numberb) corresponding
convergence historfred) vs. the convergence history without the CN constraint.

An exampleof the first constraint igiven below Without setting any constras)tthe design shown in
Figure5d is obtained. Examining the AutoMAC matrix, it was identified tiegt correlation between the
7" and 8 modess too high, and theorrespondinglement of the matrix is 0.4As the natural frequencies
of the two modes are clogbe high mode shape correlaticemcause problemaith the stabilization of the

corresponding poleshen using the stabilizatn diagram irmodal analysis

The optimization algorithm wa®-set toconstrainthe problematicelemento 0.3. The resultindg6-sensor
design and the corresponding AutoMAC matrix are presentE@jime 10, wherethe correlation problem
between the'7and 8 modes is solvedt the expense eforsering the objective function






