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A B S T R A C T   

The behaviours of the particle settlement, stratified flow and inception of settled particles are essential features 
that determine the proppant transport in low-viscosity fracturing fluids. Although great efforts have been made 
to characterize these features, limited research work is performed at field scales. To test the laboratory outcomes, 
we propose a machine-learning-based workflow to evaluate the essential features using the measurements ob-
tained from shale gas fracturing wells. Over 430,000 groups of fracturing data (1 s time interval) are collected 
and pre-processed to extract the particle settlement, stratified flow and inception features during fracturing 
operations. The GRU and SVM algorithms, trained by these features, are applied to predict fracturing pressure. 
Error analysis (the root mean squared error, RMSE) is carried out to compare the contributions of different 
features to the pressure prediction, based on which the features and the corresponding calculations are evalu-
ated. Our result shows that the stratified-flow feature (fracture-level) possesses better interpretations for the 
proppant transport, in which the Bi-power model helps to produce the best predictions. The settlement and 
inception features (particle-level) perform better in cases where the pressure fluctuates significantly. The features 
characterize the state of proppant transport, based on which the development of subsurface fracture is also 
analyzed. Moreover, our analyses of the remaining errors in the pressure-ascending cases suggest that (1) an 
introduction of the alternate-injection process, and (2) the improved calculation of proppant transport in highly- 
filled fractures will be beneficial to both experimental observations and field applications.   

1. Introduction 

Hydraulic fracturing has become an important technique to enhance 
hydrocarbon recovery from unconventional gas resources, aiming to 
meet the growing demand for clean energy globally. To avoid fracture 
closure after the dissipation of the hydraulic injecting pressure, prop-
pant injections are essential in the hydraulic fracturing process, and 
their effectiveness plays an important role in enhancing the stimulated 
reservoir volume (Barree and Conway, 1994; L. Fan, Thompson and 
Robinson, 2010; Nassir et al., 2014). To inject thousands of tons of 
proppant particles down into the induced fractures, a deep well in a 
shale gas reservoir (>4000 m) is usually operated under a wellhead 
pressure exceeding 100 MPa (Hou, Chang, Fu, Muhadasi and Chen, 
2019a, 2019b; Mao et al., 2021). Therefore, how to inject proppant 

particles under safe operating pressures is very challenging, especially 
with the application of low-viscosity slickwater (Liang et al., 2016). 
Proppant transport is, therefore, an essential research topic in hydraulic 
fracturing engineering (Economides and Nolte, 1989). 

The behaviours of the proppant settlement, stratified flow and 
inception of settled particles in low-viscosity fracturing fluid have been 
characterized numerically based on experimental tests (Gadde et al., 
2004; Wei et al., 2020; Zhao et al., 2019), which are the essential fea-
tures of proppant transport. The recent trend of the proppant transport 
research is to bring in more realistic subsurface scenarios by replacing 
the single smooth-panel fracture with artificial-coarse fracture networks 
(Manchanda et al., 2020; Raki Sahai and Moghanloo, 2019; Tong and 
Mohanty, 2016). However, it is still challenging to simulate and char-
acterize the realistic morphology (scale, tortuosity, branches et al.) of 
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fractures numerically (Dahi-Taleghani and Olson, 2011). Moreover, the 
direct subsurface measurements and observations during fracturing 
operations are still limited. Many numerical models for calculating the 
proppant transport, therefore, are usually verified by laboratory exper-
iments (Mack et al., 2014; Patankar et al., 2002; Raki Sahai and Mog-
hanloo, 2019). However, the approaches for examining the numerical 
observations at a field scale are still in demand. 

The links between indoor research and field practice may rely on 
exploring the key property features that control the proppant transports 
(Cai et al., 2017). Machine learning (ML) is one of the key techniques to 
perform the exploration at field-practical scales. Researchers built ML 
workflows to predict the fracturing pressure and forewarn the sand 
screen-out in real-time based on fracturing records (Ben et al., 2020; Hu 
et al., 2020). The simulation data is also applied to learn the pressure 
pattern and detect sand screen-out (Yu et al., 2020). These effects help to 
improve the safety of fracturing operations by combining data science 
and engineering knowledge. It is also important to understand how the 
key features, being tested in the lab, influent the proppant transport 
during real fracturing operations, which may, in turn, promote funda-
mental research. 

In this study, we examine and compare essential features of proppant 
transport and their corresponding calculations by using a new workflow, 
where we introduce machine learning (ML) algorithms, including Sup-
port Vector Regression (Al-Anazi and Gates, 2010; Al-Mudhafar, 2017) 
and Gated Recurrent Units (L. Hou, Cheng, Wang, Ren and Geng, 2022; 
Sun et al., 2020). The ML method can process the field measurements for 
proppant transport evaluation directly without in-depth characteristics 
of the realistic fracture morphology, which may build a bridge between 
the fundamental research and field applications. Based on the 
data-driven approach, our study is aimed to 1) propose a new workflow 
to estimate the proppant transport at field engineering scales; and 2) 
better understand the essential features that control the proppant 
transport, which is valuable for both field engineering and basic 
research work. 

2. Methodology 

The field measurements of the shale gas fracturing treatments are 
collected and carefully pre-processed (splitting, trimming, and denois-
ing) for training. The proppant transport features, specifically the ve-
locity ratio and the height of the flowing layers within fractures, are 
initially calculated by several popular proppant transport models. The 
calculation outputs consisting of the features relevant to the proppant 
flow, as long as the other subsurface measurements, are then fed into the 
machine learning algorithms to predict downhole pressure. The pre-
dictions are further analyzed using the control variate method and error 
analyses to evaluate the proppant transport features and their corre-
sponding calculations. 

2.1. Data collection and preprocessing 

55 stages, including over 430,000 groups, of fracturing measure-
ments (in second) are collected from 10 shale gas wells, which are 
selected from 5 different platforms in the Sichuan basin, China (Table 1). 
The field measurements include the geological data (vertical and well 

depths), clustering data (stage length, cluster number and perforation 
number), and fracturing data (fluid and proppant types, pump rate, 
proppant concentration and wellhead pressure). Five of the ten wells are 
set as the training well (A1 – E1), of which 50 stages of fracturing data are 
pre-processed for training the machine learning models. Five testing 
stages are selected from the remaining five wells (A2 – E2), defined as 
testing wells. To constrain the effect of large spatial variation in 
geological uncertainty and formation properties on the predictions, each 
training well has its own testing well that is selected from the same 
platform. For instance, both Well A1 and Well A2 (neighbouring wells) 
are from Platform A, and so forth, as shown in Table 1. This is one of our 
strategies to eliminate interference factors of pressure variation and 
promote the influence of proppant transport. 

The other strategy during the data preprocessing is to convert the 
wellhead pressure into the downhole pressure after the perforation hole 
(Appendix A), defined as the DPP. The conversion can rule out the po-
tential effects of hydrostatic pressure and friction variations, leaving the 
proppant transport to control the fracture pressure fluctuation (Dontsov 
and Peirce, 2014; Willingham et al., 1993). Other denoising methods 
involve trimming the pressure at the beginning (when the fracture is 
created) and the end (pump-off) of the fracturing operation, repeating 
predictions and averaging the errors obtained from all the platforms (A – 
E), as long as applying two different machine learning algorithms. 

2.2. Features for proppant transport 

In general, we divide the proppant transport features into two cat-
egories by their scales – particle level (Fig. 1 a) and fracture level (Fig. 1 
b), including the particle settling velocity (Gadde et al., 2004; Mack 
et al., 2014; McCabe et al., 1993; Richardson and Zaki, 1954; Yew and 
Weng, 2014), the critical velocity to restart the settled proppant (also 
used as the critical turning velocity in complex fractures) (Cao et al., 
2006; Hou, Jiang, Li, Zeng and Cheng, 2017a, 2017b; Hou, Jiang, Liu, 
et al., 2017a, 2017b; Rakshit Sahai, Miskimins, & Olson, 2014), the 
flowing layer height (H1) (Hou et al., 2019a, 2019b; Novotny, 1977; 
Patankar et al., 2002; Jing Wang, Joseph, Patankar, Conway and Barree, 
2003) and the equilibrium dune level (EDL – the dune height divided by 
fracture height) (Alotaibi and Miskimins, 2019). Based on the field 
pumping schedules, those features are further calculated by employing 
the Velocity, Settling, Bi-power, and EDL models to yield a group of 
independent variables, which is one of the inputs for ML models 
(Table 2). Details about the equations and their applications can be 
found in Appendix B. 

The representative features, particle settlement (υsettling/υf), inception 
(υturning/υf) and stratified-flow (H1 and EDL) behaviours, are selected and 
tabulated in Table 2. The particle settlement and inception are grouped 
because they are decomposition features of particle movements in ver-
tical and horizontal directions. The selected features in Table 2 control 
the proppant transport in the low-viscosity fluid, based on which more 
comprehensive models coupling fracture propagation, fluid leak-off, etc. 
are derived (Barboza et al., 2021; Isah et al., 2021). Besides, the calcu-
lations (Appendix B) for the selected features are analytical, which is 
more calculational effective to pre-processing our datasets (over 430, 
000 groups of measurements) compared with numerical solutions. 
Furthermore, the models in Table 2 are mainly derived from observa-
tions of experimental simulations (Appendix B). By evaluating the 
calculation outputs at field-practical scales, the experimental techniques 
may be improved in the aspects of equipment, parameters, methodol-
ogy, measurements, etc. 

During the calculation, the fracture width is the only unknown 
parameter that is presumably set to a value of 100 × dmax (dmax is the 
largest diameter of injected proppant) referring to the result of slant core 
drilling through a stimulated shale reservoir (Elliott and Gale, 2018). 
For an alternate pumping schedule (injecting pure fluid and slurry 
alternatively), the results of the Velocity model are discrete and are all 
treated as zeros as pure fluid is injected. As shown in Table 2, the 

Table 1 
Division of training and testing datasets.   

Platform 
A 

Platform 
B 

Platform 
C 

Platform 
D 

Platform 
E 

Well No. A1  B1  C1  D1  E1  

Training Dataset/ 
Stages 

10 / 10 / 10 / 10 / 10 / 

Well No.  A2  B2  C2  D2  E2 

Testing Dataset/ 
Stages 

/ 1 / 1 / 1 / 1 / 1  
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independent variables and the control variables (field measurements: 
fluid type – μ, pump rate – Q, proppant concentration – C and proppant 
type – d) are jointly fed into the ML models for the prediction (dependent 
variable: downhole pressure after perforation – DPP) and error analyses 
(the Root Mean Square Error – RMSE). The non-numeric variables (fluid 
and proppant types) are replaced with the values of fluid viscosity and 
averaged proppant diameters, respectively. For comparison purposes, 
the original field measurements alone are directly used to train the ML 
models to predict the DPP, defined as the unprocessed DPP (Table 2). 

2.3. Machine learning models and workflow 

To constrain the high variance and boost the prediction performance, 
two different machine learning algorithms are applied for training and 
predicting. The Support Vector Regression (SVR) model, with a Radial 
Basis Function (RBF) kernel, is capable of both linear and non-linear 
regression (Al-Anazi and Gates, 2010), being of memory efficiency, 
and performing well in various petroleum engineering applications 
(Goel et al., 2017; Guo et al., 2018). Furthermore, we apply Gated 
Recurrent Units (GRU) to the same datasets. The GRU is a deep learning 
algorithm designed for extracting information from time-sequence data. 
In GRU models, the current state and prediction can be influenced by the 
preceding state and will affect the following prediction at the next time 
step as well, making the GRU models appropriate for handling contin-
uous hydraulic fracturing data (Sun et al., 2020; Jinjiang Wang, Yan, Li, 
Gao and Zhao et al., 2019). According to previous modelling experience 
(Cho et al., 2014; D. Fan et al., 2021), a three-layer (including the output 
layer) GRU model is constructed with the activation function of ReLU. 
The dropout (0.2) layers are applied to avoid the overfitting of the model 
(Gal and Ghahramani, 2015). The Adam optimizer is used in the model 
with a learning rate starting at 0.0005 (Kingma and Ba, 2014). 

Using Platform A as an example, our workflow for the data pro-
cessing is shown in Fig. 2. Model i represents one of the four proppant 
transport models given in Table 2. The reference is the DPP converted 

directly from the surface pressure records, and Prediction i is the pre-
dicted DPP based on Model i. The pressure prediction is made for each 
platform (A to E), and for each prediction, a new GRU model and SVR 
model are created and trained respectively. Eventually, the prediction 
errors for each platform are averaged to evaluate the performance of the 
selected features and the corresponding models. 

Fig. 1. Proppant transport features at (a) particle-level (particle settlement and inception); (b) fracture-level (H1 – the height of the flowing layer) (Hou, Jiang, Liu, 
et al., 2017a, 2017b; Patankar et al., 2002). 

Table 2 
Summary of calculations, features and control variate method for data processing.   

Inputs Output (Dependent 
variable) 

Error 
analysis 

Notes 

Independent Variable 
(Selected features) 

Control variable (field 
records) 

Pressure 
conversion 

/ / DPP (Reference) / / Appendix 
A 

Original data / μ, Q, C & d DPP (without independent 
variable) 

RMSE For comparisons / 

Velocity model υturning/υf 

υsettling/υf 

DPP (with independent 
variable) 

Derived from forces acting on 
particles 

Appendix 
B 

Settling model H1 Derived from particle settling 
Bi-power model H1 Derived from particle and fluid 

Reynold’s numbers 
EDL model EDL Empirical model  

Fig. 2. Schematics of the data processing workflow using Platform A as 
an example. 
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3. Results 

3.1. Evaluation of proppant transport features at engineering scales 

The pressure predictions by GRU for Well A2 at Platform A are 
plotted in Fig. 3, using as an example of the evaluation results. In gen-
eral, the predicted DPP curves corresponding to the proppant transport 
models match the reference DPP curve much better than the unpro-
cessed curve, indicating that the introduction of the proppant transport 
features improves the prediction accuracy and reduces the variance 
(Fig. 3). The proppant concentration during the fracturing operation is 
also presented (green solid line in Fig. 3), demonstrating that the 
proppant-injection-induced pressure fluctuations influence the variation 
in pressure predominantly. To denoise the pressure variation induced by 
the injection, the pressure data ranging between the time of 2000 s (the 
period of the fracture initiation and propagation) and the time of 8000 s 
(the period of the fracture closure and fluid diffusion after pump-off) are 
only used for error analyses (the region between two vertical grey dash 
lines in Fig. 3). 

Four more ML predictions are carried out for Platforms B − E. The 
errors based on different proppant transport models are averaged to 
compare the performances of the GRU and SVM algorithms, as shown in 
Fig. 4. Generally, the two algorithms exert close performances according 
to the generated errors. The GRU-based workflow produces smaller er-
rors for Wells A2, B2 and C2. Therefore, the predictions based on the GRU 
model are selected for further investigations. Besides, the errors for 
Wells A2 and B2 are significantly smaller than in the rest of the cases. We 
divided the cases into two groups in the later analyses – the small error 
group (Wells A2 and B2) and the large error group (Wells C2, D2, and E2). 

The detailed errors between the reference and the ML prediction for 
each testing well (A2 − E2) based on the GRU algorithm are summarized 
in Table 3. By comparing the averaged RMSE, we find that the DPP 
predictions are enhanced by introducing the Velocity, Settling, and Bi- 
power models, in which the stratified-flow feature performs better 
than the settlement and inception features. The Bi-power model helps 
yield the best DPP predictions, followed by the Settling model. The 
introduction of the EDL model promotes low RMSEs for Wells A2, B2, and 
C2, whereas leads to large prediction errors for Wells D2 and E2. The 
performance of the Velocity model is probably limited by the simplifi-
cation employed under the pure-fluid condition. However, exceptions 
are observed for Wells D2 and E2, where the Velocity model helps to 

produce smaller errors than the Settling model does. 

3.2. Error variance in different cases 

According to Table 3, we plot the DDP curves predicted by the GRU 
algorithm for further investigation, as shown in Figs. 5 and 6. Each dash 
curve corresponds to a different model used to calculate the input fea-
tures, including the Velocity (particle-level feature), Settling and Bi- 
power (fracture-level feature) models. As the different calculations are 
applied for the pure-fluid and slurry injections (Appendix B) when pre- 
processing the input data, the predicted curves derived from the alter-
native injection schedule are relatively discrete. The predictions, 
therefore, fluctuate around the reference at a frequency following the 
oftenness of the injection switching. 

For the small error group (Fig. 5), a relatively flat trend of DPP along 
with a constant pumping rate can be found throughout the injection 
treatment in Wells A2 and B2. The effect of proppant transport on 
pressure variation is moderate, suggesting that the fracture volume may 
be sufficient for the current proppant injection rate. Besides, the pre-
dicted pressure curve is unsmooth and exerts vertical climbing and 
jumping between slugs (the alternate from pure fracturing fluid into 
proppant slurry). 

In contrast, an ascending pressure trend (red solid curves in Fig. 6) 
can be found in the large error group (Wells C2, D2 and E2). Compared 
with the proppant concentrations in Wells A2 and B2 (~20%), the 
proppant concentrations for Well C2, D2, and E2 are all under 10%, 
indicating that their DPPs are relatively sensitive to the proppant 
transport. In Well C2, D2, and E2, the proppant particles are likely driven 
into fractures possessing insufficient volume, where the continuously 
injected proppant may accumulate, and then block the flowing pass (as 
shown in Fig. 7), resulting in a gradual increase in flowing friction, re-
flected by the ascending operation pressure (Zhang et al., 2017). Be-
sides, the performance of the Velocity model is unexpected and even 
better than the Settling and Bi-power models, as shown in Fig. 6 (b) and 
(c). Integrating the severe fluctuations of fracturing pressure into ac-
count, the underground fracture in Fig. 6 may be more complex than 
that in Fig. 5. The proppant may be transported in fracture networks. 
Therefore, the Velocity model, calculating the critical condition of 
proppant turning from the main fracture into the minor fracture, pro-
duces better predictions. 

Fig. 3. Comparisons of DPP between the Reference and Predictions based on 
Platform A using the GRU model. The Reference curve (red solid line) is ob-
tained by pressure conversion. The Unprocessed curve (blue solid line) is the 
prediction based on original injection parameters, referring to Table 2. The 
dashed lines are the predictions by GRU models corresponding to different 
proppant transport models. The green solid line is the proppant concentration. 

Fig. 4. The average errors produced by GRU and SVM algorithms based on 
Wells A2 – E2. Each error bar represents the averaged errors based on different 
proppant transport models. 
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4. Discussion 

Our comparison among pressure predictions derived from different 
proppant transport features exhibits that the stratified-flow feature (H1, 
calculated by the Bi-power and Settling models) can improve the pres-
sure prediction considerably. The unstable predictions produced by the 
EDL model may be attributed to the limited application range of the 
empirical equations used in the model (Appendix B). The Velocity model 
characterizes the particle flowing feature during the slurry injection but 
fails to take into account the scenario when the pure fluid is injected, 
which results in a restrained improvement in the pressure prediction. 

However, relatively large prediction errors exist for cases of Wells C2, 
D2, and E2 (Fig. 6), which are non-negligible and likely attributed to the 
following factors:  

(i) Effect of the injection alternation – The proppant transport 
models are featured by taking into account the accumulation of 
the proppant dune being in an equilibrium state. Hence, the 
prediction curves in Figs. 5 and 6 are relatively discrete under an 
alternate injection schedule. However, the time interval (around 
3–5 min) between the injecting alternation may be insufficient to 
allow the proppant dune to reach the equilibrium state (Yew and 
Weng, 2014), thus resulting in the discrete pattern of the pre-
dicted curve and vertical pressure variations between slugs. It is 
likely that the transition state of the proppant dune between two 
alternating injections influences the pressure substantially, also 
contributing to the errors for the cases with pressure-ascending 

trends (Fig. 6). This feature describing the transition state, how-
ever, is not reflected by any model we evaluate in this study. 

(ii) Fracture propagation during proppant injection – The introduc-
tion of the velocity feature (describing the critical flow condition 
that drives the proppant to turn into branching fractures) en-
hances the prediction performance for Wells D2 and E2 (Fig. 6), 
implying that more complex fracture networks may be generated. 
The amplitudes of the pressure fluctuations shown in Fig. 6 are 
broadly larger than those observed in Fig. 5, which may be 
attributed to the development of branching or minor fractures. 
The random fracture propagation may cause unexpected pressure 
variation and thus extra prediction errors (Fig. 6).  

(iii) Proppant transport in highly-filled fractures – According to the 
discrepancies between reference and predicted DDP curves, the 
largest errors emerge at the beginning and end of proppant in-
jections (Fig. 6). Initially, the fracture is underdeveloped with 
limited volumes. At the end of operations, a large volume of 
proppant has been injected into the fractures. The similarity of 
these two conditions is that the fracture is highly filled due to the 
relative volumes of fractures and proppant. However, few rele-
vant research works can be found during our literature review. 
The highly-filled-fracture operating condition may be critical for 
pressure-sensitive cases and the sand screen-out, thus deserving 
more studies. 

Therefore, we suggest investigating further (1) the evolution of 
proppant dune based on a staged pumping schedule, and (2) a better 
assessment of proppant transport in fracture networks and highly-filled 

Table 3 
Summary of the RMSE based on each proppant transport model. 

Fig. 5. Comparisons of the pressure evolution based on (a) Well A2 and (b) Well B2 using the GRU algorithm. The Reference curve (red solid line) is obtained by 
pressure conversion. The dashed lines are the proppant-transport-model-based predictions. 
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fractures. 

5. Conclusions 

In this study, we propose a machine-learning-based (GRU and SVM) 
workflow to process field measurements collected from shale gas frac-
turing to assess the essential proppant transport features and their cor-
responding calculations at field-practical scales. The features of particle 
settlement, stratified flow and inception are evaluated indirectly via 
algorithm training, fracturing pressure prediction and error analysis. 
The new workflow paves a path to potentially establish a link between 
laboratory work and engineering practices. The feature analysis im-
proves the awareness of underground proppant transport in engineering 
scales, which may provide a complement to numerical and experimental 
simulations. The main conclusions are generalized as follows:  

(1) The Bi-power model produces the most accurate prediction of 
fracturing pressures, followed by the Settling model (stratified- 
flow feature) and Velocity model (settlement and inception fea-
tures). The introduction of the essential features enhances the 
pressure predictions for the cases where relatively flat trends of 
pressure evolution (under constant pump rates) are present, 
implying that the proppant is likely injected into a sufficient 
volume of fracture, comparable to the conditions simulated by 
the lab research.  

(2) For the cases, where an ascending trend of pressure is shown 
throughout the proppant injections, all features and calculations 
bring in relatively large prediction errors. However, the Velocity 
model (characterizing the critical flow velocity that drives 
proppant to turn into branching fractures) helps to yield less 
prediction error in these cases, indicating that the proppant may 
be transported into un-fully-developed fracture networks. The 
underground fracture may be more complex in the pressure- 
ascending cases according to the more severely fluctuated pres-
sure that may be induced by the generations of branching or 
minor fractures.  

(3) The existing errors in the pressure-ascending cases can be 
improved by enhancing the accuracy of feature calculating 
models, where the alternate injection schedule and the random 
propagation of fracture are still missing. Based on the feature 
tests at field scales, we suggest that the evolution of proppant 
dune during an alternate pumping schedule may play a critical 

Fig. 6. Comparisons of the pressure evolution based on (a) well C2, (b) well D2 and (c) well E2 using the GRU algorithm. The Reference curve (red solid line) is 
obtained by pressure conversion. The dashed lines are the proppant-transport-model-based predictions. 

Fig. 7. Schematic of proppant accumulation in the fracture with slurry injec-
tion. The height of the flowing channel is decreased from H1 to H1’, and then 
H1’’. The corresponding flowing resistance in the fracture increases with the 
decreasing height of the channel, thus fluctuating the wellhead pressure. 
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role in pressure evolutions. Moreover, the proppant transport in 
fracture networks and highly-filled fractures should be defined 
more accurately for the pressure-sensitive operations to mitigate 
the operating risk and improve the proppant injection. 
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Appendix A. Calculations used for pressure conversion 

The original wellhead pressure (or surface pressure) is converted into downhole pressure to remove noises of flowing resistance and hydrostatic 
pressure variation caused by changes of pump rate, fluid type, proppant type and concentration. 

Pdownhole =Pwellhead + Pstatics − Ppipeloss − Pperforation (I) 

The hydrostatic pressure (Pstatics) is calculated by the vertical well depth (hv) 

Pstatics = ρsghv (II) 

The friction loss of the wellbore (Ppipeloss) is estimated by the Darcy-Weisbach equation 

Ppipeloss = 2f
ρsυs

2L
hv

f = 0.046
(

ρsυshv

μs

)− 0.2

(III)  

where L is the wellbore length from its wellhead to the fracturing stage, m; υs is the flowing rate of slurry in the wellbore, m/s; μs is the slurry viscosity, 
Pa⋅s. The slurry viscosity is calculated by (Dontsov and Peirce, 2014) 

μs = μf

[
5
2
CmA− 1 +

(

0.32+
0.38

1 + 5 × 10− 5A− 2

)

A− 2
]

A =
Cm

C
− 1 (V)  

where Cm is the maximum proppant concentration and is assigned a value of 0.585. 
The pressure drop through the perforation hole is estimated based on the hydraulic and perforation parameters (Willingham et al., 1993) 

Pperforation =
2.233 × 10− 4Q2ρs

n2dh
4Cp

2 (VI)  

where dh is the diameter of the perforation hole, m; Cp is the coefficient of discharge and is 0.6–0.95 for slurry; n is the number of the opening 
perforation hole. According to the mini-fracturing test, around half of the designed perforation holes will be opened. 

Appendix B. Summary of feature calculations 

1 Velocity model 

The slickwater, widely used for massive hydraulic fracturing, could only suspend the proppant for minutes during the fracturing operation (Yew 
and Weng, 2014). Therefore, the proppant settling velocity, one of the most fundamental issues, is given by (Mack et al., 2014; McCabe et al., 1993) 

υsettling =

[
0.072g

(
ρp − ρf

)
d1.6

ρ0.4
f μ0.6

f

]0.71

(1)  

where υsettling is the proppant settling velocity, m/s; ρp and ρf are densities of proppant and fracturing fluid, respectively, kg/m3; μf is the fluid viscosity, 
Pa⋅s; d is the averaged diameter of proppant, m. 

Settling in a fracture, proppant is slowed down by fracture walls and interactions between particles, which can be modified by (Gadde et al., 2004; 
Richardson and Zaki, 1954) 

υ′

settling = υsettling
(
2.37C2 − 3.08C + 1

)

υ′′
settling = υsettling

[

0.563
(

d
w

)2

− 1.563
d
w
+ 1

]
(2) 

L. Hou et al.                                                                                                                                                                                                                                     



Journal of Natural Gas Science and Engineering 107 (2022) 104768

8

where C is the volume fraction of proppant; w is the fracture width, m. 
For a complex fracture network, the dragging of the carrying fluid is one of the most important motivations to drive the proppant turn into branch 

fractures (Rakshit Sahai et al., 2014). A minimum flowing rate of the slurry (υturning) is required for proppant turning, and is estimated by the proppant 
restarting condition (Cao et al., 2006; Hou, Jiang, Li, et al., 2017a, 2017b) 

υturning =
0.05

(
ρp − ρf

)
gdw

8μf
(3) 

The particle movements could reflect the proppant transporting by evaluating the ratio between particle and fluid velocities (Hou, Jiang, Li, et al., 
2017a, 2017b). The Velocity model is defined as 
{

υsettling
/

υf
υturning

/
υf

(4)  

2 Settling model 

The proppant is tending to form an equilibrium dune in low-viscosity fluids under constant injection conditions (Hou et al., 2019a, 2019b), as 
shown in Fig. 1 (b). The height of the flowing layer above the dune is a core parameter that evaluates the proppant transport. It could be estimated by 
the settling model expressed as (Novotny, 1977) 

H1 =
16.67Q

wυeq
(5)  

where H1 is the height of the flowing layer, m; Q is the pump rate, m3/s; υeq is the flowing rate when the particle settling and restarting reach 
equilibrium, and is calculated by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υeq =

(
(υw)eq

0.2

)0.143
(

2wρf

/
μf

)0.143

(
ρf

/
ρSC

)0.571

(υw)eq = 18.5υSettling

(
υSettlingdρf

μf

̅̅̅̅̅̅
2w
d

√ )− 0.5

ρs =
ρf + ρpC(1 − φ)

1 + C(1 − φ)

(6)  

where ρs is the density of the slurry, m3/s; φ is the porosity of the proppant dune. 
The slurry and pure fluid are usually injected alternately for shale gas fracturing. For the slurry condition, H1 is estimated by Eq. (5). When pure 

fluid is injected, H1 is assumed to be consistent with prior H1 after the last slurry was injected. This process is carried out manually during the data pre- 
processing. 

3 Bi-power model 

The Bi-power law correlations are proposed to directly calculate the height of the flowing layer (Jing Wang et al., 2003), which is defined as 

H1

w
= [ − 0.00023 ln(RG)+ 0.00292]R1.2− 0.00126λ− 0.428 [15.2− ln(RG)]

f R[− 0.0172 ln(RG)− 0.12]
P (7)  

where Rf, Rp, RG and λ are calculated by 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rf =
ρf Qf

wμf
Rp =

ρpQp

wμf

RG =
ρf
(
ρp − ρf

)
gd3

μf
2 λ =

μf
/

ρf

w1.5 ̅̅̅
g

√

(8)  

where Qf is the pump rate of fracturing fluid, m3/s; Qp is the pump rate of proppant, m3/s. 
There is a special condition when pure fluid is injected to push the injected proppant deeply into the fracture. The pure fluid may rebalance the 

proppant dune, which could be calculated by (Patankar et al., 2002) 

H1 =

(
Qf ρf w0.0937

2053.4μf

) 1
1.0937

(9)  
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4 EDL model 

A similar empirical power-law formula for dune height has been derived based on a series of sand-carrying experiments (Alotaibi and Miskimins, 
2019). The equilibrium dune level (EDL) is defined as the dune height divided by fracture height, which is proposed as 

EDL= − 0.003496d− 0.3277

[
υeq

(0.7749− 0.1955)

C

]

+ 0.9901d− 0.02667 (10)  
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