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Abstract 

The increasing vulnerability of communities to natural hazards motivates novel design and assessment 

methods to ensure that the built environment performs optimally during its lifetime. The current design 

methodologies do not account for life-cycle impacts across multiple performance domains such as economy 

and environment. Therefore, low-effort and designer-centric computational methods are needed to support 

a multi-objective performance-based design, from the conceptual stage to design development. This study 

presents a framework for a holistic performance-based seismic design of buildings. The proposed 

framework leverages machine learning techniques to extract the implicit, and highly complex, relationship 

between design parameters, geometric configuration, and performance measures. At early design, data-

driven surrogate models (trained on performance inventories) are used to identify candidate structural 

systems and their approximate design parameters. At the detailed design stage, a deep learning-based engine 

generates seismic risk estimates based on simpler nonlinear static analysis on the candidate systems or their 

equivalent low-order dynamic models. A case study illustrates the framework’s application for 

performance-based seismic design of multistory commercial buildings in Charleston, SC.  

Keywords: Machine learning, performance-based earthquake engineering, seismic design, deep learning  

1. Introduction 

Performance-based earthquake engineering (PBEE) [1,2] is a modular framework to quantify the 

impact of earthquakes on the built environment through global performance measures. The 

framework consists of four independent modules of seismic hazard, structural response, damage, 

and loss analyses. Each module is represented as a conditional probability, where analysis data are 

used to characterize the probability distribution of the module’s random variable(s). This 

modularity facilitates a rigorous and interdisciplinary approach to account for different factors that 

shape seismic performance, enabling a pathway toward a more holistic seismic design. A holistic 

design (Figure 1) directly accounts for performance across different domains over the entire design 

stages, from early design concepts to design development and post-construction operation. 

Despite the promising features of PBEE, this framework is still not widely used after nearly two 

decades since its inception, except for special buildings that justify the additional time and effort 

needed. Most PBEE efforts are limited to seismic evaluation of novel structural systems such as 

buildings supplemented with dissipative devices (e.g., structural fuses [3,4], hysteretic devices 

[5,6]), fiber reinforced polymer- or shape memory alloy-based components [7–10], special braces 

(e.g., gap inclined [11], crescent-shaped [12], knee bracing[13]) or strongback assemblies [14,15]. 
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Perhaps the most notable effort in using PBEE for design was directed at tall buildings as part of 

the PEER/ATC project in 2006 [16].  

A critical barrier in using PBEE is the simulation challenges and modeling complexities of 

developing sophisticated nonlinear finite element models, selecting appropriate ground motions, 

and performing time-consuming time history analysis. Such complexities substantially increase 

when applying PBEE to generate design alternatives (i.e., at the early design stage), or considering 

different performance objectives simultaneously (particularly if a different type of analysis is 

needed for each objective). Therefore, different studies aimed to simplify performing PBEE by 

introducing approximate analysis methods or developing efficient computational platforms.  

Machine learning (ML)-based methods have been recently introduced to alleviate PBEE 

computational challenges, such as predicting structural response and developing models based on 

experimental, health monitoring, or field reconnaissance data [17,18]. ML methods can aid with 

both achieving computationally inexpensive models and design automation. Nevertheless, most 

studies on structural response estimation focused on predicting nonlinear responses (or fragility 

functions) based on ground motion-related and detailed design parameters [17]. Section 2 reviews 

the current literature on ML applications for seismic design and performance evaluation.  

This study proposes an ML-assisted modular framework to implement PBEE for a holistic 

seismic design, encompassing both the early stage and design development. To this end, the 

framework provides risk-informed guidance at the early design on system selection and initial 

ranges for design and configuration parameters, and ensures that the desired performance (e.g., 

total repair cost) is achieved at the design development stage. The proposed framework relies on 

the hypothesis that there is a complex relationship between building performance, configuration, 

and design. This relationship allows shifting the time and effort needed to perform such 

assessments from designers into ML models, hence sidestepping performing PBEE assessments 

over a large design space. In addition, the ML models facilitate rigorous sensitivity assessment 

Sustainability 

performance

Resiliency 

performance

Initial 

Construction

Operational

Phase

Hazards 

Occurrence

Conceptual 

design

Schematic 

design

Design 

developmentD
es

ig
n

P
er

fo
rm

an
ce

 

cr
it

er
ia

Early design Detailed design

Design 

Documents

Aging & 

deterioration

Figure 1. A holistic design approach: the relationship between design and performance is 

accounted at every stage. 



3 

 

and optimization to identify the most critical design decisions. Lastly, the framework considers 

earthquakes’ economic and environmental impacts and their interaction. The organization of this 

chapter is as follows: Section 2 reviews the literature on using ML for seismic design and 

assessment, Section 3 provides an overview of the framework and each module, and Section 4 

presents a case study that illustrates different modules’ applications.  

2. Background  

The application of ML in PBEE has mainly focused on its predictive capabilities to serve as 

surrogates for computationally-expensive finite element simulations. The majority of previous 

studies have addressed component-level predictions such as RC columns [19,20], concrete-filled 

steel columns [21,22], masonry walls[23], or RC walls [24,25]. Several authors aimed to predict 

seismic responses of archetypal buildings based on design- and hazard-related parameters, as 

shown in Table 1. Furthermore, instead of developing ML-based mapping functions, a few studies 

focused on creating novel ML architectures to directly estimate time-history responses based on 

ground motion (GM) sequences. For example, Ahmed et al. showed that stacked long short-term 

memory (LSTM) accurately predicts damage states for ductile and non-ductile frames [26]. On the 

other hand, Luo and Paal developed an ML-based solver to estimate structure response by 

constructing the stiffness matrix of RC frames using experimental data of RC components [27].  

In a quest to generalize ML models, efforts have been made to predict the seismic performance 

of building inventories with varying configurations and designs. For example, Nguyen et al. 

applied 8 ML models to a database of 468 steel moment-resisting frames and showed that random 

forest could predict building damage states with an accuracy level of 98% [28]. In addition, they 

concluded that spectral acceleration at 1 s is the most important predictor. Guan et al. examined 

data-driven and hybrid ML models to predict the drift demand of 621 steel frames, and showed 

that random forests could accurately predict the seismic demands for both low- and high-rise 

buildings, although hybrid ML models provide higher accuracy than purely data-driven ones. 

Moreover, they found that the ratio of floor height to the building height and spectral acceleration 

and displacement at the fundamental period are the most influential for hybrid ML models, 

whereas spectral acceleration at the first mode dominated the purely data-driven models [29].  

 Table 1. Literature review of recent studies using ML to predict the seismic performance of buildings 

Study Year Structure type ML method description 

Predictors Target Selected algorithm(s)  

Hwang et 

al.[30] 

2021 RC frame (2)a Plastic hinge properties, 

damping, period, Sa(T1) 

MIDR, 

Collapse 

Boosting (6)b 

Demirtzis 

et al. [31] 

2022 RC buildings 

(30) 

Height, eccentricity, ratio 

of walls base shear, and 14 

GM parameters 

MIDR LightGBM (15) 

Kazemi et 

al. [32] 

2023 Steel frames (8) Weight, period, Sa(T1), soil 

type, record number 

MIDR XGboost,Breg, 

HistGBR, ERTReg (11) 

Dabiri et al. 

[33] 

2022 fragility database 

(214) 

Footprint, height, period Fragility 

parameters 

Decision trees (5) 

Kiani et al.       
a  number in parenthesis shows the number of studied buildings 
b number in parenthesis shows the number of studied algorithms  
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Recently, ML-based approaches have been applied to regional-scale and community-level 

seismic assessments of buildings. Kourehpaz and Molina Mutt applied ML algorithms on a 

database of 36 RC frames, and used the trained model for portfolio assessment of RC wall-building 

across the Metro Seattle region [34]. Instead of using an ML model trained on small datasets, Lu 

et al. [35] developed an open-source scientific framework that can perform city-scale nonlinear 

time history analysis and applied this framework to 1.8 million buildings in San Francisco Bay 

Area using SimCenter [36] workflow. Nevertheless, the reviewed literature suggests that despite 

the significant existing literature on using ML at different scales, an ML-assisted framework is 

still needed to achieve performance-consistent design throughout the entire design process.  

3. ML-assisted holistic seismic design 

This section presents the motivation and overview of the developed framework. Next, the 

application of the methodology for each design stage is discussed. Lastly, suitable databases to 

supplement the framework are introduced.  

3.1. Objectives & Motivation  

A conventional design often follows the designer’s intuition and judgment from a precedent-based 

perspective [37]. These cognitive biases [38] can lead to missing more resilient and sustainable 

structural systems. In addition, the conventional seismic design aims to satisfy the safety 

requirements (such as required strength and stability) of building code under severe earthquakes. 

However, this approach cannot explicitly consider other performance objectives (e.g., minimizing 

repair costs or downtime) over the building life cycle, or even guarantee that the life safety 

objectives will be met. Computational tools integrate simulation and quantitative measures to 

supplement the design procedure and lessen the role of intuition and precedence.  

PBEE can be a practical computational approach to quantify the seismic-related consequences of 

different design decisions. PBEE also offers a systematic approach to treat different sources of 

uncertainties (due to hazard and structural modeling) using global performance measures that are 

easily understandable by the entire design team. Furthermore, due to PBEE’s modular nature, the 

assessment results can be seamlessly combined with other quantitative risk measures to provide a 

comprehensive evaluation.  

Several challenges need to be addressed to increase the application of PBEE in the design. First, 

PBEE requires ample data and particular skills (e.g., hazard modeling and simulation) that are not 

common in large design firms, and non-existent in small ones. These sequential analyses span 

different disciplines ranging from engineering seismology to structural engineering. Second, 

PBEE assessment is time-consuming and computationally expensive, and the needed effort and 

time significantly increase as the number of candidate design alternatives grows. For example, for 

each new design alternative, new structural models should be developed, and based on the 

assessment type, a new ground motion selection needs to be performed if the decision notably 

changes the structure’s stiffness and mass.  
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The main objective of this study is to combine PBEE and data-driven modeling, where data-

driven models overcome the computational challenges and offer a fast means to extend and scale 

PBEE over the design space. As shown in Figure 2, this data-driven performance-based seismic 

design framework provides the following advantages over traditional heuristics:  

1. Compilation of a broad design space: A successful design should consider many design 

alternatives (i.e., design space exploration) so that no high-performing candidate system is 

excluded. Here, statistical sampling-based approaches are used to populate the design space 

efficiently. Sampling-based approaches also allow space reduction to reduce the sheer 

effort needed for the high cardinality of real-world design problems. 

2. Consideration of holistic life-cycle performance: A holistic design should consider 

multiple performance objectives such as environmental, economic, and hazard-related 

performance. Most previous efforts are aimed at the combined economic and 

environmental impacts of the design decisions, primarily for shape optimization of 

structural components. In addition, these studies overlook the interaction of different 

performance measures. The framework uses multiple performance measures, where the 

interaction is considered through refined assessments that generate data needed for ML 

algorithms.   

3. Characterization of seismic performance range: Commonly, PBEE is not applied for 

designing ordinary buildings (such as multistory concrete or steel frames), or is reserved 

Figure 2. Motivation and objectives of the proposed framework 
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for later stages of design or assessment. This framework extends PBEE application from 

early stages (to characterize seismic performance range over the approximate description 

of different candidate systems) to detailed design and optimization.   

4. Treatment of uncertainties: Both PBEE and data-driven introduces different sources of 

uncertainties into the design. PBEE assessments are characterized by uncertainties related 

to hazard characterization, structural response analysis, and loss estimation, whereas data-

driven models introduce uncertainties into the input variables (e.g., inherent randomness, 

insufficient training data), algorithm hyperparameters, and mapping algorithms. The 

proposed framework leverages the uncertainty quantification methods native to both 

methodologies to treat the most governing sources of uncertainties comprehensively.  

5. Optimization and sensitivity analysis of design decisions: The data-driven surrogate 

models facilitates performing a larger number of PBEE analysis at low computational 

costs, hence allowing to identify the most critical design decisions through sensitivity 

assessments (such as variance-based sensitivity), or determining the optimum range of 

these parameters to achieve the intended performance range.  

3.2. Framework Overview  

The proposed framework consists of two modules: early design and detailed design. At early 

design, the framework uses imprecise information provided by the designer in a pipeline of 

different simplified models to aid with selecting suitable structural systems, and providing 

preliminary insights on possible sizing. At detailed design, the framework uses a deep learning 

(DL) model to provide precise loss estimates based on more detailed design descriptors for the 

selected systems, where the DL can readily map seismic fragility to changes in structural 

properties.  

3.2.1. Early design module 

Early design defines the design problem and explores the solution space to identify candidate 

systems. The proposed framework provides risk-informed insights on the best possible structural 

systems and preliminary estimates on system design and configuration (e.g., weight, footprints). 

Figure 3 shows the schematics of the early design module. This module relies on surrogate models 

to estimate the performance range based on crude design and topology information. The word 

“surrogate” here refers to different lower-order models, such as knowledge-based or data-driven 

models, that are computationally inexpensive and conform to the limited data availability of earlier 

design stages. For example, approximating performance based on assessments of similar buildings 

from literature (i.e., knowledge-based), or using decision trees that can predict performance based 

on a set of assumed building characteristics (i.e., data-driven).  

As shown in Figure 3, the primary workflow in the proposed data-driven framework uses 

supervised-learning ML algorithms to build surrogate models from PBEE assessment data. This 

data can be generated by alternate pathways and is supported through a knowledge-based module. 

As a result, the framework provides a fast means to explore design space, where the designer only 

needs to change the statistical surrogate model input accordingly to get instant assessment results. 

At the same time, the designer does not need to perform detailed performance-based assessments, 

but rather utilize a performance data inventory. The latter could be accomplished by exploiting 
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available open databases, prior assessments, or performing simplified PBEE assessments. The first 

module requires performance databases to support the surrogate models. Currently, few open 

databases provide adequate data granularity over different building taxonomies and performance 

measures. Section 3.3 discusses several available databases for seismic and environmental 

performance.  

The framework provides designers with a sequential approach to leverage three different 

surrogate modeling techniques for performing convergence-divergence cycles, as shown in Figure 

4. In a typical early design procedure, the designer performs a series of convergence (i.e., removing 

unfavorable design alternatives) and divergence (i.e., introducing new design alternatives) cycles 

to arrive at the final alternatives. This sequential approach uses surrogate models with lower 

fidelity at the earlier stage to remove redundant alternatives from the large and highly variable 

(both intra- and inter-system variabilities) initial design space. Next, data-driven surrogate models 

are implemented to estimate hazard performance ranges and compare alternatives in the second 

convergence cycle. Lastly, low-order dynamic models, such as simplified single-degree-of-

freedom (SDOF) systems, are developed for the few selected candidates, and parametric studies 

are performed to explore those design alternatives as a divergence cycle.  
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 3.2.2. Detailed Design Module 

After selecting the final candidate structural system(s) and initializing their parameter range, the 

second module provides a more detailed seismic design. Here, the designer needs to provide a 

more detailed description of the structural system through simplified nonlinear static (i.e., 

pushover) analysis. A deep learning-based engine then translates the resulting force-deformation 

relationship (i.e., pushover curves) into probabilistic seismic demand models (PSDMs), which can 

be readily mapped to seismic loss through pre-defined damage states and vulnerability functions.  

As shown in Figure 5, the deep learning model (i.e., P2M) comprises an encoder to encode 

pushover curves and a decoder to construct the PSDMS through the encoded values. The loss 

function couples the changes in estimated intercept and slope values, avoiding separate training 

and overfitting [39]. PSDM’s error characterizes fragility variance and impact loss prediction. 

Therefore, P2M explicitly estimates PSDM error using a separate network to track and update 

error estimation as a moving target. Different network types can be implemented for each network; 

however, preliminary results indicate that long short-term memory (LSTM) could be slightly more 

efficient in capturing PSDM slope and intercept [39]. 

The P2M mapping also provides an efficient means to incorporate structural modeling 

uncertainties into the assessment through the “stochastic pushover” [39] method. This method 

changes the structural model properties, such as plastic hinges properties, and repeats pushover 

analysis for each set of new parameters. Next, P2M estimates the variation in PSDMs due to 

structural models change, creating a direct mapping between resultant fragility curves and 

structural models through pushover analysis. Therefore, the designer can perform a new pushover 

analysis for any given design decision and instantly calculates the changes in the structure’s 

fragility. The designer can also perform a few pushover analyses to estimate upper and lower-bond 

pushover curves and characterize the seismic performance range in terms of fragility or loss 

variances. In addition, since this approach directly measured the impact of different design 
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decisions on the fragility curves (and consequently loss estimates) without performing a nonlinear 

dynamic analysis, it is suitable for the dynamic and fast-paced nature of the design.   

3.3. Performance Data Inventories   

Preparing data, including acquisition and preprocessing, is the first and perhaps the most critical 

step of any ML-based framework. The proposed methodology requires extensive open data on the 

seismic and environmental performance of different building systems. Future hazard performance 

databases can be presented as relational databases (RDBs) to promote easier data sharing and 

collaboration. RDBs organize interrelated data tables using shared fields (i.e., keys), facilitating 

more efficient data storage and integration. These databases can be hosted on Design-Safe CI, 

which allows users to extract data by defining a search criterion through web-based SQL queries. 

The criterion is defined by using database keys to combine tables (i.e., performing a join), and 

filtering the results to meet user conditions. Adopting RDBs and open data practices scale the 

individual efforts in PBEE to community-driven scientific workflows necessary for addressing 

seismic resiliency challenges.  

3.5.1. Vulnerability data 

The global synergies on vulnerability modeling resulted in several databases that can be used to 

quickly characterize seismic performance in terms of loss or probability of experiencing a given 

damage state. Such data (particularly fragility curves) can also be used as the input to calculate 

higher-level performance measures. Among these databases, the Global Earthquake Model (GEM)  

provides fragility curves, damage-to-loss models, or capacity curves for different structures [40].  

Figure 5. Detailed design module 
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Curated published literature on PBEE for different structural systems can also be used as a 

resource to provide such data. Therefore, Esteghamati et al. compiled an open relational database, 

denoted as “INventory of Seismic Structural Evaluation, Performance functions, and Taxonomies 

(INSSEPT)” [41,42], to aggregate 222 PBEE case studies from 39 papers. The current version of 

INNSEPT provides simulation-based data on building topology, design, location, and seismic 

performance in terms of fragility and PSDM parameters for 144 moment-resisting frames, 30 

braced frames, and 24 wall-building systems. 

3.5.2. Environmental performance data  

Life cycle assessments (LCAs) provide a systematic approach to evaluating environmental 

impacts. Different LCA approaches exist with different levels of complexity, such as process-

based and economic input-out methods. Unlike PBEE assessments, several guidelines establish 

standardized approaches to performing LCA. However, standardized LCA studies require the 

definition of scope and system boundary, which vary between different studies and prevent their 

reuse for other projects. A few studies performed comparative LCAs between different structural 

systems, where their published impact data can be used as an approximate value, useful for the 

early design stage. For example, Esteghamati et al. compared six commercial buildings with 

varying foundation, structural, and envelope systems [42], provided impact data, and LCA and 

energy models on a public repository[43].  

3.5.3. Seismic recovery data 

The current PBEE assessments mainly focus on seismic risk in terms of monetary metrics such as 

repair cost. However, the recovery of buildings after an earthquake event is an essential predictor 

of community resilience. Post-earthquake recovery models rely on empirical data, such as 

duration-based parameters that define recovery activities. Omoya et al. developed a relational 

database to compile the recovery efforts of 3695 buildings after the 2014 Napa earthquake [44]. 

The relational database provides empirical data on building general topology, site, observed 

damage, and duration-based recovery measures (such as timestamps for initiation and completion 

of permitting or repair. Such data can then be integrated into recovery models through analytical 

approaches [45,46]  

4. Case study  

This section discusses the preliminary application of the proposed framework for the seismic 

design of mid-rise commercial buildings for a site in Charleston, SC.   

4.1. Design problem definition  

A structural engineer is assumed to be consulted on identifying high-performing design 

alternatives for a multistory commercial building project in Charleston, SC. This site is subjected 

to high wind and earthquake hazards, although only earthquake hazard is considered. For the sake 

of this illustration, several assumptions are made. First, building footprints are commonly 

determined based on zoning and ordinance requirements and thus have a fixed value. However, it 

is assumed that the designer can find the best general topology that meets certain limitations (e.g., 

mid-rise, building dimension in each direction between 42 ft to 180 ft). Second, although the 

framework can consider multiple performance objectives, this illustration only focuses on seismic-
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related repair costs and embodied carbon during the building’s service life of 50 years. Third, while 

the framework aims to guide structural system selection, the illustration scope is limited to only 

multistory concrete frames due to the unavailability of adequate data for the considered site.  

4.2. Building inventory description 

Currently, a comprehensive performance inventory does not exist for the considered site. 

Therefore, an inventory of 720 RC moment frames was developed through an automated workflow 

as a proof-of-concept to provide data for the framework. Figure 6.a shows the schematics of the 

workflow to generate this inventory. The geometric configuration of a multistory symmetric 

concrete frame can be defined through four parameters of dimensions in two perpendicular 

directions, the number of stories, and bay length (Figure 6.b). A Latin Hypercube Sampling was 

then used to generate 60 samples of these topology parameters based on their practical ranges. For 

each set of sampled topology parameters, 12 different sets of section sizes are generated for frame 

beams and columns through a pseudo-directional sampling. Additional information on frame and 

section sampling can be found in [47]. The paired topology and designed sections are then used to 

create finite element models suitable for performance-based seismic assessments.  

4.2.1. Finite element modeling 

A two-dimensional finite element model was developed in OpenSees [48] for each sampled pair 

of topology and design parameters. As shown in Figure 6.c, the finite element model uses a 

concentrated plasticity approach, representing frame members as elastic elements with two 

nonlinear plastic hinges at both ends. The hinge properties were determined based on Ibarra-

Medina-Krawinkler (IMK) model [49]. The parameters of the IMK model’s backbone curve (such 

Figure 6. Compiling concrete frame inventory: (a) the workflow to generate performance data, 

(b) a typical plan of a symmetric concrete frame building, (c) general configuration of the nonlinear 

models, (d) generated synthetic GMs for the site of this study 
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as pre-and post-capping deformation) and the cycle deterioration were obtained from a set of 

regression equations proposed by Haselton for symmetric RC sections [50]. The stiffness of plastic 

hinges and elastic elements were adjusted to remove the unrealistic damping forces due to plastic 

hinge formulation [51]. The leaning column concept accounted for the P-delta effects of gravity 

frames [52]. 

4.2.2. GM selection & time-history analysis 

Due to Charleston’s special seismicity, conventional GM selection methods based on generic GM 

suites are inefficient. Therefore, a careful geologically-realistic seismic hazard analysis [53] was 

used to generate synthetic GMs. Four hazard levels were selected corresponding to 2%, 5%, 7%, 

and 10% exceedance probabilities in 50 years. Earthquake magnitude (M) and distance (R) pairs 

were generated based on an inverse transform sampling from the hazard deaggregation at each 

considered hazard level, where the number of M-R pairs in each bin was proportional to the bin’s 

contribution to the hazard [54]. A synthetic GM record is generated for each M-R pair using a 

stochastic method described in [55]. Two GM sets were developed to perform the nonlinear time-

history analysis: (a) 20 records scaled to maximum considered earthquake levels, (b) 80 unscaled 

records (20 records for each considered hazard level). The scaled record set was used to check the 

structural models based on code requirements for drift and collapse, whereas the second set was 

used to perform a cloud analysis considering different response levels [56,57]. In cloud analysis, 

the spectral acceleration at the first mode (i.e., Sa(T1)) was used as the GM intensity measure (IM). 

Floor peak acceleration and maximum interstory drift responses were recorded as the engineering 

demand parameters (EDPs). 

4.2.3. Seismic loss assessment 

An assembly-based approach [58] was used to derive life-cycle repair costs based on considered 

EDPs. This approach aggregates building component losses to assembly categories, reducing the 

required data and computation, which is suitable for portfolio assessments.  

In this approach, collapse and non-collapse losses are separated. The collapse losses were taken 

as building replacement and demolishing costs multiplied by collapse probability, where collapse 

was defined as the building reaching a maximum inter-story drift of 10% [59]. Logistic distribution 

was used to derive collapse probability. The average collapse probability for the compiled building 

inventory was 0.52%, with a standard deviation of 0.19%. Out of 720 buildings, only 1.5% did not 

collapse under any given record, whereas 2.4% had a collapse probability over 1% with a 

maximum value of 2.4%. For non-collapse losses, the repair cost for three assemblies (structural, 

non-structural drift-sensitive, and non-structural acceleration sensitive) and their corresponding 

damage states were derived from the HAZUS manual [60]. A lognormal distribution was fitted to 

EDP-IM pairs from cloud analysis to calculate damage distributions. Since HAZUS repair costs 

are in terms of building construction costs, the RSMeans database was used to calculate the 

monetary values. Lastly, the expected total loss values were integrated over the IM intensities to 

estimate the expected annual loss (EAL) values for each assembly.  

Figure 7 compares the variation of different EAL values (normalized by building replacement 

cost) with respect to the structure’s fundamental period, floor area, and average beam section size. 

While structures with a higher fundamental period show a larger structural loss, they have a smaller 



13 

 

non-structural acceleration-sensitive loss. Similarly, a positive correlation between floor area and 

structural losses (and a negative correlation to non-structural acceleration-sensitive losses) is 

observed. However, increasing average beam section sizes reduces structural loss and slightly 

increases non-structural acceleration-sensitive losses for the considered inventory. Nevertheless, 

the impact of all these parameters on collapse loss is small. The ML models must capture these 

underlying relationships to predict the total loss due to different topology and design parameters.  

4.2.4. Environmental impact assessment 

Whole-building life cycle assessments (WLCA) were performed on the developed building 

inventory following a process-based approach described in ISO14044. The WLCA boundary 

included the structural frames, floors, envelopes, and partitions [61]. The frame topology and 

design information were obtained from the automated workflow output, whereas partition material 

was calculated based on FEMA P-58 normative tool[47]. A brick-veneered concrete masonry 

block was assumed for the envelope system with a window-to-wall ratio of 0.31. The 

environmental impact assessment was carried out for embodied global warming potential (GWP) 

during a building service life of 50 years. 
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Embodied GWP due to earthquake-related repairs was also accounted for through the cost ratio 

approach. In this approach, it is assumed that the ratio of repair-related GWP to initial embodied 

GWP is directly related to the ratio of repair cost to the building construction cost. As shown in 

Figure 8, embodied GWP is linearly related to building gross area (and consequently weight) with 

an R-squared value of 0.98. This high R-squared value is mainly due to the small values of seismic 

loss, resulting in embodied GWP being a function of initial construction GWP (and hence 

proportional to building footprint). It should be noted that not all topology-related parameters have 

a high correlation to the embodied GWP [47].  

4.3. ML-assisted early design 

4.3.1. Data-driven surrogate models  

The performance inventory was used to generate data-driven surrogate models through an ML 

pipeline depicted in Figure 9.a. This ML pipeline splits the database into training and testing sets, 

selects candidate features (using statistical or recursive feature elimination (RFE) methods), selects 

an algorithm, tunes the ML model hyperparameters, and finally, evaluates them based on measures 

such as R-squared or root mean square error. Five algorithms were examined, and the model 
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accuracy was compared. The results show that support vector machines (SVM) provide the highest 

accuracy, predicting total seismic loss with an R-squared value of 0.92 (Figure 9.b) using only 

crude topological and design parameters. Nevertheless, the loss prediction values were sensitive 

to how the building cost function is formulated. The highest accuracy is achieved when the loss is 

defined in terms of actual dollars spent (cost function as a multiplier of building footprint), whereas 

defining loss as the percentage of replacement cost (cost function of unity) leads to the lowest 

accuracy [47].  

ML models error can be decomposed into two competing factors: bias and variance. Bias 

quantifies the average difference between actual response values and model prediction, whereas 

variance measures the variability in ML model prediction for a given data. There is a tradeoff 

between ML model bias and variance: simpler models might not be adequate for prediction (i.e., 

high bias) yet exhibit low variance, whereas flexible models might result in excellent prediction 

(i.e., low bias), yet the models’ accuracy might not be consistent (i.e., high variance). Figure 10 

compares the bias and variance of studied ML algorithms to predict the structural and collapse 

losses. First, the k-nearest neighbor shows high bias and variance for both loss types, resulting in 

a large overall error. Multiple linear regression generally shows lower variance for both loss types; 

however, it is highly biased for collapse loss prediction. For structural losses, it can be observed 

that MLR shows the lowest variance, whereas SVM shows the lowest bias. All models except for 

extreme gradient boosting and SVM show high bias for collapse loss.  

To predict total loss, the selected SVM model uses building height (H), dimension 

perpendicular to the analyzed frame (Ly), floor area (FA), lateral weight (WL), average beam area 

over the entire building (  
̅̅ ̅), average beam area over the first floor (    

̅̅ ̅̅ ̅), and average beam 

longitudinal rebar percentage (  
̅̅ ̅). As shown in Figure 9.c, a variance-based sensitivity assessment 

showed that the SVM model’s prediction variance is dominated by the higher-order interaction of 

all these predictors. Among different predictors, floor area, height, and average beam area were 

the most influential predictors for total loss.  
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4.3.2. Sequential design space exploration  

As described in Section 3.2.1, a sequential workflow was created by linking knowledge-based, 

data-driven, and low-order mechanistic surrogate models. The knowledge-based model is achieved 

by regressing loss values from literature (query through INSSEPT, among other databases) for the 

reported building gross area. The developed SVM model was used as the data-driven surrogate 

model. Lastly, an equivalent SDOF was developed to derive low-order mechanistic models, where 

spring characteristics were calibrated based on the result of the pushover analysis of similar 

concrete frames in the literature.   

The assumption made to develop the equivalent SDOF assumptions could impact loss prediction. 

Therefore, sensitivity assessments were performed to identify the critical decisions. Figure 11 

compares different loss values obtained from equivalent SDOF and detailed assessment for three 

considered frames (denoted as frames 1,2, and 3). Overall, the difference between simplified and 

detailed dynamic models vary across different loss type. For example, while there is a significant 

difference between structural losses of SDOF and MDOF models for the second frame, the 

collapse losses are very close. Second, as can be observed by comparing Figures 11.a-c to 10.d-f, 

the inclusion of cyclic deterioration in the SDOF model did not notably change the loss prediction 

(collapse losses are more sensitive to this value). Lastly, the estimated loss values are highly 

sensitive to the factor relating SDOF displacement to MDOF drift. Currently, empirical values are 

suggested for this mapping [62]. However, the comparison between Figure 11.d-f and 11.g-i 

Figure 11. Comparison of different loss types estimated from equivalent SDOF and detailed analysis. 

Figures a-c are calculated using a γ=0 and empirical factors to related SDOF displacement to MDOF 

drift,  Figures d-f are caucluated using γ=50 and empirical factors, Figures g-i are calculated using 

γ=50 and calibrated factors. 
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suggests that even when this value is obtained directly from sensitivity assessment, the final loss 

values can be drastically different from the detailed assessment. In addition,  empirical factors 

could result in a woefully inaccurate loss estimate for a given frame (e.g., frame 2). Lastly, the 

difference between losses obtained by different factors varies across frames and loss types, 

pointing to a more complex relationship.  

The workflow was applied to estimate the loss for a 4-story building with five 27-foot bays in 

each direction. Here, the only available information is building footprint, location, and 

construction cost. Figure 12 shows the resultant loss ranges predicted by the workflow. The results 

of the surrogate models are compared to the 12 design variations assessed based on a detailed 

PBEE assessment. The knowledge-based surrogate models provide a larger range, mainly because 

the current performance inventories are governed by concrete frames designed for California that 

must resist larger seismic forces. The developed SVM used ranges of input variables for lateral 

weight and beam design information (from code minimum and maximum range), resulting in a 

loss range that encompasses the median and variance predicted by the detailed assessment. Lastly, 

the pushover results of a 4-story building from the literature were used to calibrate the SDOF 

model. Since the literature building was located in California, a scaled pushover curve was also 

used to represent the lower bound for the site in Charleston. As shown in Figure 12, the sequence 

approximately converges to the median loss results from a detailed assessment using incomplete 

data. The average prediction from data-driven models is 10.5% larger than the average loss 

predicted by detailed design. The average prediction from the low-order dynamic model is about 

11.9% smaller than the detailed model.   

 4.4. ML-assisted detailed design 

 The results from the early design stage characterize the RC frame properties such as lateral weight, 

footprint, and average beam area. An experienced structural engineer can use this information to 

generate some preliminary designs. Next, the designer can perform pushover analysis on the 

generated alternatives and uses the P2M network to evaluate the seismic performance. As 

discussed in Section 3.2, P2M also provides an efficient means to change frame properties and 

map the changes to the final seismic performance measures. It should be noted that future work to 

create mapping functions between early design estimates and member sizing could sidestep this 

step, resulting in an end-to-end simulation framework.  

Figure 12. KBS: knowledge-based, DDS-F: data-driven (full), DDS-R: data-driven (reduced), PBS: 

physics-based 

DDR
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The discussed network was trained on the compiled frame inventory to develop P2M for the 

current site. The results showed average prediction accuracy of 84% for a test-to-training ratio of 

unity (half of the database was used for testing) [39]. A sensitivity assessment on different neural 

network types suggested that LSTM networks can provide the highest accuracy with an average 

R2 of 87%, only 4.4% lower accuracy than the detailed analysis results. The average difference 

between P2M and the detailed analysis estimate for the slope and intercept of the PSDM model 

were 2.7% and 5.7%, respectively [39].  

5. Conclusion 

5.1. Summary 

This study presented a conceptual framework to integrate ML methods into the PBEE framework 

for a holistic seismic design. The presented framework comprises two modules for early and 

detailed design. The early design module uses supervised ML algorithms to directly estimate 

seismic loss using geometric configuration and average design parameters estimable by an 

experienced designer. Combing these models with simplified mathematical relationships based on 

the knowledge base and low-order mechanistic models provided a means to quickly predict a 

performance range for a given frame without any detailed design information. After parametrizing 

the possible range for design parameters, finite element models could be developed for average 

(or minimum and maximum) values to perform a pushover analysis. The resultant pushover curve 

(and its variations for parametrized frame properties) can be fed into a deep-learning engine to 

estimate seismic demand models, and consequently, fragility and loss values, preventing the need 

for complicated time-history analysis. The same approach can be extended to other performance 

measures reliant on quantitative analysis (such as environmental impacts), leading to a holistic 

seismic design.   

Several major findings of this study are as follows: 

 ML methods can scale PBEE assessments over a building inventory and provide accurate 

predictions subjected to different levels of available information on topology and design.  

 ML models can be trained to estimate earthquake-related repair costs using only crude 

topological and design parameters for a given site and structural system. ML model 

accuracy was sensitive to the building replacement cost values.  

 Among studied algorithms, support vector machines and gradient boosting methods 

provide the highest accuracy. The prediction of support vector machines was dominated 

by higher-order interactions of predictors, where building height, floor area, and average 

beam section area were the most influential features in predicting concrete frame repair 

cost.   

 Although simpler regression-based models could be adequate for structural loss 

predictions, they show high bias for collapse loss estimation.  

 An equivalent SDOF system can provide reasonable accuracy to predict seismic loss of 

symmetric concrete frames. The accuracy of SDOF systems varies across different loss 

types, and is sensitive to the factors relating its displacement to the building inter-story 

drift. 
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 The “shape” of pushover curves successfully encodes salient dynamic properties of the 

frame systems, which can be decoded into probabilistic seismic demand models through 

a deep learning architecture. This model can propagate component-level uncertainties 

into fragility functions, allowing for a fast estimate of seismic loss for different design 

decisions.  

5.2. Limitations  

Despite the current framework advantages to extend PBEE to different design stages, several 

limitations need further research to improve frameworks automation and easy scaling as follows:  

 The methodology required an automated seismic design module to provide code-

conforming member sizing. In the current case study, a pseudo-directional sampling-based 

approach was used to generate member sizes, which does not meet the requirements of a 

careful seismic design and prevent an end-to-end framework.   

 The framework is applied to a site with moderate seismicity. To ensure generalizability, 

testbeds for sites with high seismicity should be investigated. Nevertheless, the current 

literature indicates that  ML models can estimate drift with high accuracy for sites with 

high seismicity, suggesting that applying the framework to those sites is possible.   

 Although pushover analyses are relatively less computationally expensive, they require 

developing a finite element model. Future work is needed to create a mapping function 

between the properties of an equivalent SDOF and detailed FEM to sidestep this issue.   

 The framework was applied to an inventory of only concrete frames. However, a more 

extensive and diverse inventory comprising different structural systems, is needed to 

evaluate the framework generalizability, particularly for system selection at early design.  
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