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• Gradient-based optimization of columns locations in arbitrary shaped floors.4

• Thickness minimization with deflections, strength, and architectural constraints.5

• Concrete savings may reach 50% with non-trivial optimized column locations.6

• Even minor updates in traditional column layouts may result in significant savings.7

• The trade-off between structural efficiency and architectural freedom is studied.8
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Abstract12

Reducing concrete consumption is important as part of the global effort of fighting the climate13

change, and specifically in concrete flat slabs as these are among the largest cement consumers. In14

this study we formulate an efficient gradient-based optimization of column locations, that minimizes15

the slabs’ thickness with constraints on the deflections, bending moments and shear stresses while16

accounting for architectural considerations. The results show that the columns’ optimal locations17

are not trivial and that the slab thickness is very sensitive to the columns’ exact locations. Thus,18

concrete savings in slabs of up to 20% are possible with minor modification to traditional layouts of19

columns, and up to 50% with more pronounced updates, which emphasizes the importance of early20

collaboration between architects and engineers. The results indicate the critical trade-off between21

structural efficiency and architectural freedom and demonstrate the potential of formal optimization22

in structural design.23

Keywords: Concrete floors, Structural optimization, Columns layout, Structural Engineering,24

Architectural constraints25

1. Introduction26

Concrete is one of the most highly consumed materials in the world, being the third largest source of27

carbon dioxide emissions [1]. Considering structural elements in buildings, a large portion of concrete28

is used in slabs. In fact, several recent studies investigated the usage of cement in different structural29

components in buildings and infrastructure, and it was shown that slabs hold the highest share of30

cement [2, 3, 4]. Therefore, reducing the volume of concrete in slabs has high potential for reducing31
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the environmental burden caused by cement production [4]. Moreover, slabs in buildings contribute32

significantly to the mass of the structure, and consequently to the gravitational and earthquake loads33

that the building must withstand. Thus, reducing the slabs’ mass will lead to further concrete savings34

in other structural elements, such as columns and foundations.35

Structural optimization is a design approach where a structural design problem is formulated as a36

constrained minimization problem and solved with mathematical programming tools [5]. It has been37

shown as an effective design tool in many branches of engineering that often leads to significant savings38

in material and improvements in performance [6, 7]. Thus, structural optimization is a promising39

design approach to reduce the environmental impact of concrete structures [4, 8, 9].40

Optimization of concrete floor systems where the column locations are fixed, is the subject of many41

studies, aiming to minimize objective functions such as material consumption, cost, and environmental42

footprint. To name a few, Varaee and Ahmadi-Nedushan [10] minimized the cost of uni-directional43

flat plates with a single span, whereas cost minimization of flat plates with arbitrary shapes can be44

found in [11]. Cost optimization of a waffle slab was presented by Olawale et al. [12], who formulated45

a compact geometrical parametrization and therefore used a Genetic Algorithm (GA) for solving the46

optimization. Richer parametrization, that allows the shape of the ribs to vary was recently presented47

by Ismail and Mueller [13]. Some papers proposed optimization methods that consider multiple48

options for the floor structural system, for example [14].49

The layout of columns, and more generally the layout of supports, significantly affects the structural50

response of plates. Therefore, optimizing the locations of the supporting elements is an effective way of51

reducing the environmental footprint of concrete slabs [15, 16]. In an early paper, the authors minimize52

the cost of a rectangular flat plate by optimizing a comprehensive set of parameters, including the53

span lengths [17]. Therein, a two-step framework is presented where the floor is optimized using54

GA for given span lengths, which are then updated following a heuristic scheme. Optimization of55

a rectilinear floor was presented in Shaw et al. [18], where the authors used GA to optimize the56
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layout of prefabricated slab elements and the supporting columns. In a more recent study, the authors57

use Ant Colony Optimization to optimize the layout of an orthogonal-supported rectilinear building58

[19]. Additionally, the floor plan is optimized with a constraint on the total floor area. The objective59

function includes the cost of the frames and the slabs, and the eccentricity between the mass- and the60

rigidity- centers. Recently, Building Information Modelling (BIM) was coupled with Finite Element61

(FE) analysis and GA to create a framework for preliminary design of concrete structures, including62

spacing between column grid-lines [15]. In another recent study, the authors use Monte Carlo method63

to find the optimal locations of supports of concrete plates, minimizing the strain energy, reinforcement64

steel and maximal deflection [20].65

All studies that were mentioned so far, and most of the available literature that discusses optimiza-66

tion of concrete floor systems, adopts meta-heuristic and zero-order optimization algorithms, which67

allow to cope with the non-differentiable and discontinuous constraints, but also becomes very expen-68

sive computationally in high dimensional optimization [21]. Therefore, the design space includes a69

small number of design variables, restricting the optimization to regular layouts of columns or to a70

limited number of columns.71

Gradient-based optimization algorithms are more likely to converge to local minima than meta-72

heuristic algorithms, but offer superior numerical efficiency and therefore were also considered in73

many studies. In a straightforward approach for optimization of supports’ locations, the coordinates74

of the supported nodes are being optimized [22, 23]. This approach requires constant remeshing and75

control over the FE mesh, and therefore is numerically expensive and may encounter stability issues.76

Another approach, that uses a SIMP-like parametrization, was proposed by Buhl [24]. Mathematical77

continuity is obtained by adding springs to all nodes and assigning penalized topological design78

variables to each one of the springs. Thus, by adding a constraint on the sum of the topological design79

variables, the most effective springs remain, designating the optimal locations. This approach was80

adopted in several studies, for example Jihong and Weihong [25], Denli and Sun [26], and recently81
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used by Meng et al. [27] to minimize the compliance of plate roof structures. In a recent paper by the82

authors we introduce the stiffness projection method for support location optimization, which is both83

numerically efficient and mesh-independent, and therefore much less prone to convergence to local84

minima than the other gradient-based approaches [28]. Similarly to Meng et al. [27], the optimization85

formulation there is purely academic, where unconstrained compliance minimization was adopted for86

the purpose of establishing the stiffness projection method.87

From the discussion above it is apparent that existing studies on column layout optimization88

of concrete floors were using meta-heuristic algorithms, mainly GA. As a result, the design space is89

limited to a small number of design variables, and therefore the existing methods focus on a regular grid90

of columns and simple floor plans. In most examples, architectural constraints were not considered,91

or they were limited to restricting the span length of the regular grid of columns. On the other hand,92

studies that used efficient gradient-based algorithms, which result in a rich design space, consider only93

global structural performance and lack the necessary structural and architectural constraints for the94

design of concrete floors.95

In this study we aim to fill this gap by proposing a gradient-based optimization for the layout of96

the columns in floors with arbitrary shapes, considering the major structural design requirements of97

concrete plates as well as imposing general architectural-geometrical constraints. In this regard we98

note that the focus of the paper is on residential and office buildings, however other types of buildings99

and floor systems can be considered as well with appropriate load conditions, and structural models for100

the slab. Additionally, we investigate the sensitivity of the plate thickness to the locations of columns.101

Specifically, we build off the stiffness projection method that was presented in the authors’ previous102

work [28], and extend it significantly by adding deflection, punching shear, bending moment, and103

architectural constraints, as well as adding the plate thickness to the design space and explicitly104

minimizing the concrete volume. As a result, the columns are not restricted to any location or105

pattern (other than the architectural constraints), which gives rise to non-trivial layouts and significant106
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reduction in concrete mass. As expected, there is a clear trade-off between concrete volume and the107

architectural design freedom. Less expected is how significant are the concrete savings when only108

mild changes are made to the column locations, imposing only minor compromise on the architectural109

design. This study demonstrates the importance of close collaboration between structural engineers110

and architects from the preliminary design stages [18], when the column locations are determined.111

The remainder of this paper is arranged as follows. In the next section we briefly present the112

mathematical model, thereafter in Section 3 we discuss the optimization formulation extensively. In113

Section 4 we present three numerical examples that are followed by a brief discussion and some114

concluding remarks in Section 5. The paper has two appendices: The first presents the analytical115

sensitivity analysis and the second provides some details about the implementation of the optimization116

method.117

2. Mathematical model118

In structural optimization, the mathematical model is a structural model that predicts the structural119

response to a given set of loads for a given set of parameters, including the design parameters. In the120

context of the current study, the structural model is a plate model where the supports locations and the121

thickness may vary throughout the optimization. We note that the mathematical model that we use in122

the current study was already presented and discussed extensively in our previous work [28]. Herein123

the mathematical model is described briefly for completeness.124

The slabs are modeled with plate finite elements using Mindlin plate theory [29, 30]. Following125

common practice in the analysis of concrete slabs, we assume small displacements and strains as well126

as linear elastic behavior of the concrete. Thus, the floor is modeled with 4-noded plate elements with127

mixed interpolation, that are known to be accurate and insensitive to shear locking [31].128

Since we optimize the locations of the columns, the boundary conditions of the slab change129

throughout the optimization. Generally, this class of problems suffers from several difficulties: 1)130

Possible discontinuity of the design space; 2) High computational cost if remeshing is used; and 3)131
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Tendency to converge to poor local optima. Therefore, in this study we use the stiffness projection132

method that was presented in our previous work to overcome these challenges [28].133

As the name suggests, the basic idea is to project the stiffness of the columns upon the plate’s FE134

mesh instead of modeling the columns explicitly. Thus, all nodes within a circular projection area135

Ω𝑖 defined by a projection radius of [𝑖, have added nodal stiffness. This added stiffness equals to the136

column’s stiffness matrix multiplied by a weight factor 𝑤𝑖 𝑗 that relates the 𝑖th column with the 𝑗 th137

node. Thereafter, the added nodal stiffness matrices are assembled into a global equivalent stiffness138

matrix of the 𝑖th column139

K𝑐𝑝,𝑖 =
∑︁
Ω𝑖

𝑤𝑖 𝑗K𝑐,𝑖 with Ω𝑖 =
{
𝑗 |𝑟𝑖 𝑗 ≤ [

}
. (1)

In the above expression, K𝑐𝑝,𝑖 and K𝑐,𝑖 are the 𝑖th column equivalent and nominal stiffness matrices;140

𝑟𝑖 𝑗 is the distance between the 𝑖th column and the 𝑗 th node; and the sum operator represents assembly141

according the degrees of freedom of the model. Because we use gradient based optimization in this142

study, all functions have to be differentiable and therefore we use a smooth radial super-Gaussian143

function for the projection weight factors144

�̃�𝑖 𝑗 = �̃�
(
𝑟𝑖 𝑗

)
= exp

(
−0.5

(
𝑟𝑖 𝑗

[

)2𝛽
)
, (2)

where 𝛽 is a parameter that controls the sharpness of the transition across the boundary of the projection145

area. This means that mathematically the stiffness of any column is projected onto all nodes of the FE146

mesh, with practically zero projection weight outside the desired projection area. To ensure that no147

excess stiffness is generated by the projection, we normalize the projection weights148

𝑤𝑖 𝑗 =
�̃�𝑖 𝑗∑
𝑘 �̃�𝑖𝑘

with 𝑘 = [1 . . . 𝑁𝑛] , (3)

where 𝑁𝑛 is the total number of nodes. After the equivalent stiffness matrices of all columns have149

been computed, they are added to the plate’s stiffness matrix K𝑝, which results in the stiffness matrix150

of the supported plate, K. Finally, walls are modeled as pinned supports that are added to all nodes151
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within the projection area of the walls on the FE mesh. To ensure that all walls are modeled, in all152

examples we use regular FE meshes with element size that is less than the wall thickness.153

3. Optimization problem formulation154

In this section we present the proposed design-oriented problem formulation. Thus, we minimize

the concrete volume, consider the major service and design limit state requirements, as well as adding

architectural constraints (AC). Arranging the optimization problem into standard form, we obtain

minimize
X

𝑓0 = 𝑉

s.t. 𝑓1 =
𝛿

𝛿∗
− 1 ≤ 0

𝑓2 =
�̃�𝑡𝑠

�̃�∗
𝑡𝑠

− 1 ≤ 0 (4)

𝑓3 =
˜̀
˜̀∗

− 1 ≤ 0

X̃ ∈ Ω𝑎𝑟𝑐

with: Kus = fs

Kud = fd.

In the formulation above: 𝑓1, 𝑓2 and 𝑓3 are respectively the deflection, shear stress, and bending

moment constraints. The next set of constraints are the architectural constraints, which are imposed

through the design space definition. The last two expressions represent the equilibrium equations

that are considered in a nested configuration. Although the formulation is general and any number of

load cases can be accommodated, in this study all examples have only two different load cases with

uniformly distributed loads that correspond to service and design limit states. The service limit state

and the design limit state load vectors, f𝑠 and f𝑑 , are given by
f𝑠 = g + Δg + q

f𝑑 = 1.4 (g + Δg) + 1.6q

,
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where g, Δg and q are the nodal self weight, dead load, and live load vectors, respectively. We note that155

including pattern loading would represent the expected loads on the floor more accurately. However,156

the optimized design will be influenced only marginally by a pattern loading, because different load157

patters balance each other in the context of the optimal location of the columns. Furthermore, in158

residential buildings as well as in most office buildings, the live loads are much smaller than the dead159

loads, diminishing the effect of pattern loading. Finally, as will be apparent from the results, the160

optimized designs tend to have even column distribution, and therefore the effect of pattern loading is161

even smaller. In fact, under such circumstances some building codes do not require to consider pattern162

loading [32, 33].163

The plate forces and moments are obtained in design limit state by computing164

Ŝ = DBu𝑑 , (5)

where Ŝ is a vector with the plate forces and moments evaluated at the Gauss points, D is the plate’s165

constitutive matrix, and B is a differentiation matrix. The nodal forces and moments are computed166

using the SPR technique [34]167

S =
{
M𝑇

𝑥𝑥 M𝑇
𝑦𝑦 M𝑇

𝑥𝑦 𝝈𝑇
𝑥𝑧 𝝈𝑇

𝑦𝑧

}𝑇
= W𝑇 Ŝ, (6)

where S is a vector with the nodal bending moments and transverse shear forces, and W is a constant168

transformation matrix. Finally, X is the normalized mathematical design vector, whereas X̃ is the169

physical design vector that holds the actual design parameters that we wish to optimize.170

3.1. Architectural design space171

Due to the explicit parametrization, in which the coordinates of the column locations are considered172

as design variables, architectural-geometrical limitations may be introduced by appropriate definition173

of the design space. This inherently ensures that the architectural requirements are met while exploring174

the design space, hence the title Architectural Design Space. However, for brevity we will refer to175

the architectural designs space, simply as the design space. Another advantage of considering the176
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architectural requirements through the design space is that they do not have to be differentiable, which177

increases the range of architectural constrains that can be imposed.178

Thus, the architectural constraints (AC) in Eq. (4) are imposed through the design space definition,179

X̃ ∈ Ω𝑎𝑟𝑐, where Ω𝑎𝑟𝑐 is a set of all architecturally admissible designs. This set encodes the specific180

architectural requirements for a design problem and defines the allowable range for each design181

variable. Considering a floor that is supported on 𝑁𝑐𝑜𝑙 columns, the design variables vector is182

X̃𝑇 =
[
x𝑇𝑐 , y𝑇𝑐 , ℎ

]
. (7)

where, x𝑐 and y𝑐 are vectors with the 𝑥 and 𝑦 coordinates of the columns and ℎ is the thickness of the183

slab. Accordingly, the design space has 𝑁𝑑𝑣 = 2𝑁𝑐𝑜𝑙 + 1 design variables, and the admissible set Ω𝑎𝑟𝑐184

has the same dimension.185

The limits of the thickness design variable are straightforward: ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥 , where ℎ𝑚𝑖𝑛186

arises from structural building codes and regulations, and ℎ𝑚𝑎𝑥 is an architectural parameter, defining187

the available space for the structural slab. However, for general floors with non-convex contours188

and arbitrary geometrical-architectural constraints, the limits of the column locations variables are189

design-dependent and therefore more complex. In this regard, we distinguish between the trivial AC190

that ensure that the columns remain within the floor area, and the characteristic AC that represent all191

the additional requirements, such as restricting a column movement to a specific region. As in general192

constrained optimization, not all constraints must be active and a characteristic AC usually will make193

the corresponding trivial AC inactive.194

Considering the trivial AC, we require that at each design iteration, the updated location of a

column will remain in the circle defined by the current location of the column and the shortest distance

to the boundary, which includes both the contour of the floor and the openings. Therefore, for a

column with shortest distance of 𝑑𝑚𝑖𝑛, the design limits in each direction are conservatively set to 𝑑𝑚𝑖𝑛

2 ,
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which results in the following limits

[
x𝑐,𝑚𝑎𝑥 , x𝑐,𝑚𝑖𝑛

]
= x𝑐 ±

1
2

d𝑚𝑖𝑛 (x𝑐, y𝑐) (8)[
y𝑐,𝑚𝑎𝑥 , y𝑐,𝑚𝑖𝑛

]
= y𝑐 ±

1
2

d𝑚𝑖𝑛 (x𝑐, y𝑐) , (9)

where d𝑚𝑖𝑛 is a vector with the shortest distance from all columns to the boundary of floor.195

To compute 𝑑𝑚𝑖𝑛 we discretize the floor boundaries to sampling points (SP) with spacing of196

roughly 0.1[𝑚] between adjacent SP. Thereafter, we compute the distance from the column to all SP,197

select the two closest SP, and approximate 𝑑𝑚𝑖𝑛 with shortest distance to the line connecting both SP.198

Additionally, we use the derivatives of the shortest distance with respect to the column coordinates to199

identify the direction to the nearest boundary. For example, considering the 𝑥 coordinate of a column,200

a positive derivative indicates that the closest SP is somewhere to the left of the column location.201

Therefore, the design limit to the right may be larger and is defined by the maximal move limit value,202

which is discussed in Appendix B.2. Similar logic applies also to a negative sign of the derivative203

and when considering the 𝑦 coordinate. We note that in a case of close vicinity of a column to an204

ear vertex of the boundary polygon, the proposed strategy may allow the column to exit the domain.205

However, since the columns naturally prefer to remain strictly within the floor area, setting small206

enough distance between the SP resolves any related issues.207

The characteristic AC represent additional limitations on the column locations. In engineering208

practice it is often that the multidisciplinary design is performed sequentially. Thus, first an architect209

designs the functionality and the layout of the partitioning walls, and then the location of the columns210

are defined by the structural engineer along those walls. Therefore, one class of characteristic AC are211

path constraints, where for a given column we define a path along which it is allowed to move. From a212

mathematical perspective, each column is assigned with a scalar parameter 𝑡𝑖, and both coordinates of213

the column are defined by explicit path functions, which encode the allowed path: 𝑥𝑐,𝑖 = 𝑥𝑐,𝑖 (𝑡𝑖) and214

𝑦𝑐,𝑖 = 𝑦𝑐,𝑖 (𝑡𝑖). In section 4.2 we will present example of path constraints. A natural extension of the215

path constraints are areal constraints, where the columns are allowed to move only within a predefined216
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2D subdomain. We will use such areal constraints in Section 4.3 to investigate the relation between217

the design freedom and the concrete savings.218

As mentioned, we distinguish between the physical design variables, which refers to the actual pa-219

rameters that we want to find, and the mathematical design variables, that we solve in the optimization220

problem221

X𝑇 =
[
r𝑇𝑐 , s𝑇𝑐 , 𝜔

]
. (10)

The mathematical design variables are normalized and linearly related to the physical design variables222

X = NX̃, (11)

where N is the diagonal normalization matrix. The entries on the diagonal of N are 1/𝐵𝑥 , 1/𝐵𝑦, or223

1/(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) for the column locations in 𝑥 and 𝑦 directions, and the slab thickness, respectively.224

This normalization generally results in more stable optimization and conveniently separates the opti-225

mization procedure from the specific geometrical parameters of the problem being solved. The limits226

on the mathematical design variables are obtained by normalization of the physical design limits.227

3.2. Volume Objective function228

As stated, we wish to minimize the concrete consumption, and therefore minimize the concrete229

volume. We measure the concrete volume by summing the volumes of the individual finite elements230

𝑉 =

𝑁ℓ∑︁
ℓ=1

ℎ𝐴ℓ, (12)

where 𝐴ℓ is the area of the ℓth finite element, and 𝑁ℓ is the total number of elements in the FE mesh.231

3.3. Deflection Constraint232

Many standards define the allowed deflection in concrete elements as a fraction of their span. In233

general, floors have multiple spans, each possibly with different length, and therefore different areas234

of a floor might have different allowed deflection. To successfully impose deflection constraints we235
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define the relative deflection at each node 𝛿 𝑗 as the ratio between the actual elastic downward deflection236

in service limit state and the allowed deflection at this node237

𝛿 𝑗 =
𝑤 𝑗

𝑤𝐴, 𝑗

, (13)

where 𝑤 𝑗 and 𝑤𝐴, 𝑗 are the actual and allowed deflections in 𝑧 direction at the 𝑗 th node, respectively.238

The constraint aggregates all nodal relative deflections by considering the maximal relative deflection,239

which is approximated using a 𝑝-norm function240

𝛿 =
©«
𝑁𝑛∑︁
𝑗=1

𝛿
𝑝

𝑗

ª®¬
1
𝑝

. (14)

In the equation above, 𝛿 is the approximate maximal relative deflection, 𝑁𝑛 is total number of nodes241

in the FE mesh, and 𝑝 is an even number allowing to account for both positive (upward) and negative242

(downward) deflections. Moreover, since the deflections surface is smooth, we use high power value243

of 𝑝 = 30. This approximation overestimates the real maximum, 𝛿 > max (𝜹), which may lead to244

undesired conservativeness. Therefore, the threshold value of the constraint is dynamically updated245

as follows246

𝛿∗ =
𝛿

max (𝜹) 𝛿
∗, (15)

every 𝑁𝐼𝑐 = 5 iterations, where the nominal required relative deflection is 𝛿∗ = 1.0.247

The definition of the allowed deflection follows the recommendations in Eurocode 2 (EC2) [32],248

where the long term deflection should be less than 1
250 of the span length. Thus, assuming a long term249

deflection coefficient of 3.0, the allowed deflection at node 𝑗 is250

𝑤𝐴, 𝑗 =
𝐿𝑒𝑞, 𝑗

750
, (16)

where 𝐿𝑒𝑞, 𝑗 is the equivalent span length at this node.251

In a traditional approach for obtaining the span lengths in irregular floors, the spans are identified252

by manual inspection of the deflection surface, and then the span lengths are set as the diameter of the253

maximal inscribed circle in each span. However, since the columns change their locations throughout254
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the optimization, it is not clear how to identify the irregular spans in a systematic and differentiable255

manner. Therefore, we take a slightly different approach and directly approximate this diameter as256

𝑑 =
√

2𝑟𝑚𝑖𝑛, where 𝑟𝑚𝑖𝑛 is the distance to the closest column or wall. This approximation is equivalent257

to the traditional approach for regular and rectangular spans, and conservative otherwise. Thus, we258

define the equivalent span length at any node 𝑗 as follows,259

𝐿𝑒𝑞, 𝑗 = 𝑟0 +
√

2𝑟𝑚𝑖𝑛, 𝑗 with 𝑟𝑚𝑖𝑛, 𝑗 = min
𝑖

(
𝑟𝑖 𝑗

)
, 𝑖 ∈ [1, . . . , 𝑁𝑐𝑜𝑙 + 𝑁𝑤𝑎𝑙𝑙] , (17)

where 𝑟𝑚𝑖𝑛, 𝑗 is the distance from the 𝑗 th node to the closest column or wall and 𝑟0 is a constant value260

that we add to allow some minimal deflection at the supports. This allowed deflection at the columns261

is necessary to accommodate for the inevitable deflection at the supports, as the supports have finite262

stiffness, as discussed in Section 2. We chose the value 𝑟0 = 0.7[𝑚], which allows an elastic deflection263

at the supports of approximately 1× 10−3 [𝑚]. Finally, we approximate the non-differentiable distance264

to the closest column in Eq. (17) with a 𝑝-norm function265

𝑟𝑚𝑖𝑛, 𝑗 ≈
(
𝑁𝑐𝑜𝑙+𝑁𝑤𝑎𝑙𝑙∑︁

𝑖

𝑟
−𝑝
𝑖 𝑗

)− 1
𝑝

. (18)

3.4. Shear Constraint266

Shear in slabs, or punching shear, is a key consideration in the design of concrete slabs and hence is267

added to the formulation. We define a sufficient thickness of the slab such that the punching resistance268

at each point can be provided by steel details only, without further thickening. Thus, following the269

recommendations in EC2, we will require for each node 𝑗 that270 
𝜎𝑥𝑧, 𝑗 ≤ a𝑅𝑑,𝑚𝑎𝑥

𝜎𝑦𝑧, 𝑗 ≤ a𝑅𝑑,𝑚𝑎𝑥

with a𝑅𝑑,𝑚𝑎𝑥 = 0.4 · 0.6
[
1 − 𝑓𝑐𝑘

250

]
𝑓𝑐𝑑 ≈ 0.2 𝑓𝑐𝑑 . (19)

In the expression above, 𝜎𝑥𝑧, 𝑗 and 𝜎𝑦𝑧, 𝑗 are the plate transverse shear stresses acting at node 𝑗 in271

design limit state, a𝑅𝑑,𝑚𝑎𝑥 is the maximal allowed shear stress, 𝑓𝑐𝑘 and 𝑓𝑐𝑑 are the characteristic and272

compression design strengths of the concrete (in [𝑀𝑃𝑎]). We note that we omit the eccentricity273
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parameter 𝛽 suggested by the EC2 [32], because the shear stresses are computed directly and thus274

the actual structural response is already taken into account. Similarly to the deflection constraint, we275

constrain the maximal shear stress rather than having separate nodal constraints. Thus, the approximate276

maximal shear stress is277

�̃�𝑡𝑠 =
©«

2𝑁𝑛∑︁
𝑗=1

𝜎
𝑝

𝑡𝑠, 𝑗

ª®¬
1
𝑝

with 𝝈𝑡𝑠 =


𝝈𝑥𝑧

𝝈𝑦𝑧

 . (20)

We note that the shear may be both positive and negative and therefore the value of the power 𝑝 should278

be even. The threshold is updated in the same way as in the deflection constraint,279

�̃�∗
𝑡𝑠 =

�̃�𝑡𝑠

max(𝝈𝑡𝑠)
a𝑅𝑑,𝑚𝑎𝑥 . (21)

For convenient presentation of the results, we define the relative shear stress as the ratio between the280

nodal shear stress and the maximal allowed shear stress281

𝝉𝑥𝑧 =
𝝈𝑥𝑧

a𝑅𝑑,𝑚𝑎𝑥

, 𝝉𝑦𝑧 =
𝝈𝑦𝑧

a𝑅𝑑,𝑚𝑎𝑥

. (22)

3.5. Bending Moment Constraint282

Another important design consideration in concrete elements is the bending moment capacity. In283

slabs, it is common that no compressive steel is needed. Thus, in this study we aim for structural depth284

that will subsequently allow a design with tensile steel only. Following recommendations in many285

design codes including EC2 [32] and ACI[33], we assume a simplified rectangular stress block with286

maximal height of 0.4𝑑, where 𝑑 = ℎ − 𝑑𝑠 is the effective structural depth and 𝑑𝑠 is the concrete cover287

of the steel rebars. Thus, the maximal bending capacity per unit width, without compression rebars is288

given by289

𝑀𝑐 = 0.32 (ℎ − 𝑑𝑠)2 𝑓𝑐𝑑 , (23)

which provides good approximation for 𝑓𝑐𝑑 ≤ 28[𝑀𝑝𝑎], especially as the moments approach 𝑀𝑐.290

Following common practice, we take into account the torsion moments in the slab by considering

the Wood and Armer (W&A) moments [35]. Thus, we combine the pure bending moments with the
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torsional moments to create the design moments

𝑀𝑟𝑥,𝑚𝑎𝑥 = 𝑀𝑥𝑥 +
��𝑀𝑥𝑦

��
𝑀𝑟𝑥,𝑚𝑖𝑛 = 𝑀𝑥𝑥 −

��𝑀𝑥𝑦

��
𝑀𝑟𝑦,𝑚𝑎𝑥 = 𝑀𝑦𝑦 +

��𝑀𝑥𝑦

��
𝑀𝑟𝑦,𝑚𝑖𝑛 = 𝑀𝑦𝑦 −

��𝑀𝑥𝑦

�� ,
where 𝑀𝑥𝑥 , 𝑀𝑦𝑦, 𝑀𝑥𝑦 are the plate moments in design limit state. For convenient presentation of the291

bending of the plate, we define the relative moment as the ratio between the nodal moments and the292

moments capacities. Thus, the relative 𝑀𝑟𝑥,𝑚𝑎𝑥 moment at any node 𝑗 is293

`𝑟𝑥,𝑚𝑎𝑥, 𝑗 =
𝑀𝑟𝑥,𝑚𝑎𝑥, 𝑗

𝑀𝑐

, (24)

and similarly for the other moments. In order to constrain all moments at all nodes, we constrain the294

approximate maximum relative moment295

˜̀ = ©«
4𝑁𝑛∑︁
𝑗=1

`
𝑝

𝑗

ª®¬
1
𝑝

with 𝝁 =



𝝁𝑟𝑥,𝑚𝑎𝑥

𝝁𝑟𝑥,𝑚𝑖𝑛

𝝁𝑟𝑦,𝑚𝑎𝑥

𝝁𝑟𝑦,𝑚𝑖𝑛


. (25)

Finally, the threshold value of the moment constraint is updated similarly to the shear and deflection296

constraints, with normalized desired threshold value `∗ = 1297

˜̀∗ =
˜̀

max(𝝁) . (26)

3.6. Optimization Sequence298

It was observed during our numerical experiments that often only the displacement constraint is299

active. Thus, in many cases the bending moment constraint and the shear constraint may be omitted.300

This results in much faster optimization because it spares computing u𝑑 as well as the corresponding301

adjoint vectors, each requires solving a set of equilibrium equations which is the most expensive302
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computational task. Obviously, one cannot know in advance whether the design limit state constraints303

will be active. Therefore, in this study we implemented a hierarchical optimization sequence. Initially,304

we optimize only with the displacement constraint and check upon convergence the resultant moment305

and shear distribution. In a case that both the moment and shear values are within the desired limits,306

the optimized design is considered as the solution of the optimization problem. Otherwise, we update307

the optimized design by another optimization. This time, all constraints are included and the initial308

design is the optimized design from the previous optimization.309

3.7. Sensitivity analysis310

In this study we use gradient-based optimization that allows to effectively cope with multidimen-311

sional optimization, and specifically we adopt the MMA algorithm [36]. Therefore, the derivatives of312

all functionals in Eq. (4) with respect to all design variables should be derived, a process that is often313

referred to as Sensitivity Analysis (SA). The SA of a functional 𝑓𝑖 with respect to the mathematical314

design variables is given by315

𝜕 𝑓𝑖

𝜕X
=
𝜕 𝑓𝑖

𝜕X̃
N−1 (27)

where 𝜕 𝑓𝑖

𝜕X̃ are the derivatives with respect to the physical design variables, and presented in detail in316

Appendix A.317

4. Numerical examples318

In this section we demonstrate the ability of the proposed method to reduce concrete volume319

in slabs by optimizing the column locations. Additionally, the results presented here demonstrate320

the critical trade-off between the structural efficiency and the architectural cost and emphasize the321

importance of collaboration between architects and engineers at early stages of the project. The first322

example is a simple design problem that validates the proposed optimization method, illustrates the323

sensitivity of the slab thickness to the exact column location, and shows that the optimal location324

of columns might be non-intuitive. The other two examples are inspired by real projects with more325
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complicated geometries and demonstrate the ability of the proposed method to contribute to concrete326

savings in complex, real-life projects while satisfying the architectural requirements. Furthermore,327

we take advantage of the more realistic geometries to investigate the effects of the design freedom on328

the concrete savings.329

Table 1. Material properties and other design parameters used in the current study

symbol value units description

𝑑𝑠 0.025 [m] concrete cover

𝑓𝑐𝑑 17.40 [𝑀𝑃𝑎] concrete compression design strength

𝐸 30000 [𝑀𝑃𝑎] concrete modulus of elasticity

a 0.3 [-] concrete Poisson’s ratio

𝛾 5/6 [-] shear strain correction factor

Δ𝑔 4 [𝑘𝑁/𝑚2] dead load

𝑞 1.5 [𝑘𝑁/𝑚2] live load

𝛾𝑐 25 [𝑘𝑁/𝑚3] concrete weight density

In all designs presented in this section, the deflection constraint is active. In fact, we see that330

the deflections often reach the allowed values in many regions, indicating better utilization of the331

feasible space and hence better design. Therefore, we introduce the mean relative deflection 𝛿 as332

an additional measure of the optimality, providing another basis for comparison between different333

designs, where higher 𝛿 values indicate better designs. Furthermore, we use 𝛿 also as an absolute334

gauge of the optimality, where we first need to establish the maximal possible value that corresponds335

to the best design. In this regard, we note that since the deflection surface is smooth, whereas the336

allowed deflection surface is an intersection of cones and planes, 𝛿 = 1.0 cannot be reached. To assess337

the actual best design in terms of the deflection we recall that the slope of the deflected surface should338

be zero above the optimal location of the supports, as has been shown in other studies dealing with339
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supports optimization, for example [37, 28]. Thus, we can estimate the maximal theoretical mean340

relative deflection, 𝛿𝑚𝑎𝑥 , by considering representative cases of fixed-fixed and cantilever beams,341

which have known analytical deflection curves. Following the reasoning in Section 3.3, we set linear342

allowed deflections functions with zero value at the supports, integrate the relative deflections along the343

representative beams, and divide by their lengths, which yields 𝛿 � 0.77 and 𝛿 � 0.64, respectively.344

Therefore, we can assume that 𝛿𝑚𝑎𝑥 ∈ [0.64, 0.77].345

4.1. Example 1: Single Column Optimization346

In the first example we wish to validate the optimization method, demonstrate that the optimal347

location of columns might not be trivial, and illustrate the sensitivity of the slab thickness to the348

column location. For this purpose we consider a minimalist problem and assume no architectural349

constraints, which together allow us to explore the entire design space. Thus we optimize a single350

column in an apartment located in a typical residential tower. The floor plan and all dimensions are351

plotted in Figure 1a, where the columns have square cross section with 0.35[𝑚] side lengths. In352

addition to the column being optimized, the boundary conditions of the floor include seven columns353

along the contour of the floor, symmetry boundary conditions along the inner edges, and a portion of354

an internal core with wall thickness of 0.25[𝑚]. The floor is discretized with 0.24×0.24[𝑚] elements355

and is subjected to additional external loads as listen in Table 1. The design space includes the356

coordinates of the column, which can be anywhere within the apartment, as marked by the hexagonal357

pattern in Figure 1a, and the thickness of the slab ℎ, which may vary between ℎ𝑚𝑖𝑛 = 0.05[𝑚] and358

ℎ𝑚𝑎𝑥 = 0.5[𝑚].359

The optimized column location is (𝑥𝑐, 𝑦𝑐) ≈ (10.3, 5.6) [𝑚] and the corresponding slab thickness is360

ℎ = 0.228[𝑚], with concrete volume of𝑉 = 49.9
[
𝑚3] . This optimized design, as well as the resultant361

deflections 𝑤, the allowed deflections 𝑤𝐴, and the relative deflection 𝛿, are presented in Figures 1b,362

1c and 1d, respectively. Inspecting these figures, it is evident that the deflection constraint is active,363

with the maximal deflection at the resultant three spans reaching the maximal allowed deflection,364
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(a) Floor plan, all dimensions in [𝑐𝑚] (b) Deflections 𝑤 [𝑚𝑚]

(c) Allowed deflections 𝑤𝐴[𝑚𝑚] (d) relative deflections 𝛿

Fig. 1. Problem setup for the single column optimization, optimized column location and the resultant deflections maps.

The deflection constraint is active with deflections in all three spans reaching the allowed deflection values.

hence utilizing effectively the feasible space with 𝛿 = 0.516. Figure 2a presents the distribution of365

the minimal relative moment in 𝑦 direction, where −0.833 ≤ `𝑟𝑦,𝑚𝑖𝑛 ≤ 0.278 indicating that `𝑟𝑦,𝑚𝑖𝑛366

is within the allowed range. In fact, this is true for all normalized moments and shear stresses,367

which have similar distributions and yields extremum values of `𝑚𝑖𝑛 = 0.8706, `𝑚𝑎𝑥 = 0.3645, and368

𝜏𝑡𝑠,𝑚𝑎𝑥 = 0.985. Thus, following the discussion in Section 3.6, re-optimization with all constraints369

was not necessary.370

Once the optimized column location has been found, we verify it by manually investigating the371

entire design space. Thus, we generate an optimal surface by finding the minimum required slab372

thickness for every column location. We discretize the design space of the column location to a grid373

of 0.3 × 0.3[𝑚] points and minimize the slab thickness for a column fixed at each one of those grid374
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(a) `𝑟𝑦,𝑚𝑖𝑛 (b) Optimal thickness surface, ℎ (𝑥𝑐 , 𝑦𝑐 ) [𝑚]

Fig. 2. (a) Normalized minimal moment in 𝑦 direction, showing that `𝑟 𝑦,𝑚𝑖𝑛 is feasible. (b) Investigation of the entire

design space of (𝑥𝑐, 𝑦𝑐). Each pixel is 0.3 × 0.3 [𝑚] and represents the required slab thickness ℎ[𝑚] for each column

location, with minimal value of ℎ = 0.2322 [𝑚]. The optimized location of the column is at the region with the minimal

required thickness, implying successful convergence to the optimum. The black crosses are the suggested locations for the

column, as obtained by 26 practicing structural engineers, and show that the optimal column location is not trivial.

points. Figure 2b presents the optimal surface, where the color of each pixel represents the required375

slab thickness for a column located at the centre of the pixel. The filled gray square is the optimized376

column location as obtained from the straightforward optimization and it is evident that it is located at377

the optimum. In fact, the minimal required thickness obtained by the optimization is slightly smaller378

than the minimal value obtained by the design space exploration, probably due to the continuous379

nature of the design variables [𝑥𝑐, 𝑦𝑐].380

The optimal location of the column is not intuitive, as a more traditional solution would be to locate381

the column closer to the center of the large span. To test this hypothesis we performed a poll among382

26 practicing structural engineers and asked them where would they locate the column, ignoring any383

architectural considerations. The black crosses in Figure 2b represent the answers received from the384

participants of the poll, where the numbers indicate multiple answers for a certain location. It can be385

seen that most participants located the column approximately at the center of the large bay, marked by386

the intersection of the dotted grid lines. These results confirm that the optimal column location might387

not be obvious, even in a simple floor geometry and without considering any architectural constraints.388
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For each column location suggested by the participants of the poll, we computed the required slab389

thickness, which vary between ℎ𝑟𝑒 𝑓 ∈ [0.2688, 0.2987] [𝑚] with mean value of ℎ̄𝑟𝑒 𝑓 = 0.2823[𝑚].390

Thus, we can say that the concrete savings vary between 0% in the unlikely case that the column391

was originally located at the most efficient location, and 23.8% when considering ℎ̄𝑟𝑒 𝑓 . Moreover,392

inspecting the optimal thickness surface in Figure 2b, it seems that it has steep gradient values around393

the optimal point, such that moving the column by one pixel, or 0.3[𝑚] (in the correct direction),394

results in thickness reduction of almost 10[𝑚𝑚]. This implies a high sensitivity of the slab thickness395

to the column location, at least in regions with large gradients of the optimal thickness. In the current396

example, this region reaches the traditional location of the column and includes most of the suggested397

locations in the poll. Thus, indicating that significant savings could be achieved even with small398

changes to a traditional design.399

4.2. Example 2: Rounded Triangular Floor400

The second example that we present is inspired by a floor plan of an actual building that was401

presented in [38] in the context of post-tensioning optimization. Therefore, this example shows the402

ability of the proposed method to deal with real-life problems characterized with many columns as403

well as non-convex shapes of floors. Furthermore, we add path constraints to ensure that the design404

comply with an architectural design of this floor plan.405

The floor has a triangular shape with rounded corners, has three rectangular openings, and sup-406

ported on 19 square columns as well as a central concrete core. The thickness of the core walls is407

0.35[𝑚] and therefore the floor is modeled with slightly smaller square FE, with 0.333[𝑚] side length.408

All other parameters are the same as in the previous example. Figure 3a depicts the floor plan and409

some measures, whereas all geometrical data can be found in the Supplementary Material file.410

The reference layout of the columns follows the general layout in [38], and shown in Figure 3a. To411

compute the slab thickness for the reference design we fix the column locations and optimize only the412

thickness, which equals to ℎ𝑟𝑒 𝑓 = 0.331[𝑚], with resultant concrete volume of 𝑉𝑟𝑒 𝑓 = 285.81
[
𝑚3] .413
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In Figure 3b we present the relative deflections, where the deflections reach the allowed values only414

at the cantilever span at the bottom of the plan, while in broad areas of the floor the deflections are far415

form the allowed values, yielding 𝛿𝑟𝑒 𝑓 = 0.331. Re-optimization is not necessary because the design416

limit state requirements are met, as can be seen in Table 2, that summarise all the results.417

After establishing the reference design, we add architectural path constraints to the optimization,418

where columns are allowed to move only along the partitioning walls. The partitioning walls are419

plotted in Figure 3a with thin lines, and are inspired by the layout of the partitioning walls in an420

architectural design of this floor, as can be found in San Francisco Planning Department’s website421

[39], whereas the corresponding allowed paths are plotted in Figures 3b and 3c with white lines.422

The optimized design is presented in Figure 3c, where the slab thickness is ℎ𝑎𝑟𝑐 = 0.271[𝑚] and the423

concrete volume is𝑉𝑎𝑟𝑐 = 234.17
[
𝑚3] , which represents savings of 18.1%, relatively to the reference424

design. Thus, significant savings were possible while satisfying all architectural constraints. The425

second row of Table 2 summarises the results of the optimization with the path constraints.426

Figure 3c also presents the relative deflections, where more regions of the floor reach their allowed427

deflection, and consequently the average relative deflection increases to 𝛿𝑎𝑟𝑐 = 0.427. Keeping in mind428

that the bottom cantilever was the governing span at the reference design, we see that the optimization429

increases the length of the adjacent span, which reduced the deflections at the cantilever and enabled430

some thickness reduction. Another notable and somewhat less expected change in the design is the431

movement of the column at the vertical center-line of the floor (top of the plan) to the edge of the floor,432

increasing the length of the end span. This reduced the deflections at the neighboring spans from both433

sides and allowed for further reduction in the slab thickness.434

So far we showed that significant savings are possible even when the design space is restricted to435

the portioning walls, as it would be in a sequential architectural-engineering design process. However,436

early collaboration between architects and engineers may increase the design freedom and facilitate437

further savings. To demonstrate the potential of a concurrent design process, we performed another438
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(a) Floor plan, Dimensions are in [𝑐𝑚] (b) Reference design with ℎ𝑟𝑒 𝑓 = 0.331[𝑚].

(c) Optimized design with AC, ℎ𝑎𝑟𝑐 = 0.271[𝑚] (−18.1%) (d) Free optimized design. ℎ = 0.1836[𝑚] (−44.5%)

Fig. 3. Reference and optimization results for the rounded triangular floor. At the reference design the deflections reach

the allowed value only in one region of the floor, indicating sub-optimal design with 𝛿𝑟𝑒 𝑓 = 0.331. When optimized

with architectural constraints, to ensure that the columns remain along the partitioning walls (marked with white lines),

the deflection constraint becomes active in more spans with 𝛿𝑎𝑟𝑐 = 0.427. At the free optimized design the deflections

reach the allowed value in most span of the floor, thus indicating good utilization of the feasible space with 𝛿𝑎𝑟𝑐 = 0.659.

Surprisingly, one column merged with the core walls, thus practically eliminating this column.

optimization, this time without any limitation on the column layout. The optimized slab thickness439

is ℎ = 0.1836[𝑚] and the resultant concrete volume is 𝑉 = 158.607
[
𝑚3] , which represents volume440

saving of 44.5%. Figure 3d presents the relative deflection map and the optimized column layout,441
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ℎ[𝑚] 𝑉
[
𝑚3] 𝛿𝑚𝑎𝑥 𝛿 `𝑟𝑥,𝑚𝑎𝑥 `𝑟𝑥,𝑚𝑖𝑛 `𝑟𝑦,𝑚𝑎𝑥 `𝑟𝑦,𝑚𝑖𝑛 𝜏𝑥𝑧,𝑚𝑎𝑥 𝜏𝑦𝑧,𝑚𝑎𝑥

ref 0.331 285.81 1.0 0.331 0.252 -0.451 0.220 -0.320 0.492 0.528

opt. arc. 0.271
234.17

(-18.1%) 1.0 0.427 0.296 -0.574 0.260 -0.557 0.570 0.538

opt. free 0.184
158.61

(-44.5%) 1.0 0.659 0.415 -0.822 0.436 –0.793 0.681 0.672

Table 2. Results of the rounded triangular floor. top row: reference design, middle row: optimized design with

architectural constraints, bottom row: free optimization. It can be see that in all cases the deflection constraint is the only

active constraint, where the rate at which the feasible space is utilized increases with the design freedom.

which differs notably from the reference layout in Figure 3b. Surprisingly, one of the columns that was442

originally located inside the core has merged with the core wall. Thus, the column is not active and the443

optimization effectively converged to a solution with fewer columns. Looking at Figure 3d it is clear444

that the deflections across most of the floor approach the allowed deflection, and accordingly 𝛿 = 0.659.445

All other constraints are inactive, as can be seen at the third row of Table 2, and re-optimization was446

not needed.447

In this example we included path constraints in the optimization and showed that even when the448

column are allowed to move only along the partitioning walls, thus having no ’architectural cost’,449

significant savings are possible. Furthermore, we showed that when the optimization is granted450

with complete freedom, the concrete savings increases dramatically, but also the architectural cost451

increases. In the next example we explore further this trade off between the structural efficiency and452

the architectural cost.453

4.3. Example 3: Irregular Residential Floor454

In this section, we investigate the relation between the design freedom and the potential concrete

savings. We approach this issue by examining the effect of the maximal allowed modification to the

locations of columns, compared to a reference configuration – namely, a given architectural plan.
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Fig. 4. Floor plan for example 3, including the reference layout of columns, dimensions are in [𝑐𝑚].

Thus, we introduce an areal architectural constraint through an additional layer of parametrization:

𝑥𝑖 (𝑡𝑖, 𝑠𝑖) = Δ𝑚𝑎𝑥𝑡𝑖 + 𝑥𝑖0, and 𝑦𝑖 (𝑡𝑖, 𝑠𝑖) = Δ𝑚𝑎𝑥𝑠𝑖 + 𝑦𝑖0, with − 1 ≤ 𝑡𝑖, 𝑠𝑖 ≤ 1,

where Δ𝑚𝑎𝑥 is the maximal allowed change in a column location, and (𝑥𝑖0, 𝑦𝑖0) are the column’s455

coordinates in the reference design. Thus, each column is allowed to move only within a local box456

that is centered at the reference location of this column and has side lengths of 2Δ𝑚𝑎𝑥 . Other shapes457

can be as easily parameterized to account for a variety of areal architectural constraints.458

The selected floor plan in this example is inspired by a floor geometry that was presented by He459

et al. [40] in the context of yield line identification. This is an irregular floor in a residential building,460

supported by 19 square columns with side length of 0.35[𝑚] and several walls, as can be seen in the461

floor plan in Figure 4. The thickness of the walls is 0.25[𝑚], and accordingly the FE mesh consists462

of square elements with 0.2[𝑚] side length. The applied forces and other parameters are the same as463

in the previous examples. All geometrical data, including the column locations, can be found in the464

Supplementary Material file.465

In the following we will perform series of optimizations with increasing values of Δ𝑚𝑎𝑥 , repre-466

senting increasing levels of architectural freedom, and then investigate the trade-offs with the concrete467

savings. For convenience, all numerical results discussed herein are summarized at the end of this468
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section in Table 3.469

We begin with Δ𝑚𝑎𝑥 = 0, which is essentially optimizing the thickness of the slab while keeping470

the columns at their reference location. The resulting reference thickness is ℎ𝑟𝑒 𝑓 = 0.2226[𝑚] and the471

corresponding concrete volume is 𝑉𝑟𝑒 𝑓 = 82.15
[
𝑚3] . The first row in Table 3 summarise the results472

of the reference design, where it is evident that the deflections constraint is the only active constraint,473

and re-optimization was not necessary.474

Next, we set Δ𝑚𝑎𝑥 = 0.1[𝑚], allowing for very minor adjustment of the column locations, which475

probably has very little architectural cost. The optimized slab thickness is ℎ = 0.2109[𝑚] which476

reflects a reduction of 5.3% in concrete volume with respect to the reference design. Again, the477

deflection constraint is the only active constraint and re-optimization is not necessary.478

Increasing Δ𝑚𝑎𝑥 further leads to greater concrete savings, as can be seen in Figure 5 that depicts479

the concrete volumes for different values of Δ𝑚𝑎𝑥 . The right most point on the curve corresponds to480

Δ𝑚𝑎𝑥 = ∞ and represents the extreme case where the columns are free to move, where mathematically481

we omitted the architectural constraints for this optimization. The optimized slab thickness in this case482

is ℎ∞ = 0.1126, with concrete volume of 𝑉𝑜𝑝𝑡 = 41.531
[
𝑚3] , and not insignificant concrete savings483

of 49.4%.484

Increasing the design freedom increases the extent at which the optimization utilizes the available485

feasible space. This is evident from Figure 5 that displays also the relative deflections for Δ𝑚𝑎𝑥 =486

{0, 0.5, 3,∞} [𝑚] where 𝛿 increases with the design freedom. Likewise, beginning at Δ𝑚𝑎𝑥 = 1.1[𝑚]487

and on, the moment constraint becomes also active. Thus, the moment and shear values initially exceed488

the desired threshold values, and re-optimization was necessary, after which all constraints are met and489

the objective function value increases (i.e., get worse). However, for Δ𝑚𝑎𝑥 = 3.0[𝑚] and Δ𝑚𝑎𝑥 = ∞490

the re-optimized design results in slightly thinner slab than the corresponding optimized thicknesses491

when only deflection constraint was considered. Thus, indicating convergence to a local minima at the492

first optimization attempts, which is not unlikely in non-convex optimization. Nevertheless, in most493
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Fig. 5. Optimized concrete volume for different values of Δ𝑚𝑎𝑥 . The steep slope at low values of Δ𝑚𝑎𝑥 indicates

that even a small update of the column layout can significantly affect the concrete volume. The red asterisks represent

infeasible optimization results that were obtained with the deflection constraint only. Increasing the design freedom results

in larger concrete savings that reach 49.4%. The color maps present the distribution of the relative deflection, 𝛿, for

Δ𝑚𝑎𝑥 = {0, 0.5, 3.0,∞}[𝑚]. It is evident that increasing Δ𝑚𝑎𝑥 results in more efficient design with higher 𝛿.

cases adding more constraints leads to higher (worse) objective function values, as apparent from the494

results in Table 3 and in Figure 5. Therein, the optimization trials that were re-optimized are marked495

with an asterisk.496

Another interesting observation from the the relative deflection plots in Figure 5 is that as the design497

freedom increases, the columns distribution tend be more uniform, with small differences between498

bay lengths. The reason for this is that large differences in adjacent bay lengths result in non-zero499

slope of the deflection surface, and therefore are generally not optimal [37, 28]. Thus, we expect500

optimized column layouts to be characterised with relatively uniform distribution, which can be used501

to set a good initial design. Interestingly, since the effect of pattern loading reduces with the difference502

between bay lengths, including pattern loading in the formulation could result in larger savings in503
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concrete volume. Therefore, the obtained savings are possibly somewhat on the conservative side.504

Additionally, we note that the optimizations with Δ𝑚𝑎𝑥 = 4.0[𝑚] and Δ𝑚𝑎𝑥 = 5.0[𝑚] converged to505

the same optimum. A possible explanation for this is the non-convexity of the optimization problem.506

Thus, the optimal solution might have a discrete dependence on the design space freedom. This could507

also explain why the optimal concrete volume that corresponds to Δ𝑚𝑎𝑥 = ∞ is lower than one would508

expect based on the graph in Figure 5.509

Finally, since Δ𝑚𝑎𝑥 can be regarded as a measure of the architectural cost, the curve in Figure 5 can510

be interpreted as the trade-off between the architectural cost and the concrete volume. This trade-off511

curve is convex and therefore small increase in the architectural cost with respect to a traditionally512

obtained reference design, may lead to significant reduction in concrete volume. For example, allowing513

Δ𝑚𝑎𝑥 = 0.9[𝑚] results in almost 30% reduction.514

5. Discussion and conclusions515

We presented a method to minimize the concrete consumption in slabs by optimizing the column516

locations, and then use it to investigate the sensitivity of the thickness to the column locations. We517

formulate a deflection constraint that is differentiable with respect to the changing columns locations,518

as well as moment and shear constraints, and include architectural constraints through the explicit519

design parametrization. For any given floor plan, the method generates an optimized layout of520

columns and the corresponding minimal required slab thickness. We use gradient-based optimization521

with analytically derived sensitivities, which results in a very effective numerical method that can522

be used for problems with a large number of design variables, that would have not been practical523

with zero-order optimization methods. For example, simultaneous optimization of a large number524

of columns within an extended framework that includes also the column dimensions and a slab with525

varying thickness.526

Through three different examples we show the ability of the proposed method to cope with any527

floor geometry, any number of columns and a range of architectural-geometrical constraints. The528
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Table 3. Optimization of the irregular slab with increasing level of design freedom. ∗ Indicates infeasible result obtained

with deflection constraint only.

Δ𝑚𝑎𝑥 ℎ[𝑚] 𝑉
[
𝑚3] 𝛿𝑚𝑎𝑥 𝛿 `𝑟𝑥,𝑚𝑎𝑥 `𝑟𝑥,𝑚𝑖𝑛 `𝑟𝑦,𝑚𝑎𝑥 `𝑟𝑦,𝑚𝑖𝑛 𝜏𝑥𝑧,𝑚𝑎𝑥 𝜏𝑦𝑧,𝑚𝑎𝑥

0(ref) 0.223 82.146 - 1.000 0.376 0.380 -0.680 0.225 -0.703 0.530 0.753

0.1 0.211 77.829 5.3% 1.000 0.397 0.388 -0.694 0.238 -0.757 0.534 0.721

0.3 0.189 69.856 15.0% 1.000 0.453 0.408 -0.784 0.279 -0.853 0.524 0.680

0.5 0.175 64.546 21.4% 1.000 0.486 0.394 -0.834 0.338 -0.892 0.494 0.694

0.7 0.165 60.958 25.8% 1.000 0.516 0.382 -0.838 0.374 -0.919 0.473 0.805

0.9 0.156 57.693 29.8% 1.000 0.511 0.400 -0.863 0.391 -0.949 0.536 0.946

1.1* 0.148 54.765 33.3% 1.000 0.530 0.412 -0.903 0.402 -1.070 0.675 1.092

1.1 0.149 54.808 33.3% 1.000 0.524 0.412 -0.901 0.399 -0.999 0.679 0.997

1.4* 0.138 51.007 37.9% 1.000 0.548 0.468 -1.046 0.424 -1.170 0.874 1.116

1.4 0.142 52.219 36.4% 0.998 0.542 0.556 -0.937 0.420 -1.000 0.637 0.850

2.0* 0.127 46.976 42.8% 0.999 0.575 0.497 -1.215 0.466 -1.145 1.134 0.931

2.0 0.129 47.524 42.1% 0.998 0.552 0.502 -0.952 0.463 -1.000 0.776 0.781

3.0* 0.123 45.269 44.9% 1.000 0.601 0.516 -1.019 0.547 -1.095 0.556 0.794

3.0 0.121 44.820 45.4% 1.001 0.610 0.592 -0.949 0.544 -1.000 0.554 0.826

4.0* 0.119 43.745 46.7% 0.996 0.622 0.591 -1.040 0.510 -1.114 0.582 0.744

4.0 0.120 44.174 46.2% 0.996 0.596 0.608 -0.926 0.481 -0.999 0.572 0.676

5.0* 0.119 43.745 46.7% 0.996 0.622 0.591 -1.040 0.510 -1.114 0.582 0.744

5.0 0.120 44.174 46.2% 0.996 0.596 0.608 -0.926 0.481 -0.999 0.572 0.676

6.0* 0.119 43.745 46.7% 0.996 0.622 0.591 -1.040 0.510 -1.114 0.582 0.744

6.0 0.120 44.174 46.2% 0.996 0.596 0.608 -0.926 0.481 -0.999 0.572 0.676

∞* 0.113 41.793 49.1% 1.000 0.638 0.587 -1.149 0.528 -1.342 0.694 1.029

∞ 0.113 41.531 49.4% 1.000 0.613 0.521 -0.947 0.501 -1.001 0.576 0.774

29



results show that even when the columns are allowed to move only along the partitioning walls,529

notable savings of up to 18% are possible. Furthermore, we show that increasing the granted freedom530

to the optimization dramatically increases the potential for concrete savings, which may reach as high531

as 50%. Interestingly, even minor changes in column locations (in the order of 0.1[𝑚] − 0.9[𝑚]) with532

respect to a traditional design, may result in substantial savings of 5% − 30%.533

The results of this study indicate that the optimal column layout is not trivial and that traditional534

designs are often sub-optimal. Thus, given the high sensitivity of the slab thickness to the columns535

locations, the proposed method can be used to fine-tune column layouts to reduce the slab thickness in536

many buildings. Furthermore, collaborative architectural and structural design from the preliminary537

stages when the architectural layout and consequently the column layout are determined, is key to538

achieve significant concrete savings.539

Another interesting observation that can be made is the direct relation between the optimality of540

the column layout and the rate at which the deflection constraint is satisfied. Thus, the mean relative541

deflection can be used as an indicator for the effectiveness of a design, with an estimated theoretical542

maximum value in the range 𝛿𝑚𝑎𝑥 ∈ [0.64, 0.77].543

Throughout this research the architectural requirements were imposed as hard constraints based544

on existing architectural designs. However, explicit and quantitative consideration of the architectural545

cost is an interesting direction for future research, which will allow to construct more meaningful546

Pareto fronts that illustrate the trade-offs between structural efficiency and architectural performance.547

Additionally, although a substantial reduction in concrete volume is possible by the proposed method,548

it is possible that more steel reinforcement will be needed. Thus, the optimal balance between concrete549

and steel in terms of cost and environmental impact still remains open for future work. Furthermore,550

including also non-linear material response and plasticity might reveal interesting failure modes.551
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Appendix A. Sensitivity analysis560

Since we implement gradient based optimization, the first-order derivatives should be provided.561

In this section we present in detail all calculations involved in the computation of these derivatives.562

We note that the analytical sensitivities were verified by comparing to numerical derivatives obtained563

with finite differences method and were found to be accurate.564

The derivatives with respect to the mathematical design variables are obtained by the chain rule565

𝜕 𝑓𝛼

𝜕X
=
𝜕 𝑓𝛼

𝜕X̃
𝜕X̃
𝜕X

, with 𝛼 ∈ {0, 1, 2, 3}, (A.1)

where 𝜕X̃
𝜕X = N−1 is the Jacobian matrix, and 𝜕 𝑓𝛼

𝜕x̃ are the derivatives of the 𝛼 functional with respect566

the physical design variables and discussed in following sub-sections.567

Appendix A.1. Volume Objective function568

The sensitivities of the volume can be obtained explicitly because it does not depend on the569

structural response. Thus, we differentiate Eq. (12)570

𝜕𝑉

𝜕�̃�
=

𝑁ℓ∑︁
ℓ=1

𝜕ℎℓ

𝜕�̃�
𝐴ℓ, (A.2)

31



where �̃� is any of the physical design variables. The derivative of the elemental thickness ℎℓ with571

respect the slab thickness is simply 𝜕ℎℓ
𝜕ℎ

= 1.0 and zero with respect the columns locations.572

Appendix A.2. Deflection Constraint573

In the perspective of the individual MMA iteration, the threshold value of the constraint is constant.574

Therefore the derivative of the deflection constraint equals to the derivative of the maximal relative575

deflection, scaled by 1/ ˆ̃𝛿∗576

𝜕 𝑓1

𝜕�̃�
=

1
𝛿∗

𝜕𝛿

𝜕�̃�
. (A.3)

Thus, we focus on the derivative of 𝛿.577

The deflection constraint is an implicit function of the design variables and therefore we adopt the578

adjoint approach. The basic idea is to augment the functional with the equilibrium residual multiplied579

by an adjoint vector that will be selected such that the implicit terms will vanish. Thus, the augmented580

functional is581

𝛿𝑎 = 𝛿 − 𝝀𝑇𝛿 (Ku𝑠 − f𝑠) . (A.4)

Since the equilibrium residual equals to zero, the augmented functional equals to the original functional582

and so are the derivatives.583

Thus, we differentiate the augmented constraint with respect to the design variables. Keeping in584

mind that the deflection constraint also depends explicitly on the design variables through the allowed585

deflection, we get586

𝜕𝛿𝑎

𝜕�̃�
=

𝜕𝛿

𝜕u𝑠

𝜕u𝑠

𝜕�̃�
+ 𝜕𝛿

𝜕w𝐴

𝜕w𝐴

𝜕�̃�
− 𝝀𝑇𝛿

(
𝜕K
𝜕�̃�

u𝑠 + K
𝜕u𝑠

𝜕�̃�
− 𝜕f𝑠
𝜕�̃�

)
. (A.5)

Since the derivatives of the augmented and original functionals are the same, we switch back to the587

original functional. As mentioned, the adjoint vector is computed such that the terms 𝜕u
𝜕�̃�

will cancel588

each other. Thus, the derivative of the deflection is589

𝜕𝛿

𝜕�̃�
=

𝜕𝛿

𝜕w𝐴

𝜕w𝐴

𝜕�̃�
− 𝝀𝑇𝛿

(
𝜕K
𝜕�̃�

u𝑠 −
𝜕f𝑠
𝜕�̃�

)
with K𝑇𝝀𝛿 =

(
𝜕𝛿

𝜕u𝑠

)𝑇
(A.6)
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The adjoint vector 𝝀𝛿 and 𝜕𝛿
𝜕û𝑠

are the same as presented in [41]. The derivative of the maximal590

approximated relative deflection with respect to the allowed deflection is obtained by substituting591

Eq. (13) into Eq. (14) and differentiating592

𝜕𝛿

𝜕w𝐴

= −𝛿
[∑︁

𝑗

𝛿
𝑝

𝑗

]−1 ∑︁
𝑗

𝛿
𝑝−1
𝑗

𝑤 𝑗 (𝑤𝐴)−2
𝑗 . (A.7)

The derivative of the allowed deflections with respect to the design variables is obtained by replacing593

𝑟𝑚𝑖𝑛, 𝑗 in Eq. (17) with its derivative, and multiplying by 1
750 according to Eq. (16). Thus, by594

differentiating Eq. (18) we obtain the derivative of the distance form the 𝑗 th node to the closest595

column,596

𝜕𝑟𝑚𝑖𝑛, 𝑗

𝜕�̃�
= 𝑟𝑚𝑖𝑛, 𝑗

∑︁
𝑖

𝑟
𝑝−1
𝑖 𝑗

𝜕𝑟𝑖 𝑗

𝜕�̃�
. (A.8)

The derivative 𝜕𝑟𝑖 𝑗

𝜕�̃�
is computed by differentiating the distance between the 𝑖th column and the 𝑗 th node,597

where for all design variables other than the 𝑖th column location, the derivative is equal to zero.598

The next term in Eq. (A.6) is the derivative of the stiffness matrix with respect to the design599

variables, which were discussed in [28] and are brought here for completeness.600

As mentioned, the stiffness matrix of the supported plate is simply summation of the plate’s601

stiffness matrix and the equivalent matrices of the columns602

K = K𝑝 +
𝑁𝑐𝑜𝑙∑︁
𝑖=1

K𝑐𝑝,𝑖 . (A.9)

Thus, the derivatives with respect the column locations affect only the added equivalent column603

stiffness matrices. Thus, by differentiating Eq. A.9 with respect the 𝑥 coordinate of the 𝑖th column we604

get605

𝜕K
𝜕𝑥𝑐,𝑖

=
𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖
. (A.10)

The derivative of equivalent stiffness matrix of the 𝑖th column with respect 𝑥𝑐,𝑖 is obtained by differ-606

entiating Eq. (1)607

𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖
=

𝑁𝑛∑︁
𝑗

[
𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖

]
𝑗

=

𝑁𝑛∑︁
𝑗

𝜕𝑤𝑖 𝑗

𝜕𝑥𝑐,𝑖
K𝑐,𝑖 . (A.11)
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The summation sign stands for assembly according the nodal DOF. The derivative of the projection608

weight is obtained by differentiating Eq. (2) and substituting into Eq. (3),609

𝜕𝑤𝑖 𝑗

𝜕𝑥𝑐,𝑖
=

𝜕�̃�𝑖 𝑗

𝜕𝑥𝑐,𝑖

∑
𝑘 �̃�𝑖𝑘 − �̃�𝑖 𝑗

∑
𝑘
𝜕�̃�𝑖𝑘

𝜕𝑥𝑐,𝑖

(∑𝑘 �̃�𝑖𝑘 )2 (A.12)

with610

𝜕�̃�𝑖 𝑗

𝜕𝑥𝑐,𝑖
= − 𝛽

[

(
𝑟𝑖 𝑗

[

)2𝛽−1 𝜕𝑟𝑖 𝑗

𝜕𝑥𝑐,𝑖
�̃�𝑖 𝑗 . (A.13)

The derivatives with respect to 𝑦𝑐,𝑖 are computed in the same way.611

The derivative of the stiffness matrix with respect the thickness design variable affect the plate’s612

stiffness matrix, K𝑝, and are obtained by differentiating the elemental stiffness matrices and thereafter613

assembling in a regular manner. The plate’s stiffness matrix is assembled in a standard manner, for a614

mesh with identical elements615

K𝑝 =
∑︁
ℓ

Kℓ =
∑︁
ℓ

B𝑇
ℓ DℓBℓ =

∑︁
ℓ

B𝑇DB, (A.14)

where B and D are the elemental generalized differentiation and constitutive matrices. Thus, after616

differentiating we get617

𝜕K𝑝

𝜕ℎ
=

∑︁
ℓ

B𝑇 𝜕D
𝜕ℎ

B, (A.15)

where the derivative of the constitutive matrix is computed by explicit differentiation.618

The final term in Eq. (A.6) is the derivative of the external forces vector with respect to the design619

variables. The external forces depend on the design through the thickness and the concrete mass620

density621

𝜕f𝑠
𝜕ℎ

=
∑︁
ℓ

𝛾𝑐𝐴ℓ

4
, (A.16)

where 𝛾𝑐 is the mass density of the concrete, 𝐴ℓ is the area of the elements, and the summation sign622

stands for assembly according the elemental DOF.623

Appendix A.3. Shear Constraint624

Similarly to the deflection constraint, the derivative of the shear constraint is,625

𝜕 𝑓2

𝜕�̃�
=

1
�̃�∗
𝑡𝑠

𝜕�̃�𝑡𝑠

𝜕�̃�
. (A.17)
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Since �̃�𝑡𝑠 is an implicit function of the design variables, we use the adjoint approach again. The626

augmented functional is627

(�̃�𝑡𝑠)𝑎 = �̃�𝑡𝑠 − 𝝀𝑇𝜏 (Ku𝑑 − f𝑑) . (A.18)

This time, there is no explicit dependence and therefore after differentiating and replacing the aug-628

mented functional with the original one, we get629

𝜕�̃�𝑡𝑠

𝜕�̃�
=
𝜕�̃�𝑡𝑠

𝜕u𝑑

𝜕u𝑑

𝜕�̃�
− 𝝀𝑇𝜏

(
𝜕K
𝜕�̃�

u𝑑 + K
𝜕u𝑑

𝜕�̃�
− 𝜕f𝑑

𝜕�̃�

)
. (A.19)

Selecting the adjoint vector such that the terms involving 𝜕u𝑑

𝜕�̃�
will vanish, we get630

𝜕�̃�𝑡𝑠

𝜕�̃�
= −𝝀𝑇𝜏

(
𝜕K
𝜕�̃�

u𝑑 −
𝜕f𝑑
𝜕�̃�

)
with K𝑇𝝀𝜏 =

(
𝜕�̃�𝑡𝑠

𝜕u𝑑

)𝑇
. (A.20)

The only term that is unknown is 𝜕�̃�𝑡𝑠

𝜕û𝑑
which is obtained by differentiation of Eq. (20)631

𝜕�̃�𝑡𝑠

𝜕u𝑑

= ˆ̃𝜎𝑡𝑠
©«

2𝑁𝑛𝑜𝑑𝑒𝑠∑︁
𝑗=1

𝜎
𝑝

𝑡𝑠, 𝑗

ª®¬
−1 (

𝝈◦(𝑝−1)
𝑡𝑠

)𝑇 𝜕𝝈𝑡𝑠

𝜕u𝑑

, (A.21)

where 𝜕𝝈𝑡𝑠

𝜕u𝑑
is obtained by differentiating (5), multiplying with W, and selecting the appropriate terms632

𝜕S
𝜕u𝑑

= W𝑇DB (A.22)

Appendix A.4. Moment Constraint633

The derivative of the moment constraint is634

𝜕 𝑓3

𝜕�̃�
=

1
˜̀∗

𝜕 ˜̀
𝜕�̃�

(A.23)

The augmented moment functional is635

( ˜̀)𝑎 = ˜̀ − 𝝀𝑇` (Ku𝑑 − f𝑑) . (A.24)

The relative moment is related to the design variables both implicitly and explicitly, ˜̀ = ˜̀
(
�̃�, u𝑑

(
�̃�
) )

.636

Therefore, we distinguish between the total derivative and the partial derivative of the relative moment637
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by using different operators notations of 𝑑 and 𝜕, respectively. Thus, after differentiating the above638

equation and getting back to the original moment functional we get639

𝑑 ˜̀
𝑑�̃�

=
𝜕 ˜̀
𝜕u𝑑

𝜕u𝑑

𝜕�̃�
+ 𝜕 ˜̀
𝜕�̃�

− 𝝀𝑇`

(
𝜕K
𝜕�̃�

u𝑑 + K
𝜕u𝑑

𝜕�̃�
− 𝜕f𝑑

𝜕�̃�

)
. (A.25)

After eliminating the derivatives 𝜕u
𝜕�̃�

by finding a proper adjoint vector, the derivative of the moment640

constraint is641

𝑑 ˜̀
𝑑�̃�

=
𝜕 ˜̀
𝜕�̃�

− 𝝀𝑇`

(
𝜕K
𝜕�̃�

u𝑑 −
𝜕f𝑑
𝜕�̃�

)
with K𝑇𝝀` =

(
𝜕 ˜̀
𝜕u𝑑

)𝑇
. (A.26)

The explicit derivative can be written in the following form642

𝜕 ˜̀
𝜕�̃�

=
𝜕 ˜̀
𝜕ℎ

𝜕ℎ

𝜕�̃�
, with

𝜕 ˜̀
𝜕ℎ

= ˜̀
(∑︁

𝝁𝑝
)−1

(
𝜕𝝁

𝜕ℎ

)𝑇
𝝁◦(𝑝−1) , (A.27)

where ◦ indicates elementwise operation. The derivative of the relative W&A moments with respect643

the slab thickness is given by644

𝜕𝝁

𝜕ℎ
=

{[(
𝜕M
𝜕ℎ

)𝑇
M𝑐 − M𝑇 𝜕M𝑐

𝜕ℎ

]
◦ M◦−2

𝑐

}
. (A.28)

In the equation above, M is a vector with all W&A moments at all nodes and M𝑐 is a vector with645

the moment capacities. All W&A moments have similar structure, thus for example the derivative of646

𝑀𝑟𝑥,𝑚𝑎𝑥 is given by647

𝜕𝑀𝑟𝑥,𝑚𝑎𝑥

𝜕ℎ
=
𝜕𝑀𝑥𝑥

𝜕ℎ
+ sign

(
𝑀𝑥𝑦

) 𝜕𝑀𝑥𝑦

𝜕ℎ
. (A.29)

The derivatives of the plate moments are obtained by differentiating Eq. (5), multiplying with W,648

and selecting the moments components649

𝜕S
𝜕ℎ

= W𝑇 𝜕D
𝜕ℎ

Bû𝑑 . (A.30)

The derivative of the moment capacities is obtained by differentiating Eq. (23), where the only650

derivative with non zero value is the derivative with respect the slab thickness651

𝜕M𝑐

𝜕ℎ
= 1 (ℎ − 𝑑𝑠) 0.64 𝑓𝑐𝑑 . (A.31)
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The last component is the derivative of the approximate maximum relative moment with respect to652

the displacements which is obtained by differentiating Eq. (25)653

𝜕 ˜̀
𝜕u𝑑

= ˜̀
(∑︁

𝝁𝑝
)−1

(
𝜕M
𝜕u𝑑

)𝑇 〈
M◦−1

𝑐

〉
𝝁◦(𝑝−1) (A.32)

where < · > is a diagonal operator and the derivatives of the nodal moments were computed in654

Eq. (A.22). All other components are given in previous derivations of the SA of the other functionals.655

Appendix B. Implementation656

We solve the optimization problem using a gradient based algorithm due to its efficiency in657

dealing with large number of design variables. Specifically, the MMA algorithm [36] which is658

common algorithm in structural optimization. However, a successful optimization requires also659

several implementational techniques which are described in the following sub-sections together with660

some related considerations. Thereafter, we summarise all the geometrical data that is used in the661

examples that are presented in this study.662

Appendix B.1. Convergence Criteria663

The basic convergence criterion is related to the change in the objective function. Because the664

objective function might have noisy behavior, we consider the average change in the objective function665

over the previous 𝑁 𝑓 0 iteration. We define a cumulative convergence parameter 𝑓0𝑐 that is promoted666

each iteration that the change in average objective function is less than 𝑓 ∗0𝑐 and demoted otherwise.667

The objective function is converged when the cumulative convergence parameter is equal to 𝑓0𝑐𝑖.668

Additionally, we require that at convergence the solution is feasible, such that the maximum of all669

constraints is less than 𝑓 ∗ = 0.01670

Appendix B.2. Dynamic Move Limits671

It was observed that the optimization may have oscillatory behavior of the design variables, and672

as a result the objective function, do not converge. Therefore we implement a dynamic move limit673
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mechanism such that the move limit of an oscillating design variable is tightened and the move limit of674

monotonically behaving design variables gets wider. Thus, each design variable has a stability index675

𝑆𝐼 that is promoted each time that the change in design variable value is the same as in the previous676

iteration and demoted otherwise. The stability index of the 𝑚th design variable at the the 𝑛th iteration677

is given by678

𝑆𝐼𝑛𝑚 = 𝑆𝐼𝑛−1
𝑚 + sign

[(
𝑋𝑛
𝑚 − 𝑋𝑛−1

𝑚

) (
𝑋𝑛−1
𝑚 − 𝑋𝑛−2

𝑚

)]
. (B.1)

Once the stability index of a design variable reaches the positive or negative threshold values, 𝑆𝐼+ and679

𝑆𝐼−, the move limit is updated accordingly as follows680

𝑀𝐿𝑛
𝑚 =



𝑀𝐿𝑛−1
𝑚 𝛼 𝑆𝐼𝑛𝑚 = 𝑆𝐼+

𝑀𝐿𝑛−1
𝑚 𝛼

(
− 𝑆𝐼+

𝑆𝐼−
)

𝑆𝐼𝑛𝑚 = 𝑆𝐼−

𝑀𝐿𝑛−1
𝑚 otherwise

, with 𝛼 > 1. (B.2)

Additionally, it was observed that the oscillations may occur on a larger scale, where the design681

variables behave monotonically with respect the neighboring iterations but the optimization fail to682

converge. In order to deal with this problem we monitor the number of times that the objection683

function crosses the average objective function at a predefined sampling widow of iterations. Thus,684

we define a threshold value for the number of intersections between the average and non-average685

objective functions, beyond which all move limits of all design variables are narrowed down. Herein686

we consider two sampling windows, representing two different scales of iterations, of 10 and 100687

iterations and set the threshold value of intersections to 3 and 10 respectively. Thus, each time that688

any of the threshold values is reached, all move limits narrowed down by factor of 0.9. Finally, we set689

minimum and maximum values for the move limits of 1 × 10−2 and 1 × 10−4, respectively.690

Appendix B.3. Numerical Damping And Continuation Of The Projection Radius691

It was shown in [28] that the numerical performance of optimization of supports location can be692

significantly improved by implementing three techniques presenter therein. Namely: Control of initial693
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design, continuation of the projection radii and numerical damping of the derivatives. In this study we694

implemented the numerical damping and the three stage continuation scheme of the projection radii695

as presented in [28]. The initial design control has not been implemented directly, since the initial696

designs herein are obtained manually and comply with the conditions of the initial control as defined697

in [28].698
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