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Abstract

Reducing concrete consumption is important as part of the global effort of fighting the climate

change, and specifically in concrete flat slabs as these are among the largest cement consumers. In

this study we investigate the sensitivity of flat slabs’ thickness to the column locations and search for

optimal column layouts. We develop an efficient gradient-based optimization of column locations,

that minimizes the slabs’ thickness with constraints on the deflections, moments, and shear forces.

The results show that the columns’ optimal locations are not trivial and that the slab thickness is very

sensitive to the columns’ exact locations. Thus, concrete savings in slabs of up to 20% are possible

with minor modification to traditional layouts of columns, and up to 50% with more pronounced

updates, which emphasizes the importance of early collaboration between architects and engineers.

The results expose the critical trade-off between structural efficiency and architectural freedom and

demonstrate the potential of formal optimization in structural design.

Keywords: Concrete floors, Structural optimization, Columns layout, Structural Engineering

1. Introduction1

Concrete is one of the most highly consumed materials in the world, being the third largest source of2

carbon dioxide emissions [1]. Considering structural elements in buildings, a large portion of concrete3

is used in slabs. In fact, several recent studies investigated the usage of cement in different structural4

components in buildings and infrastructure, and it was shown that slabs hold the highest share of5

cement [2, 3, 4]. Therefore, reducing the volume of concrete in slabs has high potential for reducing6

the environmental burden caused by cement production [4]. Moreover, slabs in buildings contribute7

significantly to the mass of the structure, and consequently to the gravitational and earthquake loads8

that the building must withstand. Thus, reducing the slabs’ mass will lead to further concrete savings9

in other structural elements, such as columns and foundations.10

Structural optimization is a design approach where a structural design problem is formulated as a11

constrained minimization problem and solved with mathematical programming tools [5]. It has been12

shown as an effective design tool in many branches of engineering that often leads to significant savings13
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in material and improvements in performance [6, 7]. Thus, structural optimization is a promising14

design approach to reduce the environmental impact of concrete structures [4, 8, 9].15

Optimization of concrete floor systems where the column locations are fixed, is the subject of many16

studies, aiming to minimize objective functions such as material consumption, cost, and environmental17

footprint. To name a few, Varaee and Ahmadi-Nedushan [10] minimized the cost of uni-directional18

flat plates with a single span, whereas cost minimization of flat plates with arbitrary shapes can be19

found in [11]. Cost optimization of a waffle slab was presented by Olawale et al. [12], who formulated20

a compact geometrical parametrization and therefore used a Genetic Algorithm (GA) for solving the21

optimization. Richer parametrization, that allows the shape of the ribs to vary was recently presented22

by Ismail and Mueller [13]. Some papers proposed optimization methods that consider multiple23

options for the floor structural system, for example [14].24

The layout of columns, and more generally the layout of supports, significantly affects the structural25

response of plates. Therefore, optimizing the locations of the supporting elements is an effective way of26

reducing the environmental footprint of concrete slabs [15, 16]. In an early paper, the authors minimize27

the cost of a rectangular flat plate by optimizing a comprehensive set of parameters, including the28

span lengths [17]. Therein, a two-step framework is presented where the floor is optimized using29

GA for given span lengths, which are then updated following a heuristic scheme. A more general30

rectilinear flat plate was considered in Nimtawat and Nanakorn [18], where the layout of orthogonal31

beams supporting a flat slab was optimized, for a given layout of columns and general rectilinear floor32

geometries. In this study, the maximal span is prescribed inherently by the design space, where the33

total length of the beams was minimized using GA. A rectilinear floor was also presented in Shaw34

et al. [19], where the authors used GA to optimize the layout of prefabricated slab elements and the35

supporting columns. In a more recent study, the authors use Ant Colony Optimization to optimize the36

layout of an orthogonal-supported rectilinear building [20]. Additionally, the floor plan is optimized37

with a constraint on the total floor area. The objective function includes the cost of the frames and the38

slabs, and the eccentricity between the mass- and the rigidity- centers. Recently, Building Information39

Modelling (BIM) was coupled with Finite Element (FE) analysis and GA to create a framework for40

preliminary design of concrete structures, including spacing between column grid-lines [15]. In41

another recent study, the authors use Monte Carlo method to find the optimal locations of supports of42

concrete plates, minimizing the strain energy, reinforcement steel and maximal deflection [21].43

All studies that were mentioned so far, and most of the available literature that discusses optimiza-44

tion of concrete floor systems, adopts meta-heuristic and zero-order optimization algorithms, which45

allow to cope with the non-differentiable and discontinuous constraints, but also becomes very expen-46

sive computationally in high dimensional optimization [22]. Therefore, the design space includes a47
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small number of design variables, restricting the optimization to regular layouts of columns or to a48

limited number of columns.49

Gradient-based optimization algorithms are more likely to converge to local minima than meta-50

heuristic algorithms, but offer superior numerical efficiency and therefore were also considered in51

many studies. In a straightforward approach for optimization of supports’ locations, the coordinates52

of the supported nodes are being optimized [23, 24]. This approach requires constant remeshing and53

control over the FE mesh, and therefore is numerically expensive and may encounter stability issues.54

Another approach, that uses a SIMP-like parametrization, was proposed by Buhl [25]. Mathematical55

continuity is obtained by adding springs to all nodes and assigning penalized topological design56

variables to each one of the springs. Thus, by adding a constraint on the sum of the topological design57

variables, the most effective springs remain, designating the optimal locations. This approach was58

adopted in several studies, for example Jihong and Weihong [26], Denli and Sun [27], and recently59

used by Meng et al. [28] to minimize the compliance of plate roof structures. Another recent paper60

presents the stiffness projection method for support location optimization, which is both numerically61

efficient and mesh-independent, and therefore much less prone to convergence to local minima than62

the other gradient-based approaches [29]. Similarly to Meng et al. [28], the formulation there includes63

only compliance minimization and therefore does not consider the major requirements for the design64

of concrete slabs, e.g. bending moments, shear forces and deflections.65

From the discussion above it is apparent that existing studies on column layout optimization of66

concrete floors were using meta-heuristic algorithms, mainly GA. As a result, the design space is67

limited to a small number of design variables, and therefore the existing methods focus on a regular68

grid of columns and simple floor plans. On the other hand, studies that used efficient gradient-based69

algorithms, which result in a rich design space, consider only global structural performance and lack70

the necessary constraints for the structural design of concrete floors.71

In this study we aim to fill this gap by proposing a gradient-based optimization for the layout of the72

columns in floors with arbitrary shapes, considering the major design requirements of concrete plates.73

Thereafter, we take advantage of the proposed explicit, efficient, and geometrically free optimization74

method to investigate the sensitivity of the plate thickness to the locations of columns.75

Specifically, we adopt the stiffness projection method, that was presented in the authors’ previous76

work [29], and extend it significantly by adding deflection, punching shear, and bending moment77

constraints, as well as explicitly minimizing the concrete volume and adding the plate thickness to the78

design space. As a result, the columns are not restricted to any location or pattern, which gives rise to79

non-trivial layouts and significant reduction in concrete mass. As expected, there is a clear trade-off80

between concrete volume and the architectural design freedom. Less expected is how significant are81
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the concrete savings when only slight changes are made to the column locations, imposing only a82

minor compromise on the architectural freedom. Thus, this study demonstrates the importance of83

close collaboration between structural engineers and architects from the preliminary design stages,84

when the column locations are determined.85

The remainder of this paper is arranged as follows. In the next section we briefly present the86

mathematical model, thereafter in Section 3 we discuss the optimization formulation extensively. In87

Section 4 we present three numerical examples that are followed by a brief discussion and some88

concluding remarks in Section 5. The paper has two appendices: The first presents the analytical89

sensitivity analysis and the second provides some details about the implementation of the optimization90

method.91

2. Mathematical model92

In structural optimization, the mathematical model is a structural model that predicts the structural93

response to a given set of loads for a given set of parameters, including the design parameters. In the94

context of the current study, the structural model is a plate model where the supports locations and the95

thickness may vary throughout the optimization. We note that the mathematical model that we use in96

the current study was already presented and discussed extensively in our previous work [29]. Herein97

the mathematical model is described briefly for completeness.98

The slabs are modeled with plate finite elements using Mindlin plate theory [30, 31]. Following99

common practice in the analysis of concrete slabs, we assume small displacements and strains as well100

as linear elastic behavior of the concrete. Thus, the floor is modeled with 4-noded plate elements with101

mixed interpolation, that are known to be accurate and insensitive to shear locking [32].102

Since we optimize the locations of the columns, the boundary conditions of the slab change103

throughout the optimization. Generally, this class of problems suffers from several difficulties: 1)104

Possible discontinuity of the design space; 2) High computational cost if remeshing is used; and 3)105

Tendency to converge to poor local optima. Therefore, in this study we use the stiffness projection106

method that was presented in our previous work to overcome these challenges [29].107

As the name suggests, the basic idea is to project the stiffness of the columns upon the plate’s FE108

mesh instead of modeling the columns explicitly, which results in a certain level of approximation.109

However, when compared to models with compatible meshes and precise column locations, the110

relative error in the structural response is in the order of 1×10−3, which is acceptable in the context of111

optimization. Thus, all nodes within a circular projection area Ω𝑖 defined by a projection radius of 𝜂𝑖,112

have added nodal stiffness. This added stiffness equals to the column’s stiffness matrix multiplied by113

a weight factor 𝑤𝑖 𝑗 that relates the 𝑖th column with the 𝑗 th node. Thereafter, the added nodal stiffness114
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matrices are assembled into a global equivalent stiffness matrix of the 𝑖th column115

K𝑐𝑝,𝑖 =
∑︁
Ω𝑖

𝑤𝑖 𝑗K𝑐,𝑖 with Ω𝑖 =
{
𝑗 |𝑟𝑖 𝑗 ≤ 𝜂

}
. (1)

In the above expression, K𝑐𝑝,𝑖 and K𝑐,𝑖 are the 𝑖th column equivalent and nominal stiffness matrices;116

𝑟𝑖 𝑗 is the distance between the 𝑖th column and the 𝑗 th node; and the sum operator represents assembly117

according the degrees of freedom of the model. Because we use gradient based optimization in this118

study, all functions have to be differentiable and therefore we use a smooth radial super-Gaussian119

function for the projection weight factors120

𝑤̃𝑖 𝑗 = 𝑤̃
(
𝑟𝑖 𝑗

)
= exp

(
−0.5

(
𝑟𝑖 𝑗

𝜂

)2𝛽
)
, (2)

where 𝛽 is a parameter that controls the sharpness of the transition across the boundary of the projection121

area. This means that mathematically the stiffness of any column is projected onto all nodes of the FE122

mesh, with practically zero projection weight outside the desired projection area. To ensure that no123

excess stiffness is generated by the projection, we normalize the projection weights124

𝑤𝑖 𝑗 =
𝑤̃𝑖 𝑗∑
𝑘 𝑤̃𝑖𝑘

with 𝑘 = [1 . . . 𝑁𝑛] , (3)

where 𝑁𝑛 is the total number of nodes. After the equivalent stiffness matrices of all columns have125

been computed, they are added to the plate’s stiffness matrix K𝑝, which results in the stiffness matrix126

of the supported plate, K.127

3. Optimization problem formulation128

In this section, we rely on the projection-based parameterization introduced in [29] and extend129

the formulation significantly, such that a design-oriented problem formulation is defined. Thus, we130

minimize the concrete volume and consider the major service and design limit state requirements.131

Arranging the optimization problem into standard form, we obtain132
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minimize
X

𝑓0 = 𝑉

s.t. 𝑓1 =
𝛿

𝛿∗
− 1 ≤ 0

𝑓2 =
𝜎̃𝑡𝑠

𝜎̃∗
𝑡𝑠

− 1 ≤ 0 (4)

𝑓3 =
𝜇̃

𝜇̃∗
− 1 ≤ 0

X̃𝑚𝑖𝑛 ≤ X̃ ≤ X̃𝑚𝑎𝑥

with: Kus = fs

Kud = fd.

In the formulation above: 𝑓1 is the deflection constraint; 𝑓2 is the shear stress constraint; and 𝑓3 is

the bending moment constraint. Another set of constraints defines the physical design space, and the

equilibrium equations are considered in a nested configuration. Although the formulation is general

and any number of load cases can be accommodated, in this study all examples have only two different

load cases with uniformly distributed loads that correspond to service and design limit states. The

service limit state and the design limit state load vectors, f𝑠 and f𝑑 , are given by
f𝑠 = g + Δg + q

f𝑑 = 1.4 (g + Δg) + 1.6q
,

where g, Δg and q are the nodal self weight, dead load, and live load vectors, respectively.133

We note that including pattern loading between different bays will result in a more accurate134

representation of the expected loads on the floor. However, applying pattern loading requires automatic135

pattern recognition as the columns change their location throughout the optimization. This is not a136

trivial task and is beyond the scope of this study. Nevertheless, the comparison between the optimized137

and the reference designs is fair since all cases are loaded identically. From the perspective of the138

optimized column locations, uniform loading and pattern loading should result in very similar column139

layout, since different load patterns balance each other.140

The plate forces and moments are obtained in design limit state by computing141

Ŝ = DBu𝑑 , (5)

where Ŝ is a vector with the plate forces and moments evaluated at the Gauss points, D is the plate’s142

constitutive matrix, and B is a differentiation matrix. The nodal forces and moments are computed143

using the SPR technique [33]144

S =
{
M𝑇

𝑥𝑥 M𝑇
𝑦𝑦 M𝑇

𝑥𝑦 𝝈𝑇
𝑥𝑧 𝝈𝑇

𝑦𝑧

}𝑇
= W𝑇 Ŝ, (6)
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where S is a vector with the nodal bending moments and transverse shear forces, and W is a constant145

transformation matrix. Finally, X is the normalized mathematical design vector, whereas X̃ is the146

physical design vector that holds the actual design parameters that we wish to optimize.147

3.1. Design Space148

The purpose of the optimization is to minimize the consumed concrete by optimally locating the149

columns and finding the corresponding minimal thickness of the slab. Thus, for 𝑁𝑐𝑜𝑙 initially defined150

number of columns, there are 𝑁𝑑𝑣 = 2𝑁𝑐𝑜𝑙 + 1 design variables, which we arrange in a physical design151

variables vector152

X̃𝑇 =
[
x𝑇𝑐 , y𝑇𝑐 , ℎ

]
, (7)

where x𝑐 and y𝑐 are vectors with the 𝑥 and 𝑦 coordinates of all columns and ℎ is the thickness of153

the slab. We note that a possible extension of this work could include spatial variation of ℎ that can154

lead to further volume reduction, at the price of more complicated construction. The gradient-based155

approach then becomes mandatory, because the number of design variables increases drastically.156

The final set of constraints in Eq. (4) are the limits on the physical design variables. In the case

of the thickness, the limits are straightforward: ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥 , where ℎ𝑚𝑖𝑛 arises from building

codes and regulations, and ℎ𝑚𝑎𝑥 is an architectural constraint. However, the limits on the variables

that govern column locations are design-dependent for floors with arbitrary non-convex shapes. In

this study, we require that at each design iteration, the updated location of a column will remain in the

circle defined by the current location of the column and the shortest distance to the boundary, which

includes both the contour of the floor and the openings. Therefore, for a column with shortest distance

of 𝑑𝑚𝑖𝑛, the design limits in each direction are conservatively set to 𝑑𝑚𝑖𝑛

2 , which results in the following

limits [
x𝑐,𝑚𝑎𝑥 , x𝑐,𝑚𝑖𝑛

]
= x𝑐 ±

1
2

d𝑚𝑖𝑛 (x𝑐, y𝑐) (8)[
y𝑐,𝑚𝑎𝑥 , y𝑐,𝑚𝑖𝑛

]
= y𝑐 ±

1
2

d𝑚𝑖𝑛 (x𝑐, y𝑐) , (9)

where d𝑚𝑖𝑛 is a vector with the shortest distance from all columns to the boundary of floor.157

To compute 𝑑𝑚𝑖𝑛 we approximate the floor boundaries with polygons, and then place sampling158

points (SP) along each side of the polygons with distance of roughly 0.1[𝑚] between adjacent SP. As159

a result, each vertex of the polygons has two SP. Thereafter we compute the distance from the column160

to all SP and select the two closest SP to the column. If both SP have the same location, it means that161

the column is closest to a vertex of the polygon and 𝑑𝑚𝑖𝑛 is equal to this distance. Otherwise, 𝑑𝑚𝑖𝑛 is162

equal to the shortest distance to the line connecting both SP.163
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Moreover, we use the derivatives of the shortest distance with respect to the column coordinates164

to identify the direction to the nearest boundary. Thus, considering for example the 𝑥 coordinate of165

a column, a positive derivative indicates that the closest SP is somewhere to the left of the column166

location. Therefore, the design limit to the right may be larger and is defined by the maximal move167

limit value, which is discussed in Appendix B.2. A similar logic applies also to a negative sign of the168

derivative and when considering the 𝑦 coordinate.169

We note that in a case of close vicinity of a column to an ear vertex of the boundary polygon, the170

proposed strategy may allow the column to exit the domain. However, since the columns naturally171

prefer to remain strictly within the floor area, setting small enough distance between the SP resolves172

any related issues.173

As mentioned, we distinguish between the physical design variables, which refers to the actual pa-174

rameters that we want to find, and the mathematical design variables, that we solve in the optimization175

problem176

X𝑇 =
[
r𝑇𝑐 , s𝑇𝑐 , 𝜔

]
. (10)

The mathematical design variables are normalized and therefore linearly related to the physical design177

variables178

X = NX̃, (11)

where N is the diagonal normalization matrix. The entries on the diagonal of N are 1/𝐵𝑥 , 1/𝐵𝑦, or179

1/(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) for the column locations in 𝑥 and 𝑦 directions, and the slab thickness, respectively.180

This normalization generally results in more stable optimization and conveniently separates the opti-181

mization procedure from the specific geometrical parameters of the problem being solved. The limits182

on the mathematical design variables are obtained by normalization of the physical design limits183

0 ≤ x𝑐,𝑚𝑖𝑛
𝐵𝑥

≤ r𝑐 ≤
x𝑐,𝑚𝑎𝑥

𝐵𝑥

≤ 1, 0 ≤ y𝑐,𝑚𝑖𝑛
𝐵𝑦

≤ s𝑐 ≤
y𝑐,𝑚𝑎𝑥

𝐵𝑦

≤ 1, 0 ≤ 𝜔 ≤ 1. (12)

3.2. Volume Objective184

As stated, we wish to minimize the concrete consumption, and therefore minimize the concrete185

volume. We measure the concrete volume explicitly by summing the volumes of the individual finite186

elements187

𝑉 =

𝑁ℓ∑︁
ℓ=1

ℎ𝐴ℓ, (13)

where 𝐴ℓ is the area of the ℓth finite element, and 𝑁ℓ is the total number of elements in the FE mesh.188

3.3. Deflection Constraint189

Many standards define the allowed deflection in concrete elements as a fraction of their span. In190

general, floors have multiple spans, each possibly with different length, and therefore different areas191
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of a floor might have different allowed deflection. To successfully impose deflection constraints we192

define the relative deflection at each node 𝛿 𝑗 as the ratio between the actual elastic downward deflection193

in service limit state and the allowed deflection at this node194

𝛿 𝑗 =
𝑤 𝑗

𝑤𝐴, 𝑗

, (14)

where 𝑤 𝑗 and 𝑤𝐴, 𝑗 are the actual and allowed deflections in 𝑧 direction at the 𝑗 th node, respectively.195

The constraint aggregates all nodal relative deflections by considering the maximal relative deflection,196

which is approximated using a 𝑝-norm function197

𝛿 =
©­«
𝑁𝑛∑︁
𝑗=1

𝛿
𝑝

𝑗

ª®¬
1
𝑝

. (15)

In the equation above, 𝛿 is the approximate maximal relative deflection, 𝑁𝑛 is total number of nodes198

in the FE mesh, and 𝑝 is an even number allowing to account for both positive (upward) and negative199

(downward) deflections. Moreover, since the deflections are quite smooth, we use a fairly high power200

value of 𝑝 = 30. This approximation overestimates the real maximum, 𝛿 > max (𝜹), which may lead201

to undesired conservativeness. Therefore, the threshold value of the constraint is dynamically updated202

as follows203

𝛿∗ =
𝛿

max (𝜹) 𝛿
∗, (16)

every 𝑁𝐼𝑐 = 5 iterations, where the nominal required relative deflection is 𝛿∗ = 1.0.204

The definition of the allowed deflection follows the recommendations in Eurocode 2 (EC2) [34],205

where the long term deflection should be less than 1
250 of the span length. Thus, assuming a long term206

deflection coefficient of 3.0, the allowed deflection at node 𝑗 is207

𝑤𝐴, 𝑗 =
𝐿𝑒𝑞, 𝑗

750
, (17)

where 𝐿𝑒𝑞, 𝑗 is the equivalent span length at this node. However, since the column locations change208

in every optimization iteration, the equivalent spans lengths change as well. As a result, both the209

deflection itself and the allowed deflection at each node are design dependent, which introduces a210

unique challenge for optimization of irregular column layouts.211

As in [35], we wish to define the equivalent span length as the diameter of the maximal inscribed212

circle in a polygon defined by the surrounding columns at each point. This diameter can be approxi-213

mated as 𝑑 =
√

2𝑟𝑚𝑖𝑛, where 𝑟𝑚𝑖𝑛 is the distance to the closest column. Thus, we define the equivalent214

span length at any node 𝑗 as follows,215

𝐿𝑒𝑞, 𝑗 = 𝑟0 +
√

2𝑟𝑚𝑖𝑛, 𝑗 with 𝑟𝑚𝑖𝑛, 𝑗 = min
𝑖

(
𝑟𝑖 𝑗

)
, 𝑖 ∈ [1, . . . , 𝑁𝑐𝑜𝑙] , (18)
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where 𝑟𝑚𝑖𝑛, 𝑗 is the distance from the 𝑗 th node to the closest column and 𝑟0 is a constant value that216

we add to allow some minimal deflection at the supports. This allowed deflection at the columns is217

necessary to accommodate for the inevitable deflection at the supports, as the supports have finite218

stiffness, as discussed in Section 2. We chose the value 𝑟0 = 0.7[𝑚], which allows an elastic deflection219

at the supports of approximately 1 × 10−3 [𝑚]. Again, we approximate the non-differentiable distance220

to the closest column in Eq. (18) with a 𝑝-norm function221

𝑟𝑚𝑖𝑛, 𝑗 ≈
(
𝑁𝑐𝑜𝑙∑︁
𝑖

𝑟
−𝑝
𝑖 𝑗

)− 1
𝑝

. (19)

3.4. Shear Constraint222

Shear in slabs, or punching shear, is a key consideration in the design of concrete slabs and hence is223

added to the formulation. We define a sufficient thickness of the slab such that the punching resistance224

at each point can be provided by steel details only, without further thickening. Thus, following the225

recommendations in EC2, we will require for each node 𝑗 that226 
𝜎𝑥𝑧, 𝑗 ≤ 𝜈𝑅𝑑,𝑚𝑎𝑥

𝜎𝑦𝑧, 𝑗 ≤ 𝜈𝑅𝑑,𝑚𝑎𝑥

with 𝜈𝑅𝑑,𝑚𝑎𝑥 = 0.4 · 0.6
[
1 − 𝑓𝑐𝑘

250

]
𝑓𝑐𝑑 ≈ 0.2 𝑓𝑐𝑑 . (20)

In the expression above, 𝜎𝑥𝑧, 𝑗 and 𝜎𝑦𝑧, 𝑗 are the plate transverse shear stresses acting at node 𝑗 in227

design limit state, 𝜈𝑅𝑑,𝑚𝑎𝑥 is the maximal allowed shear stress, 𝑓𝑐𝑘 is the characteristic concrete228

strength (in [𝑀𝑝𝑎]) and 𝑓𝑐𝑑 is the compression design strength of the concrete. We note that we229

omit the eccentricity parameter 𝛽 suggested by EC2, because the shear stresses are computed directly230

and thus the actual structural response is already taken into account. Similarly to the deflection231

constraint, we constrain the maximal shear stress rather than having separate nodal constraints. Thus,232

the approximate maximal shear stress is233

𝜎̃𝑡𝑠 =
©­«

2𝑁𝑛∑︁
𝑗=1

𝜎
𝑝

𝑡𝑠, 𝑗

ª®¬
1
𝑝

with 𝝈𝑡𝑠 =


𝝈𝑥𝑧

𝝈𝑦𝑧

 . (21)

We note that the shear may be both positive and negative and therefore the value of the power 𝑝 should234

be even. The threshold is updated in the same way as in the deflection constraint,235

𝜎̃∗
𝑡𝑠 =

𝜎̃𝑡𝑠

max(𝝈𝑡𝑠)
𝜈𝑅𝑑,𝑚𝑎𝑥 . (22)

For convenient presentation of the results, we define the relative shear stress as the ratio between the236

nodal shear stress and the maximal allowed shear stress237

𝝉𝑥𝑧 =
𝝈𝑥𝑧

𝜈𝑅𝑑,𝑚𝑎𝑥

, 𝝉𝑦𝑧 =
𝝈𝑦𝑧

𝜈𝑅𝑑,𝑚𝑎𝑥

. (23)
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3.5. Bending Moment Constraint238

Another important design consideration in concrete elements is the bending moment capacity. In239

slabs, it is common that no compressive steel is needed. Thus, in this study we aim for structural240

depth that will subsequently allow a design with tensile steel only. Following recommendations in241

many design codes, such as EC2, we assume a simplified rectangular stress block with maximal242

height of 0.4𝑑, where 𝑑 = ℎ − 𝑑𝑠 is the effective structural depth and 𝑑𝑠 is the concrete cover over243

the reinforcement bars. Thus, the maximal bending capacity per unit width without compressive244

reinforcement is given by245

𝑀𝑐 = 0.32 (ℎ − 𝑑𝑠)2 𝑓𝑐𝑑 . (24)

We note that this approximation provides good agreement for 𝑓𝑐𝑑 ≤ 28[𝑀𝑝𝑎], especially as the246

moments approach 𝑀𝑐.247

Following common practice, we take into account the torsion moments in the slab by considering

the Wood and Armer (W&A) moments [36]. Thus, we combine the pure bending moments with the

torsional moments to create the design moments

𝑀𝑟𝑥,𝑚𝑎𝑥 = 𝑀𝑥𝑥 +
��𝑀𝑥𝑦

��
𝑀𝑟𝑥,𝑚𝑖𝑛 = 𝑀𝑥𝑥 −

��𝑀𝑥𝑦

��
𝑀𝑟𝑦,𝑚𝑎𝑥 = 𝑀𝑦𝑦 +

��𝑀𝑥𝑦

��
𝑀𝑟𝑦,𝑚𝑖𝑛 = 𝑀𝑦𝑦 −

��𝑀𝑥𝑦

�� ,
where 𝑀𝑥𝑥 , 𝑀𝑦𝑦, 𝑀𝑥𝑦 are the plate moments in design limit state. For convenient presentation of the248

bending of the plate, we define the relative moment as the ratio between the nodal moments and the249

moments capacities. Thus, the relative 𝑀𝑟𝑥,𝑚𝑎𝑥 moment at any node 𝑗 is250

𝜇𝑟𝑥,𝑚𝑎𝑥, 𝑗 =
𝑀𝑟𝑥,𝑚𝑎𝑥, 𝑗

𝑀𝑐

, (25)

and similarly for the other moments. In order to constrain all moments at all nodes, we constrain the251

approximate maximum relative moment252

𝜇̃ =
©­«

4𝑁𝑛∑︁
𝑗=1

𝜇
𝑝

𝑗

ª®¬
1
𝑝

with 𝝁 =



𝝁𝑟𝑥,𝑚𝑎𝑥

𝝁𝑟𝑥,𝑚𝑖𝑛

𝝁𝑟𝑦,𝑚𝑎𝑥

𝝁𝑟𝑦,𝑚𝑖𝑛


. (26)

Finally, the threshold value of the moment constraint is updated similarly to the shear and deflection253

constraints, with normalized desired threshold value 𝜇∗ = 1254

𝜇̃∗ =
𝜇̃

max(𝝁) . (27)
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3.6. Optimization Sequence255

It was observed during our numerical experiments that often only the displacement constraint is256

active. Thus, in many cases the bending moment constraint and the shear constraint may be omitted.257

This results in much faster optimization because it spares computing u𝑑 as well as the corresponding258

adjoint vectors, each requires solving a set of equilibrium equations which is the most expensive259

computational task. Obviously, one cannot know in advance whether the design limit state constraints260

will be active. Therefore, in this study we implemented a hierarchical optimization sequence. Initially,261

we optimize with the displacement constraint only and check upon convergence the resultant moment262

and shear distribution. In a case that both the moment and shear values are within the desired limits,263

the optimized design is considered as the solution of the optimization problem. Otherwise, we update264

the optimized design by another optimization. This time, all constraints are included and the initial265

design is the optimized design from the previous optimization.266

3.7. Sensitivity analysis267

In this study we use gradient-based optimization that allows to effectively cope with multidimen-268

sional optimization, and specifically we adopt the MMA algorithm [37]. Therefore, the derivatives of269

all functionals in Eq. (4) with respect to all design variables should be derived, a process that is often270

referred to as Sensitivity Analysis (SA). The SA of a functional 𝑓𝑖 with respect to the mathematical271

design variables is given by272

𝜕 𝑓𝑖

𝜕X
=
𝜕 𝑓𝑖

𝜕X̃
N−1 (28)

where N is the normalization matrix that was introduced in Section 3.1. The term 𝜕 𝑓𝑖

𝜕X̃ represents the273

derivatives with respect to the physical design variables, as presented in detail in Appendix A.274

4. Numerical examples275

In this section we demonstrate the ability of the proposed method to reduce concrete volume in slabs276

by optimizing the column locations. Additionally, the results presented here demonstrate the critical277

trade-off between the structural efficiency and the architectural cost and emphasize the importance278

of collaboration between architects and engineers at early stages of the project. The first example279

is a fairly simple design problem that validates the proposed optimization method and illustrates the280

sensitivity of the slab thickness to the exact column location. The other two examples are inspired by281

real projects with more complicated geometries and demonstrate the ability of the proposed method282

to contribute to concrete savings in complex, real-life projects.283
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Table 1. Material properties and other design parameters used in the current study

symbol value units description

𝑑𝑠 0.025 [m] concrete cover

𝑓𝑐𝑑 17.40 [𝑀𝑃𝑎] concrete compression design strength

𝐸 30000 [𝑀𝑃𝑎] concrete modulus of elasticity

𝜈 0.3 [-] concrete Poisson’s ratio

𝛾 5/6 [-] shear strain correction factor

Δ𝑔 4 [𝑘𝑁/𝑚2] dead load

𝑞 1.5 [𝑘𝑁/𝑚2] live load

𝛾𝑐 25 [𝑘𝑁/𝑚3] concrete weight density

4.1. Example 1: Single Column Optimization284

Considering structural design of residential apartments, it is often that most of the columns and285

other supporting elements are predefined at the early stages of the design according to architectural286

considerations. However, some freedom of the layout of the supporting elements remains also in the287

later stages of the design when the structural considerations are added. Thus, in this example we wish288

to present the optimization of a single column location in an apartment located in a typical residential289

tower. The floor and all dimensions are plotted in Figure 1a, where the columns have square cross290

section with 0.35[𝑚] side lengths. In addition to the column being optimized, the boundary conditions291

of the floor include seven other columns along the contour of the floor, symmetry boundary conditions292

along the inner edges, and a portion of an internal core with wall thickness of 0.25[𝑚], that is modeled293

with nodal pinned supports. The floor is discretized with 3800 elements and is subjected to additional294

external loads as listen in Table 1. The design space includes the column location, which can be295

anywhere within the apartment as marked by the hexagonal pattern in Figure 1a and represented by the296

coordinates 𝑥𝑐 and 𝑦𝑐. Additionally, the thickness of the slab ℎ is included in the design space, which297

may vary between minimum and maximum values ℎ𝑚𝑖𝑛 = 0.05[𝑚] and ℎ𝑚𝑎𝑥 = 0.5[𝑚], respectively.298

After solving the optimization problem of Eq. (4), the optimized column location is (𝑥𝑐, 𝑦𝑐) ≈299

(10.3, 5.6) [𝑚] and the corresponding slab thickness is ℎ = 0.228[𝑚], which leads to concrete volume300

of 𝑉 = 49.9
[
𝑚3] . The optimized column location as well as the resultant deflection 𝑤, and the301

relative deflection 𝛿, are presented in Figures 1b and 1c, respectively. In these figures, the filled gray302

square is the optimized column, the hollow gray squares are the non-design columns and the gray line303

represents the supporting core walls.304

It is apparent from the deflection maps that the optimization created three distinct spans within305
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(a) (b) (c)

Fig. 1. Problem setup for the single column optimization problem and resultant deflections maps for the optimized column

location. (a) A portion of a floor plan representing a corner apartment with a single column to be optimally located.

Other columns along the outer boundaries and a section of the internal core are predefined. All dimension are in [cm] (b)

Deflection map 𝑤 [𝑚], (c) relative deflection 𝛿. It can be seen that the deflection constraint is active and presents a ”fully

deflected” behavior.

the slab. Inspecting Figure 1c, it is evident that the maximal deflection at all three spans reaches306

the maximal allowed deflection and thus utilizing effectively the feasible space. In a theoretical fully307

utilized feasible space, the deflection at every point would be equal to the allowed deflection and308

the relative deflection would be equal to one. Thus, the mean relative deflection may indicate the309

effectiveness of the design, in this case we have 𝛿 = 0.516.310

As discussed in Section 3.6, after optimizing with the deflection constraint only, we check the311

optimized design for the design limit state requirements, namely: shear and bending resistance.312

Figure 2 presents the normalized W&A moments distributions and the normalized shear forces. Thus,313

the value one (minus one), means that the positive (negative) moment or shear at the considered314

point reaches the allowed value. The maximal and minimal normalized moments are 𝜇𝑚𝑎𝑥 = 0.3646315

and 𝜇𝑚𝑖𝑛 = −0.8706, indicating that the moments are strictly within the allowable range although no316

constraint on the moment was imposed. This is expected in regular flat slabs and justifies the adopted317

optimization sequence. The normalized shear stress almost reaches the allowable shear stress value318

with 𝜏𝑡𝑠,𝑚𝑎𝑥 = 0.985. In fact, in one node the shear stress exceeds the allowable value. However, this319

node has a rigid support representing the core, and therefore the shear stresses are overestimated and320

can be disregarded. Thus, although a shear constraint has not been added, the shear stresses remain321

within the allowable limits.322

Once the optimized column location has been found, we verify it by manually investigating the323

design space. Thus, we generate an optimal surface by finding the minimum required slab thickness324

for every column location. We discretize the design space of the column location on a grid with 0.3[𝑚]325

steps and perform the optimization at each such point by fixing the column location and allowing only326

the slab thickness to vary throughout the optimization. Figure 3a presents the optimal surface, where327
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Normalized moments and shear forces in design limit state. (a) 𝜇𝑟 𝑥,𝑚𝑎𝑥 , (b) 𝜇𝑟 𝑥,𝑚𝑖𝑛, (c) 𝜇𝑟 𝑦,𝑚𝑎𝑥 , (d) 𝜇𝑟 𝑦,𝑚𝑖𝑛,

(e) 𝜏𝑥𝑧 , (f) 𝜏𝑦𝑧 . As expected, the bending moments are smaller than the moment capacity with 𝜇𝑚𝑎𝑥 = 0.3646 and

𝜇𝑚𝑖𝑛 = −0.8706 for the positive and negative moments, respectively. The shear stress nearly reaches the allowable values

with maximal value of 𝜏𝑡𝑠,𝑚𝑎𝑥 = 0.985.

the color of each pixel represents the required slab thickness for a column located at the centre of the328

pixel. The filled gray square is the optimized column location as obtained from the straightforward329

optimization and it is evident that it is located at the optimum. In fact, the minimal required thickness330

obtained by the optimization is slightly smaller than the minimal value obtained by the design space331

exploration, probably due to the continuous nature of the design variables [𝑥𝑐, 𝑦𝑐].332

In order to quantify the obtained concrete savings by the optimization, a reference design is needed.333

Thus, we performed a poll among 26 practicing structural engineers and asked them where would they334

locate the column, ignoring any architectural considerations. The black crosses in Figure 3a represent335

the answers received from the participants of the poll, where the numbers indicate multiple answers336

for a certain location. It can be seen that most participants located the column approximately at the337

intersection of the imaginary (dotted) grid lines, trying to reduce deflections of the main span. These338

results show that the optimal column location is not trivial, even in a simple floor geometry. For each339

column location suggested by the participants of the poll, we computed the required slab thickness340

based on the distance to the closest data point on the optimal surface. The results vary between341

ℎ𝑟𝑒 𝑓 ∈ [0.2688, 0.2987] [𝑚] with a mean value of ℎ̄𝑟𝑒 𝑓 = 0.2823[𝑚]. Thus, we can say that the342

concrete consumption saving varies between 0% in the unlikely case that the column was originally343
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(a) (b)

Fig. 3. Investigation of the entire design space of (𝑥𝑐, 𝑦𝑐), each pixel is 0.3 × 0.3 [𝑚]. (a) Required slab thickness ℎ[𝑚]

for each column location with minimal value of ℎ = 0.2322 [𝑚]. The gray filled square represents the formally optimized

column location, which indeed is located at the optimum and corresponds to concrete savings of 23.4%. The black crosses

are the suggested locations for the column, as obtained by 26 practicing structural engineers, and show that the optimal

column location is not trivial. (b) Gradient of the required thickness, representing the local potential for reduction in the

thickness at each point. It can be seen that even small changes in the column location may lead to 10%-15% reduction in

slab thickness.

located at the most efficient location, and 23.8% when considering ℎ̄𝑟𝑒 𝑓 .344

Figure 3b plots the design gradient, which is the local possible reduction of the thickness at each345

point. Considering for example a column located in the red area of the colormap in Figure 3b, the346

slab thickness may be reduced by three centimeters, or about 10%, when shifting the column by 1 [𝑚]347

in the appropriate direction. Thus, the exploration of the design space illustrates the sensitivity of348

the slab thickness to changes in the column location. In other words, even small changes in a single349

column location – that could be acceptable from an architectural standpoint – can reduce the thickness350

of the supported slab by 10%.351

As the design freedom increases, it is expected that the optimization will find better solutions. A352

natural possibility to enrich the design space in our problem is to allow more columns to be optimized.353

Thus, we minimized the volume of the floor again, optimizing the location of two, three and eight (all)354

columns. Figure 4 presents the optimized column layouts and the resultant relative deflection maps.355

As expected, the minimal slab thickness reduces with the increase in the number of columns being356

optimized. Thus, optimizing two, three and eight locations of columns leads to slab thicknesses of357

0.2174[𝑚], 0.1836[𝑚] and 0.1342[𝑚], respectively. These correspond to a maximal reduction of the358

thickness relatively to ℎ̄𝑟𝑒 𝑓 of 23.0%, 35.0% and 52.5%, respectively.359

We note that the increased freedom in the design space comes with an increased challenge from360

the architectural point of view or simply: architectural cost. Thus, the architectural cost refers to all361
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(a) (b) (c)

Fig. 4. Increased richness of the design space leads to greater savings in concrete volume. Color maps present the

relative deflections, the filled gray squares represent optimized columns, other columns remain unchanged throughout the

optimization and are marked with hollow gray squares. (a) Optimizing the locations of two columns, ℎ = 0.2174 [𝑚],

𝑉 = 47.58
[
𝑚3] . (b) Optimizing the locations of three columns, ℎ = 0.1836 [𝑚], 𝑉 = 40.18

[
𝑚3] . (c) Optimizing the

locations of eight columns, ℎ = 0.1342 [𝑚], 𝑉 = 29.37
[
𝑚3] .

necessary modifications in the architectural design due to the change in the column locations, such362

as updating the layout of internal walls. While the optimal single column location probably has very363

low architectural cost, the architectural cost with all columns being optimized is expected to be high.364

Thus, a general trade-off between the concrete savings, or structural efficiency, and the architectural365

cost is expected. An explicit quantification of the architectural cost is not straightforward and is not366

included in the scope of this research. Nevertheless, in the following examples the architectural cost367

will be considered qualitatively and implicitly.368

4.2. Example 2: Irregular Residential Floor369

In the previous section we showed that enriching the design space by considering more columns in370

the optimization, increases the potential concrete savings. In this section, we present an investigation371

of the relation between the design freedom and the potential concrete savings. We approach this issue372

by examining the effect of the maximal allowed modification to the locations of columns, compared373

to a reference configuration – namely, a given architectural plan. We introduce a parameter Δ𝑚𝑎𝑥 that374

defines the maximal allowed change in a column location with respect to the reference design.375

The selected floor plan in this example is inspired by a floor geometry that was presented by376

He et al. [38] in the context of yield line identification. This is an irregular floor in a residential377

building, supported by 19 square columns with side length of 0.35[𝑚] and several walls, as can be378

seen in the general plan in Figure 5a. All geometrical data, including the column locations, is given379

as Supplementary Material to this paper. The thickness of the walls is 0.25[𝑚] and they are modeled380

with nodal pinned supports that are added to all nodes within the projection area of the walls on the FE381

mesh. To ensure that all walls will be modeled, the distance between adjacent nodes of the FE mesh382
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(a) (b) (c)

Fig. 5. Geometry and relative deflection 𝛿 for example 2. (a) A general plan of an irregular floor of a residential building,

with the reference layout of columns, dimensions are in [𝑐𝑚]. (b) Reference column layout with optimized slab thickness

of ℎ = 0.2226[𝑚]. (c) Optimized design with all constraints included. The resultant slab thickness is ℎ = 0.1126[𝑚],

which represents concrete savings of 49.4%.

should be less than the thickness of the walls. Thus, the FE mesh consists of square elements with383

0.2[𝑚] side length, resulting in a total of 9,224 elements. The applied forces and other parameters384

are the same as in the previous example. For convenience, all numerical results discussed herein are385

summarized at the end of this section in Table 2.386

As a reference design, we adopt the column layout presented in [38], and locate the columns at387

the centroids of the columns therein. Thereafter, we obtain the reference slab thickness by optimizing388

only the slab thickness while keeping the column locations fixed. We label this reference design as389

Δ𝑚𝑎𝑥 = 0. The required thickness for the reference design is ℎ𝑟𝑒 𝑓 = 0.2226[𝑚] and the corresponding390

concrete volume is 𝑉𝑟𝑒 𝑓 = 82.15
[
𝑚3] . Figure 5b depicts the relative deflections, whereas the rest of391

the results are summarised in the first row of Table 2. It can be seen that only the deflection constraint392

is active, therefore another optimization with all constraints was not necessary. However, the relative393

deflection in most regions of the slab is less than 1.0, with 𝛿 = 0.376 and one span clearly governing394

the design.395

The optimal column layout is achieved when the columns are free to move. Thus, we include all396

design variables and optimize without any limitation on the design variables (except for the design397

domain boundaries) and label this case as Δ𝑚𝑎𝑥 = ∞. As before, we optimize only with the deflection398

constraint, which results in slab thickness of ℎ∗∞ = 0.1133[𝑚]. However, this time the moment399

and shear stresses exceed the desired values and therefore re-optimization is required, and hence the400

∗ mark. After re-optimizing, all the constraints are satisfied with both the deflection and moment401

constraints being active. The obtained slab thickness is ℎ∞ = 0.1126, which represents substantial402

concrete savings of 49.4%. This thickness is slightly lower than ℎ∗∞, indicating that the optimization403
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with only the deflection constraint converged to a local minimum, which is not unlikely in non-convex404

optimization. Nevertheless, in most cases adding more constraints leads to higher (worse) objective405

function values, as will be apparent in the following.406

It is evident from Figure 5c, which depicts the relative deflections of the optimized design, that407

the deflection in many regions of the slab approaches the allowable deflection, and consequently408

𝛿 = 0.638. Moreover, it can be seen that many of the columns have concentric circles around them,409

indicating that the optimization tries to locate the columns such that the slope of the deformed slab410

will be zero above the columns. This observation is in concurrence with other studies dealing with411

supports optimization, for example [39, 29]. Thus, we can estimate the maximal theoretical mean412

relative deflection, 𝛿𝑚𝑎𝑥 , by considering representative cases of fixed-fixed and cantilever beams,413

which have known analytical deflection curves. Following the reasoning in Section 3.3, the allowed414

deflections are linear functions with zero value at the supports, where the ratio between the actual415

and allowed deflections are the relative deflections. Next, we integrate the relative deflections along416

the beams, and divide by the beam lengths for both cases, which yields 𝛿 � 0.77 and 𝛿 � 0.64,417

respectively. Therefore, we can assume that 𝛿𝑚𝑎𝑥 ∈ [0.64, 0.77].418

Another interesting observation from Figure 5c is that the columns are distributed almost uniformly419

with small differences between bay lengths. The reason for this is that large differences in adjacent420

bay lengths result in non-zero slope of the deflection surface, and therefore are generally not optimal.421

Thus, we expect optimized column layouts to be characterised with relatively uniform distribution,422

which can be used to set a good initial design. Interestingly, since the effect of pattern loading reduces423

with the difference between bay lengths, including pattern loading in the formulation could result in424

larger savings in concrete volume. Therefore, the obtained savings are possibly somewhat on the425

conservative side.426

Next, we investigate how the design space freedom impacts the optimum, by conducting a series427

of optimizations with increasing values of Δ𝑚𝑎𝑥 . Thus, each column is allowed to move only within a428

local box that is centered at the reference location of this column and has side lengths of 2Δ𝑚𝑎𝑥 . We429

begin with Δ𝑚𝑎𝑥 = 0.1[𝑚], which is a very minor adjustment of the column locations and probably has430

very little architectural cost. The optimized slab thickness is ℎ = 0.2109[𝑚] which reflects a reduction431

of 5.3% in concrete volume with respect to the reference design. Again, the deflection constraint is432

the only active constraint and re-optimization is not necessary.433

Increasing Δ𝑚𝑎𝑥 further leads to greater savings in concrete volume, as can be seen in Figure 6434

that depicts the concrete volumes for different values of Δ𝑚𝑎𝑥 . The color maps in Figure 6 display the435

relative deflections for Δ𝑚𝑎𝑥 = {0, 0.5, 3,∞} and it is noticeable that the efficiency, measured by 𝛿,436

increases with the design freedom. Starting from Δ𝑚𝑎𝑥 = 1.1[𝑚] the moment and shear values exceed437
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the desired threshold when optimizing without the design limit state constraints. After re-optimizing,438

the designs meet all constraints and generally have slightly worse objective function value or higher439

concrete volume, as expected. However, for Δ𝑚𝑎𝑥 = 3.0 the re-optimized design is a slab with slightly440

smaller thickness than the thickness obtained with the deflection constraint only, which indicates again441

convergence to a local minimum in the latter case. In Table 2 and in Figure 6, the optimization trials442

that were re-optimized are marked with an asterisk.443

Furthermore, We note that the optimizations with Δ𝑚𝑎𝑥 = 4.0 and Δ𝑚𝑎𝑥 = 5.0 converged to the444

same optimum. A possible explanation for this is the non-convexity of the optimization problem.445

Thus, the optimal solution might have a discrete dependence on the design space freedom. This could446

also explain why the optimal concrete volume that corresponds to Δ𝑚𝑎𝑥 = ∞ is lower than one would447

expect based on the graph in Figure 6.448

Finally, since Δ𝑚𝑎𝑥 can be regarded as a measure of the architectural cost, the curve in Figure 6 can449

be interpreted as the trade-off between the architectural cost and the concrete volume. Interestingly,450

the curve is convex and therefore small increase in the architectural cost with respect to a traditionally451

obtained reference design, may lead to significant reduction in concrete volume. For example, allowing452

Δ𝑚𝑎𝑥 = 0.9 results in almost 30% reduction.453

4.3. Example 3: Rounded Triangular Floor454

The third example that we present is inspired by another floor plan of an actual building that455

was presented in [40] in the context of post-tensioning optimization. This example provides another456

indication for the ability of the proposed method to deal with real-life problems characterized by many457

columns as well as non-convex shapes of floors. Additionally, we will investigate the sensitivity of the458

slab thickness to the exact optimized column location.459

The floor has a triangular shape with rounded corners and has three rectangular openings. The460

boundary conditions of the floor include 19 square columns and a central concrete core with wall461

thickness of 0.35[𝑚]. Accordingly, the plate is modeled with 7,773 square elements with 0.333[𝑚]462

side length. All other parameters are the same as in the previous example. Figure 7a depicts the floor463

plan and some measures, whereas all geometrical data can be found in the Supplementary Material464

section.465

The reference layout of the columns follows the general layout in [40], as shown in Figure 7a. As466

before, we fix the column locations and optimize only the thickness to find the reference thickness.467

Thus, the optimized thickness of the slab is ℎ𝑟𝑒 𝑓 = 0.331[𝑚] and the total volume of the concrete468

is 𝑉𝑟𝑒 𝑓 = 285.81
[
𝑚3] . In Figure 7b we present the relative deflections and it can be seen that the469

deflections at broad areas of the floor are lower than the allowable deflections, yielding 𝛿𝑟𝑒 𝑓 = 0.331.470
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Fig. 6. Optimized concrete volume for different values of Δ𝑚𝑎𝑥 . The steep slope at low values of Δ𝑚𝑎𝑥 indicates

that even a small update of the column layout can significantly affect the concrete volume. The red asterisks represent

infeasible optimization results that were obtained with the deflection constraint only. Increasing the design freedom results

in larger concrete savings that reach 49.4%. The color maps present the distribution of the relative deflection, 𝛿, for

Δ𝑚𝑎𝑥 = {0, 0.5, 3.0,∞}. It is evident that increasing Δ𝑚𝑎𝑥 results in more efficient design with higher 𝛿.
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Table 2. Optimization of the irregular slab with increasing level of design freedom. ∗ Indicates infeasible result obtained

with deflection constraint only.

Δ𝑚𝑎𝑥 [𝑚] ℎ[𝑚] 𝑉
[
𝑚3] concrete

savings max(𝛿) min
𝜇𝑟𝑥,𝑚𝑖𝑛

max
𝜇𝑟𝑥,𝑚𝑎𝑥

min
𝜇𝑟𝑦,𝑚𝑖𝑛

max
𝜇𝑟𝑦,𝑚𝑎𝑥

max
𝜏𝑥𝑧

max
𝜏𝑦𝑧

0 (ref) 0.22263 82.146 - 1 -0.67985 0.3804 -0.70334 0.2245 0.52982 0.75332

0.1 0.21093 77.829 5.3% 0.99999 -0.69394 0.38755 -0.7574 0.23847 0.53367 0.72114

0.3 0.18932 69.856 15.0% 1.0004 -0.78447 0.40755 -0.85335 0.27937 0.52417 0.68032

0.5 0.17493 64.546 21.4% 1.0004 -0.83388 0.39449 -0.89157 0.33781 0.49417 0.69444

0.7 0.16521 60.958 25.8% 1.0005 -0.83793 0.38152 -0.91871 0.37442 0.47292 0.80518

0.9 0.15636 57.693 29.8% 1.0001 -0.86344 0.40016 -0.94911 0.39103 0.53638 0.94594

1.1* 0.14842 54.765 33.3% 1 -0.90331 0.41205 -1.0701 0.40226 0.6752 1.0925

1.1 0.14855 54.808 33.3% 0.99992 -0.90091 0.41236 -0.9986 0.39896 0.67933 0.99681

1.4* 0.13825 51.007 37.9% 0.99981 -1.0458 0.46773 -1.1699 0.42389 0.87382 1.1164

1.4 0.14153 52.219 36.4% 0.99791 -0.93667 0.55586 -0.99993 0.41993 0.63665 0.84977

2.0* 0.12732 46.976 42.8% 0.99931 -1.2146 0.49726 -1.1447 0.46601 1.1343 0.93098

2.0 0.12881 47.524 42.1% 0.99773 -0.95245 0.50243 -0.99964 0.46274 0.77647 0.7813

3.0* 0.12269 45.269 44.9% 0.99972 -1.0186 0.51584 -1.0952 0.54742 0.55626 0.79357

3.0 0.12148 44.82 45.4% 1.0008 -0.94927 0.59244 -0.99991 0.54407 0.55409 0.82564

4.0* 0.11856 43.745 46.8% 0.99616 -1.0396 0.59132 -1.1143 0.5098 0.58239 0.74365

4.0 0.11973 44.174 46.2% 0.99598 -0.92558 0.60812 -0.99945 0.48057 0.57248 0.6762

5.0* 0.11856 43.745 46.8% 0.99616 -1.0396 0.59132 -1.1143 0.5098 0.58239 0.74365

5.0 0.11973 44.174 46.2% .99598 -0.92558 0.60812 -0.99945 0.48057 0.57248 0.6762

∞ 0.11327 41.793 49.1% 1.0004 -1.1488 0.58745 -1.3416 0.52817 0.69394 1.0293

∞* 0.11256 41.531 49.4% 0.99992 -0.94673 0.52139 -1.0006 0.50141 0.57633 0.77411
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(a) (b) (c)

Fig. 7. Optimization of a rounded triangular floor. (a) Floor plan, with the reference layout of the columns. Dimensions

are in [𝑐𝑚]. (b) Relative deflection of the reference design with ℎ𝑟𝑒 𝑓 = 0.331[𝑚]. The deflections reach the allowable

value only in few regions of the floor, indicating sub-optimal design. (c) Relative deflection of the optimized design with

ℎ = 0.1836[𝑚]. The deflections reach the allowable value in many areas of the floor, thus indicating good utilization of

the feasible space. Surprisingly, one column merged with the core walls, thus practically eliminating this column.

Re-optimization is not necessary because the design limit state requirements are met. Specifically, the471

relative maximal and minimal moments in 𝑥 and 𝑦 directions are 𝜇𝑟𝑥,𝑚𝑎𝑥 = 0.252, 𝜇𝑟𝑥,𝑚𝑖𝑛 = −0.451,472

𝜇𝑟𝑦,𝑚𝑎𝑥 = 0.220, 𝜇𝑟𝑦,𝑚𝑖𝑛 = −0.320, and the maximal relative transverse shear stress is 𝜏𝑟𝑠,𝑚𝑎𝑥 = 0.53.473

After establishing the reference design, we optimize the same floor with the reference design as474

an initial design. The optimized slab thickness is ℎ = 0.1836[𝑚] and the resultant concrete volume475

is 𝑉 = 158.607
[
𝑚3] , which represents a volume saving of 44.5%. Figure 7c presents the relative476

deflection map and the optimized column layout, which is quite different from the reference layout477

in Figure 7b. Quite surprisingly, one of the columns that was originally located inside the core has478

merged with the core wall. Thus, the column is not active and the optimization effectively converged to479

a solution with fewer columns. Comparing the relative deflections of the reference and the optimized480

designs, the improved structural efficiency is clear with 𝛿 = 0.626. The optimized design meets the481

moment and shear constraints and re-optimization was not needed. However, the moments and shear482

stresses are closer to the desired values with 𝜇𝑟𝑥,𝑚𝑎𝑥 = 0.394, 𝜇𝑟𝑥,𝑚𝑖𝑛 = −0.786, 𝜇𝑟𝑦,𝑚𝑎𝑥 = 0.415,483

𝜇𝑟𝑦,𝑚𝑖𝑛 = −0.759, 𝜏𝑥𝑧 = 0.67, and 𝜏𝑦𝑧 = 0.66. This provides another indication for better utilization of484

the feasible space.485

Similarly to the first example, we wish to investigate the sensitivity of the slab thickness to486

the column locations. However, because we optimize the location of many columns concurrently,487

investigation of the entire design space is not practical. Therefore, in this example we investigate the488

sensitivity of the slab thickness using random perturbations of the optimized design with increasing489

amplitude. For this purpose, we add a random noise with normal distribution and maximal amplitude490
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of 𝜉 to the coordinates of the optimized columns. Thereafter, we optimize the slab thickness, keeping491

the column locations fixed. We consider five values for the amplitude 𝜉 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and492

for each value we perform 50 random perturbations resulting in a total of 250 perturbations of the493

optimized design.494

Figure 8a presents the 250 results, where the horizontal axis is the slab thickness, the vertical axis495

is the mean relative deflection, the colors represent different magnitudes of perturbation, and the black496

asterisk is the optimized design without any perturbation. The first thing that can be noticed from497

the results is that the optimized design outperforms all perturbed designs, providing an indication of498

a successful convergence of the optimization to a good local minimum. Another clear observation –499

which is expected – is the relation between the slab thickness and the mean relative deflection 𝛿. Thus,500

reduction of the thickness of the slab is achieved by increasing the relative mean deflection. A result501

that is less obvious, is the potential volume saving when perturbations are performed with respect to502

the optimized design. Even relatively large changes in locations with 𝜉 = 0.5 give a slab thickness of503

up to ℎ = 0.24[𝑚], corresponding to roughly 38% less volume. In the trade-off between structural504

efficiency and architectural cost, the perturbation can be seen as a way to retain the architectural505

freedom, based on a starting point that has the best structural efficiency. This view complements506

the discussion of the previous example, where the trade-off was expressed as potential savings for507

diverging from the original architectural plan.508

In Figure 8b we present the same data in a slightly different way, to illuminate the sensitivity of the509

slab’s thickness to the column locations. The vertical axis is the required increase in slab thickness510

relatively to the optimized design, Δℎ, and hence the vertical bars represent the distribution of the511

increase in thicknesses for each magnitude of the perturbation, where the circles mark the average.512

The blue line connects the average thicknesses and depicts the sensitivity of the slab thickness to the513

column locations. Alternatively, if we consider 𝜉 as a measure of the architectural freedom, this figure514

presents the structural cost of the architectural freedom. Thus, emphasizing the importance of early515

collaboration between architects and engineers.516

5. Discussion and conclusions517

We presented a method to minimize the concrete consumption in slabs by optimizing the column518

locations, and then use it to investigate the sensitivity of the thickness to the column locations. The519

optimization method considers the deflections as well as the moment and shear capacities. For any520

given floor plan, the method generates an optimized layout of columns and the corresponding minimal521

required slab thickness. We use gradient-based optimization with analytically derived sensitivities,522

which results in a very effective numerical method that can be used for problems with a large number523
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(a) (b)

Fig. 8. Investigating the sensitivity of the slab thickness to the exact locations of columns, in the optimization of a

rounded triangular floor. All results indicate significant reduction of the thickness with respect to the reference design

(ℎ𝑟𝑒 𝑓 = 0.331[𝑚]), where the black asterisk represents the optimum without any perturbation and corresponds to slab

thickness reduction of 44.5%. (a) A scatter of all perturbations of the optimum manifests a clear relation between the

required slab thickness ℎ and the mean relative deflection 𝛿. (b) The spread of the increase in slab thicknesses Δℎ obtained

for different magnitudes of the perturbation 𝜉, where the mean values are marked with circles and visualizing the sensitivity

of the slab thickness to the exact column location. For example, a perturbation of up to 0.5[𝑚] in the optimized column

locations leads to increase in the required slab thickness of 3.3[𝑐𝑚] (or almost 18%) on average. Additionally, the figure

illustrates the trade-off between the architectural freedom, represented by 𝜉, and the structural cost, represented by the

required increase in slab thickness Δℎ.
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of design variables, that would have not been practical with zero-order optimization methods. For524

example, simultaneous optimization of a large number of columns within an extended framework that525

includes also the column dimensions and a slab with varying thickness.526

Through three different design examples, we showed that traditional column layouts, or layouts527

that are based mainly on architectural considerations, are far from optimal and that the slab thickness528

can be reduced by up to 50% by optimizing the column locations. Moreover, we show that even small529

changes in the column locations with respect to the architectural plan, in the order of 0.1[𝑚] −0.5[𝑚],530

may lead to savings in the range of 5% − 20%.531

The results of this study indicate that the optimal column layout is not trivial and that traditional532

design is usually sub-optimal. As a consequence, collaborative architectural and structural design from533

the preliminary stages when the column layout is determined, is key to achieve significant concrete534

savings. Additionally, the results of this study show that the slab thickness is very sensitive to the535

precise column locations. Considering that small updates in column locations, especially if introduced536

in the early stages of the design, likely to have minimal architectural cost, concrete savings of up to537

20% in slabs can be achieved for most buildings. More pronounced modifications in column locations538

will probably lead to greater savings of concrete, but might have some architectural cost that should539

be considered. This could be accomplished by defining an allowable design domain for each column,540

such that the architectural cost is acceptable.541

Another interesting observation that can be made is the direct relation between the optimality of542

the column layout and the rate at which the deflection constraint is satisfied. Thus, the mean relative543

deflection can be used as an indicator for the effectiveness of a design, with an estimated theoretical544

maximum value in the range 𝛿𝑚𝑎𝑥 ∈ [0.64, 0.77].545

Throughout this research the architectural cost has been considered qualitatively and the natural546

trade-off with the structural efficiency was demonstrated. Explicit, quantitative consideration of the547

architectural cost is an interesting direction for future research. Additionally, although a substantial548

reduction in concrete volume is possible by the proposed method, it is possible that more steel549

reinforcement will be needed. Thus, the optimal balance between concrete and steel in terms of cost550

and environmental impact still remains open for future work. Furthermore, including also non-linear551

material response and plasticity might reveal interesting failure modes.552
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Appendix A. Sensitivity analysis559

Since we implement gradient based optimization, the first-order derivatives should be provided.560

In this section we present in detail all calculations involved in the computation of these derivatives.561

We note that the analytical sensitivities were verified by comparing to numerical derivatives obtained562

with finite differences method and were found to be accurate.563

The derivatives with respect to the mathematical design variables are obtained by the chain rule564

𝜕 𝑓𝛼

𝜕X
=
𝜕 𝑓𝛼

𝜕X̃
𝜕X̃
𝜕X

, with 𝛼 ∈ {0, 1, 2, 3}, (A.1)

where 𝜕X̃
𝜕X = N−1 is the Jacobian matrix, and 𝜕 𝑓𝛼

𝜕x̃ are the derivatives of the 𝛼 functional with respect565

the physical design variables and discussed in following sub-sections.566

Appendix A.1. Volume Objective function567

The sensitivities of the volume can be obtained explicitly because it does not depend on the568

structural response. Thus, we differentiate Eq. (13)569

𝜕𝑉

𝜕𝑋̃
=

𝑁ℓ∑︁
ℓ=1

𝜕ℎℓ

𝜕𝑋̃
𝐴ℓ, (A.2)

where 𝑋̃ is any of the physical design variables. The derivative of the elemental thickness ℎℓ with570

respect the slab thickness is simply 𝜕ℎℓ
𝜕ℎ

= 1.0 and zero with respect the columns locations.571

Appendix A.2. Deflection Constraint572

In the perspective of the individual MMA iteration, the threshold value of the constraint is constant.573

Therefore the derivative of the deflection constraint equals to the derivative of the maximal relative574

deflection, scaled by 1/ ˆ̃𝛿∗575

𝜕 𝑓1

𝜕𝑋̃
=

1
𝛿∗

𝜕𝛿

𝜕𝑋̃
. (A.3)

Thus, we focus on the derivative of 𝛿.576

The deflection constraint is an implicit function of the design variables and therefore we adopt the577

adjoint approach. The basic idea is to augment the functional with the equilibrium residual multiplied578

by an adjoint vector that will be selected such that the implicit terms will vanish. Thus, the augmented579

functional is580

𝛿𝑎 = 𝛿 − 𝝀𝑇𝛿 (Ku𝑠 − f𝑠) . (A.4)
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Since the equilibrium residual equals to zero, the augmented functional equals to the original functional581

and so are the derivatives.582

Thus, we differentiate the augmented constraint with respect to the design variables. Keeping in583

mind that the deflection constraint also depends explicitly on the design variables through the allowed584

deflection, we get585

𝜕𝛿𝑎

𝜕𝑋̃
=

𝜕𝛿

𝜕u𝑠

𝜕u𝑠

𝜕𝑋̃
+ 𝜕𝛿

𝜕w𝐴

𝜕w𝐴

𝜕𝑋̃
− 𝝀𝑇𝛿

(
𝜕K
𝜕𝑋̃

u𝑠 + K
𝜕u𝑠

𝜕𝑋̃
− 𝜕f𝑠
𝜕𝑋̃

)
. (A.5)

Since the derivatives of the augmented and original functionals are the same, we switch back to the586

original functional. As mentioned, the adjoint vector is computed such that the terms 𝜕u
𝜕𝑋̃

will cancel587

each other. Thus, the derivative of the deflection is588

𝜕𝛿

𝜕𝑋̃
=

𝜕𝛿

𝜕w𝐴

𝜕w𝐴

𝜕𝑋̃
− 𝝀𝑇𝛿

(
𝜕K
𝜕𝑋̃

u𝑠 −
𝜕f𝑠
𝜕𝑋̃

)
with K𝑇𝝀𝛿 =

(
𝜕𝛿

𝜕u𝑠

)𝑇
(A.6)

The adjoint vector 𝝀𝛿 and 𝜕𝛿
𝜕û𝑠

are the same as presented in [35]. The derivative of the maximal589

approximated relative deflection with respect to the allowed deflection is obtained by substituting590

Eq. (14) into Eq. (15) and differentiating591

𝜕𝛿

𝜕w𝐴

= −𝛿
[∑︁

𝑗

𝛿
𝑝

𝑗

]−1 ∑︁
𝑗

𝛿
𝑝−1
𝑗

𝑤 𝑗 (𝑤𝐴)−2
𝑗 . (A.7)

The derivative of the allowed deflections with respect to the design variables is obtained by replacing592

𝑟𝑚𝑖𝑛, 𝑗 in Eq. (18) with its derivative, and multiplying by 1
750 according to Eq. (17). Thus, by593

differentiating Eq. (19) we obtain the derivative of the distance form the 𝑗 th node to the closest594

column,595

𝜕𝑟𝑚𝑖𝑛, 𝑗

𝜕𝑋̃
= 𝑟𝑚𝑖𝑛, 𝑗

∑︁
𝑖

𝑟
𝑝−1
𝑖 𝑗

𝜕𝑟𝑖 𝑗

𝜕𝑋̃
. (A.8)

The derivative 𝜕𝑟𝑖 𝑗

𝜕𝑋̃
is computed by differentiating the distance between the 𝑖th column and the 𝑗 th node,596

where for all design variables other than the 𝑖th column location, the derivative is equal to zero.597

The next term in Eq. (A.6) is the derivative of the stiffness matrix with respect to the design598

variables, which were discussed in [29] and are brought here for completeness.599

As mentioned, the stiffness matrix of the supported plate is simply summation of the plate’s600

stiffness matrix and the equivalent matrices of the columns601

K = K𝑝 +
𝑁𝑐𝑜𝑙∑︁
𝑖=1

K𝑐𝑝,𝑖 . (A.9)

Thus, the derivatives with respect the column locations affect only the added equivalent column602

stiffness matrices. Thus, by differentiating Eq. A.9 with respect the 𝑥 coordinate of the 𝑖th column we603

get604

𝜕K
𝜕𝑥𝑐,𝑖

=
𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖
. (A.10)
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The derivative of equivalent stiffness matrix of the 𝑖th column with respect 𝑥𝑐,𝑖 is obtained by differ-605

entiating Eq. (1)606

𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖
=

𝑁𝑛∑︁
𝑗

[
𝜕K𝑐𝑝,𝑖

𝜕𝑥𝑐,𝑖

]
𝑗

=

𝑁𝑛∑︁
𝑗

𝜕𝑤𝑖 𝑗

𝜕𝑥𝑐,𝑖
K𝑐,𝑖 . (A.11)

The summation sign stands for assembly according the nodal DOF. The derivative of the projection607

weight is obtained by differentiating Eq. (2) and substituting into Eq. (3),608

𝜕𝑤𝑖 𝑗

𝜕𝑥𝑐,𝑖
=

𝜕𝑤̃𝑖 𝑗

𝜕𝑥𝑐,𝑖

∑
𝑘 𝑤̃𝑖𝑘 − 𝑤̃𝑖 𝑗

∑
𝑘
𝜕𝑤̃𝑖𝑘

𝜕𝑥𝑐,𝑖

(∑𝑘 𝑤̃𝑖𝑘 )2 (A.12)

with609

𝜕𝑤̃𝑖 𝑗

𝜕𝑥𝑐,𝑖
= − 𝛽

𝜂

(
𝑟𝑖 𝑗

𝜂

)2𝛽−1 𝜕𝑟𝑖 𝑗

𝜕𝑥𝑐,𝑖
𝑤̃𝑖 𝑗 . (A.13)

The derivatives with respect to 𝑦𝑐,𝑖 are computed in the same way.610

The derivative of the stiffness matrix with respect the thickness design variable affect the plate’s611

stiffness matrix, K𝑝, and are obtained by differentiating the elemental stiffness matrices and thereafter612

assembling in a regular manner. The plate’s stiffness matrix is assembled in a standard manner, for a613

mesh with identical elements614

K𝑝 =
∑︁
ℓ

Kℓ =
∑︁
ℓ

B𝑇
ℓ DℓBℓ =

∑︁
ℓ

B𝑇DB, (A.14)

where B and D are the elemental generalized differentiation and constitutive matrices. Thus, after615

differentiating we get616

𝜕K𝑝

𝜕ℎ
=

∑︁
ℓ

B𝑇 𝜕D
𝜕ℎ

B, (A.15)

where the derivative of the constitutive matrix is computed by explicit differentiation.617

The final term in Eq. (A.6) is the derivative of the external forces vector with respect to the design618

variables. The external forces depend on the design through the thickness and the concrete mass619

density620

𝜕f𝑠
𝜕ℎ

=
∑︁
ℓ

𝛾𝑐𝐴ℓ

4
, (A.16)

where 𝛾𝑐 is the mass density of the concrete, 𝐴ℓ is the area of the elements, and the summation sign621

stands for assembly according the elemental DOF.622

Appendix A.3. Shear Constraint623

Similarly to the deflection constraint, the derivative of the shear constraint is,624

𝜕 𝑓2

𝜕𝑋̃
=

1
𝜎̃∗
𝑡𝑠

𝜕𝜎̃𝑡𝑠

𝜕𝑋̃
. (A.17)
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Since 𝜎̃𝑡𝑠 is an implicit function of the design variables, we use the adjoint approach again. The625

augmented functional is626

(𝜎̃𝑡𝑠)𝑎 = 𝜎̃𝑡𝑠 − 𝝀𝑇𝜏 (Ku𝑑 − f𝑑) . (A.18)

This time, there is no explicit dependence and therefore after differentiating and replacing the aug-627

mented functional with the original one, we get628

𝜕𝜎̃𝑡𝑠

𝜕𝑋̃
=
𝜕𝜎̃𝑡𝑠

𝜕u𝑑

𝜕u𝑑

𝜕𝑋̃
− 𝝀𝑇𝜏

(
𝜕K
𝜕𝑋̃

u𝑑 + K
𝜕u𝑑

𝜕𝑋̃
− 𝜕f𝑑

𝜕𝑋̃

)
. (A.19)

Selecting the adjoint vector such that the terms involving 𝜕u𝑑

𝜕𝑋̃
will vanish, we get629

𝜕𝜎̃𝑡𝑠

𝜕𝑋̃
= −𝝀𝑇𝜏

(
𝜕K
𝜕𝑋̃

u𝑑 −
𝜕f𝑑
𝜕𝑋̃

)
with K𝑇𝝀𝜏 =

(
𝜕𝜎̃𝑡𝑠

𝜕u𝑑

)𝑇
. (A.20)

The only term that is unknown is 𝜕𝜎̃𝑡𝑠

𝜕û𝑑
which is obtained by differentiation of Eq. (21)630

𝜕𝜎̃𝑡𝑠

𝜕u𝑑

= ˆ̃𝜎𝑡𝑠
©­«

2𝑁𝑛𝑜𝑑𝑒𝑠∑︁
𝑗=1

𝜎
𝑝

𝑡𝑠, 𝑗

ª®¬
−1 (

𝝈◦(𝑝−1)
𝑡𝑠

)𝑇 𝜕𝝈𝑡𝑠

𝜕u𝑑

, (A.21)

where 𝜕𝝈𝑡𝑠

𝜕u𝑑
is obtained by differentiating (5), multiplying with W, and selecting the appropriate terms631

𝜕S
𝜕u𝑑

= W𝑇DB (A.22)

Appendix A.4. Moment Constraint632

The derivative of the moment constraint is633

𝜕 𝑓3

𝜕𝑋̃
=

1
𝜇̃∗

𝜕𝜇̃

𝜕𝑋̃
(A.23)

The augmented moment functional is634

( 𝜇̃)𝑎 = 𝜇̃ − 𝝀𝑇𝜇 (Ku𝑑 − f𝑑) . (A.24)

The relative moment is related to the design variables both implicitly and explicitly, 𝜇̃ = 𝜇̃
(
𝑋̃, u𝑑

(
𝑋̃
) )

.635

Therefore, we distinguish between the total derivative and the partial derivative of the relative moment636

by using different operators notations of 𝑑 and 𝜕, respectively. Thus, after differentiating the above637

equation and getting back to the original moment functional we get638

𝑑𝜇̃

𝑑𝑋̃
=

𝜕𝜇̃

𝜕u𝑑

𝜕u𝑑

𝜕𝑋̃
+ 𝜕𝜇̃

𝜕𝑋̃
− 𝝀𝑇𝜇

(
𝜕K
𝜕𝑋̃

u𝑑 + K
𝜕u𝑑

𝜕𝑋̃
− 𝜕f𝑑

𝜕𝑋̃

)
. (A.25)

After eliminating the derivatives 𝜕u
𝜕𝑋̃

by finding a proper adjoint vector, the derivative of the moment639

constraint is640

𝑑𝜇̃

𝑑𝑋̃
=

𝜕𝜇̃

𝜕𝑋̃
− 𝝀𝑇𝜇

(
𝜕K
𝜕𝑋̃

u𝑑 −
𝜕f𝑑
𝜕𝑋̃

)
with K𝑇𝝀𝜇 =

(
𝜕𝜇̃

𝜕u𝑑

)𝑇
. (A.26)
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The explicit derivative can be written in the following form641

𝜕𝜇̃

𝜕𝑋̃
=
𝜕𝜇̃

𝜕ℎ

𝜕ℎ

𝜕𝑋̃
, with

𝜕𝜇̃

𝜕ℎ
= 𝜇̃

(∑︁
𝝁𝑝

)−1
(
𝜕𝝁

𝜕ℎ

)𝑇
𝝁◦(𝑝−1) , (A.27)

where ◦ indicates elementwise operation. The derivative of the relative W&A moments with respect642

the slab thickness is given by643

𝜕𝝁

𝜕ℎ
=

{[(
𝜕M
𝜕ℎ

)𝑇
M𝑐 − M𝑇 𝜕M𝑐

𝜕ℎ

]
◦ M◦−2

𝑐

}
. (A.28)

In the equation above, M is a vector with all W&A moments at all nodes and M𝑐 is a vector with644

the moment capacities. All W&A moments have similar structure, thus for example the derivative of645

𝑀𝑟𝑥,𝑚𝑎𝑥 is given by646

𝜕𝑀𝑟𝑥,𝑚𝑎𝑥

𝜕ℎ
=
𝜕𝑀𝑥𝑥

𝜕ℎ
+ sign

(
𝑀𝑥𝑦

) 𝜕𝑀𝑥𝑦

𝜕ℎ
. (A.29)

The derivatives of the plate moments are obtained by differentiating Eq. (5), multiplying with W,647

and selecting the moments components648

𝜕S
𝜕ℎ

= W𝑇 𝜕D
𝜕ℎ

Bû𝑑 . (A.30)

The derivative of the moment capacities is obtained by differentiating Eq. (24), where the only649

derivative with non zero value is the derivative with respect the slab thickness650

𝜕M𝑐

𝜕ℎ
= 1 (ℎ − 𝑑𝑠) 0.64 𝑓𝑐𝑑 . (A.31)

The last component is the derivative of the approximate maximum relative moment with respect to651

the displacements which is obtained by differentiating Eq. (26)652

𝜕𝜇̃

𝜕u𝑑

= 𝜇̃

(∑︁
𝝁𝑝

)−1
(
𝜕M
𝜕u𝑑

)𝑇 〈
M◦−1

𝑐

〉
𝝁◦(𝑝−1) (A.32)

where < · > is a diagonal operator and the derivatives of the nodal moments were computed in653

Eq. (A.22). All other components are given in previous derivations of the SA of the other functionals.654

Appendix B. Implementation655

We solve the optimization problem using a gradient based algorithm due to its efficiency in656

dealing with large number of design variables. Specifically, the MMA algorithm [37] which is657

common algorithm in structural optimization. However, a successful optimization requires also658

several implementational techniques which are described in the following sub-sections together with659

some related considerations. Thereafter, we summarise all the geometrical data that is used in the660

examples that are presented in this study.661
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Appendix B.1. Convergence Criteria662

The basic convergence criterion is related to the change in the objective function. Because the663

objective function might have noisy behavior, we consider the average change in the objective function664

over the previous 𝑁 𝑓 0 iteration. We define a cumulative convergence parameter 𝑓0𝑐 that is promoted665

each iteration that the change in average objective function is less than 𝑓 ∗0𝑐 and demoted otherwise.666

The objective function is converged when the cumulative convergence parameter is equal to 𝑓0𝑐𝑖.667

Additionally, we require that at convergence the solution is feasible, such that the maximum of all668

constraints is less than 𝑓 ∗ = 0.01669

Appendix B.2. Dynamic Move Limits670

It was observed that the optimization may have oscillatory behavior of the design variables, and671

as a result the objective function, do not converge. Therefore we implement a dynamic move limit672

mechanism such that the move limit of an oscillating design variable is tightened and the move limit of673

monotonically behaving design variables gets wider. Thus, each design variable has a stability index674

𝑆𝐼 that is promoted each time that the change in design variable value is the same as in the previous675

iteration and demoted otherwise. The stability index of the 𝑚th design variable at the the 𝑛th iteration676

is given by677

𝑆𝐼𝑛𝑚 = 𝑆𝐼𝑛−1
𝑚 + sign

[(
𝑋𝑛
𝑚 − 𝑋𝑛−1

𝑚

) (
𝑋𝑛−1
𝑚 − 𝑋𝑛−2

𝑚

)]
. (B.1)

Once the stability index of a design variable reaches the positive or negative threshold values, 𝑆𝐼+ and678

𝑆𝐼−, the move limit is updated accordingly as follows679

𝑀𝐿𝑛
𝑚 =


𝑀𝐿𝑛−1

𝑚 𝛼 𝑆𝐼𝑛𝑚 = 𝑆𝐼+

𝑀𝐿𝑛−1
𝑚 𝛼

(
− 𝑆𝐼+

𝑆𝐼−
)

𝑆𝐼𝑛𝑚 = 𝑆𝐼−

𝑀𝐿𝑛−1
𝑚 otherwise

, with 𝛼 > 1. (B.2)

Additionally, it was observed that the oscillations may occur on a larger scale, where the design680

variables behave monotonically with respect the neighboring iterations but the optimization fail to681

converge. In order to deal with this problem we monitor the number of times that the objection682

function crosses the average objective function at a predefined sampling widow of iterations. Thus,683

we define a threshold value for the number of intersections between the average and non-average684

objective functions, beyond which all move limits of all design variables are narrowed down. Herein685

we consider two sampling windows, representing two different scales of iterations, of 10 and 100686

iterations and set the threshold value of intersections to 3 and 10 respectively. Thus, each time that687

any of the threshold values is reached, all move limits narrowed down by factor of 0.9. Finally, we set688

minimum and maximum values for the move limits of 1 × 10−2 and 1 × 10−4, respectively.689
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Appendix B.3. Numerical Damping And Continuation Of The Projection Radius690

It was shown in [29] that the numerical performance of optimization of supports location can be691

significantly improved by implementing three techniques presenter therein. Namely: Control of initial692

design, continuation of the projection radii and numerical damping of the derivatives. In this study we693

implemented the numerical damping and the three stage continuation scheme of the projection radii694

as presented in [29]. The initial design control has not been implemented directly, since the initial695

designs herein are obtained manually and comply with the conditions of the initial control as defined696

in [29].697
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