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Abstract

Cancer is a fatal disease caused by a combination of genetic diseases and a variety of biochemical abnormalities. Lung

and colon cancer have emerged as two of the leading causes of death and disability in humans. The histopathological

detection of such malignancies is usually the most important component in determining the best course of action.

Early detection of the ailment on either front considerably decreases the likelihood of mortality. Machine learning

and deep learning techniques can be utilized to speed up such cancer detection, allowing researchers to study a large

number of patients in a much shorter amount of time and at a lower cost. In this research work, we introduced a

hybrid ensemble feature extraction model to efficiently identify lung and colon cancer. It integrates deep feature

extraction and ensemble learning with high-performance filtering for cancer image datasets. The model is evaluated

on histopathological (LC25000) lung and colon datasets. According to the study findings, our hybrid model can

detect lung, colon, and (lung and colon) cancer with accuracy rates of 99.05%, 100%, and 99.30%, respectively.

The study’s findings show that our proposed strategy outperforms existing models significantly. Thus, these models

could be applicable in clinics to support the doctor in the diagnosis of cancers.

Keywords: Feature Extraction, Transfer Learning, Machine Learning, Ensemble Learning, Lung Cancer, Colon

Cancer

1. Introduction

Cancer is a broad classification that encompasses a variety of illnesses that can damage organs in the human

body. It is also a rapid reaction of aberrant cells that expand beyond their acceptable boundaries, allowing them to

infect neighboring areas and travel to neighboring tissues which are known as metastasis. Metastasis is the prime

factors of cancer-related death (Organization, 2022). The disease’s prevalence has risen significantly over time, most

likely as a result of increased sensitivity to particular cancers as age advances. Colorectal cancer, which affects the

colon and rectum, is one of the major induces of death. Lung cancer is probably the most commonly recognized

malignancy (12.2%), but colorectal cancer, which affects the colon and rectum, is also the leading trigger of death
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(10.7%) (Lyon, 2020). It is one of the major drivers of fatality globally, although its impact is not evenly distributed

(Vineis and Wild, 2014). When it comes to identifying cancer symptoms, there are quite a variety of approaches.

With the advancements, the amount of data stored in archives is growing by the day (Godkhindi and Gowda,

2017). It is extremely challenging to analyze a huge quantity of data and extrapolate using traditional approaches

(Yildirim and Cinar, 2022). The increased availability of healthcare data provides scientists with a fresh opportunity

to improve existing approaches for further comprehensive clinical analysis (Sarwinda et al., 2020). In the medical

profession, machine learning and deep learning are commonly utilised technologies for analyzing biomedical data

(Park et al., 2018) (Das et al., 2020) (Baldi, 2018) (Lenz et al., 2019).

Machine learning (ML) is a limb of AI technologies that arose from the field of pattern identification and cogni-

tive acquisition concepts. It produces mechanisms that effectively adapt through a vast group of information and

generate forecasts based on historical evidence (Park et al., 2018). In several sectors where developing explicit tech-

niques with acceptable efficiency seemed hard and nearly impossible, machine learning had indeed been successfully

employed with remarkable outcomes (Hussain et al., 2021) (Assegie, 2021) (Xue et al., 2021). Deep learning (DL),

on the contrary, is a sophisticated based pattern classification technology that has shown exceptional results in fea-

ture extraction, object detection and voice recognition, and other domains that require multilevel data processing

(Pyrkov et al., 2018). It can extract meaningful significant patterns from images and has been demonstrated to

obtain state efficiency, occasionally outperforming humans (Ciregan et al., 2012). Transfer learning (TL) entails

repurposing previously acquired knowledge to tackle a specific situation (Kandaswamy et al., 2016). It can be used

in two ways: as a baseline algorithm, which is used to train the image dataset and determine performance (Hijab

et al., 2019) (Chougrad et al., 2020) (Khan et al., 2019); as a feature extractor, which is used to extract features from

image datasets and then use machine or deep learning algorithms to determine performance (Deniz et al., 2018)

(De Matos et al., 2019) (Abbasi et al., 2020) (Phankokkruad, 2021). Ensemble learning relies upon the combination

of many learning models that are purposefully developed as well as integrated to solve issues like categorization

(Polikar, 2012). It is a kind of machine learning that aims to upgrade predicted efficiency by combining several

models. Moreover, it’s a significant subject for increasing base classification models (Onan, 2015).

A number of papers have been conducted in the literature, each of which is predicated on a distinct strategy

for detecting cancer (Hatuwal and Thapa, 2020) (Tasnim et al., 2021) (Liang et al., 2020) (Chen et al., 2021).

A wide variety of medical images have already been identified and signified with the help of machine learning

procedures. DL strategies have made it possible for machines to assess exalted dimensional information such as

pictures, multimodal pathology scans, and video files (Adeoye et al., 2022) (Alsinglawi et al., 2022) (Tsai et al.,

2022). Numerous supervised machine learning techniques have been produced, as they are extremely adept at

handling biological images (Bukhari et al., 2020) (Wu and Zhao, 2017) (Papp et al., 2021) (Urbanos et al., 2021).

To classify lung and colon cancer efficiently, we need to train our model with a large dataset where all cancer

possibilities are included. To do so, our research emphasizes designing a resourceful and well-organized framework

where we can take large histopathological image (HPI) datasets (LC25000) and a number of pre-processing methods

are applied to datasets. k-fold cross-validation, and feature extraction, all are applied to it. To build a robust

model, we have used an ensemble method at the end of our implementations getting better performance in cancer

classifications.



Accepted in Expert Systems with Applications on 28 May 2022

The performance of our proposed hybrid model will be evaluated using high-performance filtering (HPF) with

combination of ensemble learning. We have evaluated a variety of performance indicators in our investigation

including accuracy, recall, precision , f1-score, MAE, MSE, RMSE, confusion matrix, AUC score and the ROC

Curve. The classifier algorithms in the proposed framework can detect cancer (lung and colon) having an accuracy

rate of above 99%.

The following are the major accomplishments of this study.

• First of all, to detect lung and colon cancer, we proposed an efficient hybrid technique that combines deep

feature extraction, high-performance filtering, and an ensemble learning strategy.

• Secondly, A deep feature extraction technique is proposed that is uniquely applied using different transfer

learning models to extract features.

• Finally, we analyze our proposed model on HPI datasets using a set of metrics and showed how to diagnose

lung and colon cancers, thereby contributing to the new knowledge of AI-based applications.

The remainder of the paper is arranged as follows: Section 2 leads a literature review to identify the state-of-

art of lung and colon cancer diagnoses using machine learning. Section 3 gives the methodology and the dataset

description of the study. The experimental setup and performance evaluation are presented in Section 4 and Section

5, respectively before concluding the paper in section 6.

2. Literature Review

Categorizing histopathological image datasets of many cancer kinds, such as breast, lung, colon, colorectal, and

skin cancer, has received much attention. Various approaches are utilized using ML, DL, and TL to detect lung

and colon cancer.

2.1. Lung and colon cancer using computer-aided diagnosis (CAD) approach

A CAD method was introduced by (Nishio et al., 2021) to categorize histopathology images of lung tissues

automatically. They evaluated the effectiveness of eight ML algorithms on two datasets using traditional texture

analysis (TA) and homology-based image processing (HI) to visual feature extraction. The CAD system with HI

outperformed the TA system in both datasets. As a result, they determined that HI was much more beneficial for

CAD systems than TA and that a precise CAD system for lung tissues might be developed. Similarly, (Mangal et al.,

2020) created a CAD system by examining digital pathology images for recognizing lung and colon cancer utilizing

a convolutional neural network (CNN). In comparison to classical ML models as well as deep CNN models utilizing

TL trained on a similar collection though utilizing state-of-the-art feature descriptors, their empirical findings on the

LC25000 indicated better accuracy of 97.89% for lung and 96.61% for colon gained by CNN. Moreover, (Shandilya

and Nayak, 2022) devised a CAD technique for categorizing histological pictures of lung tissues. They utilized a

publicly accessible dataset of histological photos of lung tissue for the design and validation of CAD. Multi-scale

processing was performed to extract image features. Furthermore, a comparative analysis was conducted using seven

pre-trained hyper-tuned CNN models for lung cancer prediction where, ResNet101 provided the highest accuracy
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of all, at 98.67 percent. This study will assist researchers in developing more effective CNN-based lung cancer

detection models.

2.2. Lung and colon cancer using CNN approach

A CNN approach was proposed by (Hatuwal and Thapa, 2020) for detecting lung cancer using histopathology

pictures. Their model revealed a considerable improvement in classification accuracy and got training and validation

accuracy of 96.11% and 97.20%, respectively. Similarly, (Tasnim et al., 2021) introduced three CNN models to

analyze colon cell imaging data. The models were trained and tested at various epochs to estimate the learning

rate. The average pooling and max-pooling layers are revealed to be 95.48% and 97.49% accurate, respectively. The

MobileNetV2 exceeds the other two models with the highest accuracy of 99.67% and the lowest loss rate of 1.24%.

It would be developed in collaboration with medical professionals at hospitals or clinics that specialize in colon

cancer treatment. Qasim et al. (2020) produced a CNN model for predicting colon cancer distinguished by speed

and accuracy with a small number of parameters. Their model was based on two routes, each of which was in charge

of building 256 feature maps to enhance the number of features at various levels and so raise the accuracy and

sensitivity. The visual geometry group (VGG16) model was created and trained within the same dataset to assess

the effectiveness of the proposed scheme. The acquired accuracy is 99.6% for the proposed model and 96.2% for

VGG16. The performance indicated that it was useful in identifying colon cancer. On the other hand, (Sikder et al.,

2021) proposed a unique method for segmenting, recognizing, classifying, and detecting various types of malignant

cells in both MRI and RGB scans. They used a CNN model and a SegNet approach with a morphological operation

that was superior to the typical SegNet model to minimize training time and boost segmentation results. The

proposed technique produced an average accuracy rate of 93 percent in detecting cancer cells from multiple cancer

datasets. They were able to overcome the limitations of employing separate cancer identification techniques for

MRI and Histopathology data.

2.3. Lung and colon cancer using DL and ML approach

An ML approach to diagnosing lung and colon cancer based on DL was proposed by (Masud et al., 2021) that

analyzed pathological photos of lung and colon cancers to identify five different types of tissues. They extracted

the features using 2D Fourier and 2D Wavelet (2D FW) feature extraction process and combine the features and

trained them with a CNN model. The obtained findings revealed that the presented architecture has the highest

accuracy of 96.33 cents in identifying cancer tissues. The use of this approach will aid healthcare practitioners in

the development of a computerized and efficient method for detecting different forms of lung and colon cancers.

Similarly, (Sarwinda et al., 2020) evaluated the effectiveness of deep feature extraction for colorectal cancer diagnosis

using two TL models as well as traditional ML algorithms. The findings revealed that employing DenseNet121 to

extract the features outperforms ResNet50 for all ML algorithms and achieved 98.53% accuracy utilizing the KNN

algorithm. The developed approach proved adequate for identifying colon tissue. To enhance picture classification

efficiency, (Bansal et al., 2021) presented an approach integrating deep features generated with VGG19 with other

customized feature extraction techniques, such as SIFT, SURF, ORB, and the Shi-Tomasi corner detector algorithm.

Additionally, the collected features from these methods were categorized using a variety of ML algorithms. The
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empirical findings showed that Random Forest (RF) with the cooperative features beat other classifiers with 93.73

percent accuracy. According to the findings, a single feature extractor is insufficient to provide consistent outcomes.

As a result, for picture classification, a mixed method employing DL features as well as classical handmade features is

preferable. Toğaçar (2021) introduced a DL model where the image classes were built from the ground up using the

DarkNet19 model. The feeble features were selected from the feature set retrieved from the DarkNet19 model using

the Equilibrium and Manta Ray Foraging optimization approach and separated from the rest of the set’s features,

yielding an optimal feature set. The Support Vector Machine (SVM) approach was accustomed to aggregating

and categorizing the suitable characteristics generated by the two optimization algorithms utilized. The overall

classifier performance percentage was 99.69%. It was discovered that combining the complementary approach with

certain optimizing strategies increased the dataset’s categorization ability. To determine lung and colon cancer

using histopathological images with improved augmentation strategies, (Garg and Garg, 2020) proposed a method

by modifying 8 TL models. According to the findings, the 8 models achieved notable accuracy ranging from 96

percent to 100 percent accuracy. To visualize the focus images of CNN models, SmoothGrad and GradCAM were

then employed that had previously been learned to differentiate between cancerous and benign images.

2.4. Lung and colon cancer using Hybrid approach

In (Phankokkruad, 2021), for diagnosing lung cancer three TL models were utilized. The findings exhibited that

the proposed models attained accuracy levels of 62 percent, 90 percent, and 89 percent for VGG16, ResNet50V2,

and DenseNet201, respectively. Lastly, a combination of the three proposed CNN models called the ensemble model

exceeded the other models with a validation accuracy of 91%. The employment of the ensembles of the TL model,

which enhances efficiency, is beneficial in overcoming the challenge of diagnosing lung cancer. Another, (Chen

et al., 2021) proposed a hybrid classifying framework that combines the Inception v3, hog, and daisy extracting

features modules to distinguish lung cancer and normal tissue from lung pathology images. The experimental

findings showed that the proposed model achieved an accuracy of 99.60 percent, which was a gratifying outcome

greater than other comparable trials. It demonstrated that hybrid deep learning models may be used to evaluate a

reliable cancer diagnosis approach. On the other hand, (Liang et al., 2020) developed a shearlet transform-based

multi-scale feature fusion (MFF-CNN) model to recognize histopathology images of colon cancer. It achieved a

96 percent detection performance for colorectal after feature learning and feature fusion. Its improvement offers

innovative opportunities for cancer screening instantaneously, with objectivity as well as accuracy. Yildirim and

Cinar (2022) created a new method for identifying colon cancer images called MA ColonNET. The algorithm

reached a 99.75 cent accuracy rate for detecting and classifying colon cancer which will help to avoid human errors

that are common in older methods. They demonstrated that the presented methodology can identify colon cancer

faster than originally thought. The therapy strategy will be more effective as a result of this as well. Furthermore,

(Adu et al., 2021) offered the DHS-CapsNet, a revolutionary dual horizontal squash capsule network for classifying

lung and colon tumors on histopathological pictures. Encoder feature fusion (EFF) and a unique horizontal squash

(HSquash) algorithm were used to build DHS-CapsNet. The collected feature from the 2-lane convolutional layers

was aggregated by the EFF, which provided valuable insights for greater accuracy. The claiming prediction error

for the DHS-CapsNet was 0.77 percent, as opposed to 14.45 percent for the regular CapsNet. It enhanced CapsNet



Accepted in Expert Systems with Applications on 28 May 2022

which can be used as a CAD approach to aid clinicians in diagnosing lung and colon cancer. The related paper

summary is shown in Table 1.

3. Methodology

In this section, we have covered image pre-processing, deep feature extraction, high-performance filtering, and

ensemble learning method as well as our proposed model. We also give a basic rundown of the ML techniques that

are used to detect lung and colon cancer.

We developed our proposed model using feature extraction and machine learning algorithms on LC25000 lung

and colon histopathological image datasets to assure a prognosis of lung and colon cancer. Figure 1 represents the

schematic block diagram of our proposed paradigm. The stages of our proposed model are as follows:

• Step-1: Initially, we take the histopathological image datasets (LC25000) for lung and colon and combine both

(lung and colon) cancer to conduct our experiment. There are three types of lung cancers, and two types of

colon cancers are available in our datasets.

• Step-2: In the pre-processing step, the pre-processing is accomplished by resizing the image into 128x128,

converting the image into bgr2rgb, and then the image to NumPy array. After that, we perform feature

scaling where we use the generalization method in the image; we divide easy image array values by 255, which

is the maximum value (max. intensity value of an image), and perform labeling by assigning a label (0,1,2)

for each image.

• Step-3: In the deep feature extraction step, we extract features from the image datasets using five different

transfer learning such as VGG16, VGG19, DenseNet169, DenseNet201 and collect the features for next the

step.

• Step-4: In this step, successfully extracted features are fit into the six well-known ML algorithms such

as Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Multi-Layer Perceptron

(MLP), Extreme Gradient Boosting (XGB), and Light Gradient Boosting (LGB) to evaluate the performance.

• Step-5: In this High-Performance Filtering (HPF) step, we filter our ML algorithms based on the accuracy.

By using this filtering, we select the top three algorithms for the next step.

• Step-6: In this Ensemble Learning step, after getting the top three algorithms from HPF, we apply majority

(hard) and weighted average (soft) voting classifiers on these algorithms for all TL and select the best ensemble

voting classifier for each TL model.

• Step-7: Finally, the performance is assessed based on the accuracy for each TL and selecting the best TL

model. After that, the performance metrics such as accuracy, recall, precision, f1-score, MAE, MSE, RMSE,

confusion matrix, AUC score, and ROC Curve are used to evaluate the selected model of our experiment and

also showed the comparison analysis with other existing models.
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SL. No Author Dataset Approach Accuracy(In %)

1 Nishio et al. (2021) Histopathology CAD 99.23

2 Mangal et al. (2020) Histopathology CAD
97 (Lung)

96 (Colon)

3 Shandilya and Nayak (2022) Histopathology CAD 98.67

4 Hatuwal and Thapa (2020) Histopathology CNN 97.2

5 Tasnim et al. (2021) Histopathology CNN 99.67

6 Qasim et al. (2020) Histopathology CNN 99.6

7 (Sikder et al., 2021)

Brain MRI Image

BreCaHAD

SN-AM

Histopathology

CNN

98.59 (IoU)

91.16 (IoU)

93.02 (IoU)

90.24 (IoU)

8 Masud et al. (2021) Histopathology 2D FW+ CNN 96.33

9 Sarwinda et al. (2020) Histopathology DenseNet121 + KNN 98.53

10 Bansal et al. (2021) Caltech101 VGG19 + RF 93.73

11 Toğaçar (2021) Histopathology DarkNet19 + SVM 99.69

12 Garg and Garg (2020) Histopathology

VGG16

ResNet50

InceptionV3

InceptionResNetV2

MobileNet

Xception

NASNetMobile

DenseNet169

98

96

100

100

100

100

97

100

13 Phankokkruad (2021) Histopathology Ensemble Model 91

14 Chen et al. (2021) Histopathology Ensemble Model 99.6

15 Liang et al. (2020) Histopathology MFF-CNN 96

16 Yildirim and Cinar (2022) Histopathology MA ColonNET 99.75

17 Adu et al. (2021) Histopathology DHS-CapsNet 99.23

Table 1: Related work summary
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HPF   
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Figure 1: The proposed hybrid model for lung and colon cancer detection
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Lung Cancer No. of Images

Benign lung tissue 1400

Lung adenocarcinomas 1400

Lung squamous cell carcinoma 1400

Total 4200

Table 2: Distribution of Lung Cancer dataset

Colon Cancer No. of Images

Benign colon tissue 1400

Colon adenocarcinomas 1400

Total 2800

Table 3: Distribution of Colon Cancer dataset

3.1. Dataset Collection

In our proposed work, we have employed the lung and colon cancer dataset called histopathological images

(LC25000) dataset. The dataset consists of two cancerous datasets called lung and colon cancer datasets. It contains

25000 images where 10000 for colon cancer and 15000 for lung cancer images. The lung cancer dataset contains

3 labels of cells such as adenocarcinomas, squamous cell carcinoma and benign tissue. The colon cancer dataset

contains 2 labels of cells, such as adenocarcinomas and benign tissue. The LC25000 dataset was created using a

snippet of HIPAA-compliant as well as confirmed references, including 750 lung tissue where 250 adenocarcinomas,

250 squamous cell carcinomas and 250 benign tissue as well as 500 colon tissue where 250 adenocarcinomas and

250 benign tissue which were then augmented to create 25,000 images (Borkowski et al., 2019).

In our experiments, we have used lung, colon, and both (lung and colon) cancer images. So, we took 10000

images consisting of 5000 images for colon tissue and 5000 images for lung tissue for both lung and colon; 2800

images for colon tissue for colon; 4200 images for lung tissue for lung. The distribution of Cancerous datasets

images is shown in Table2, Table 3, and Table4, for our research.

Cancer No. of Images

Benign lung tissue 2000

Lung adenocarcinomas 2000

Lung squamous cell carcinoma 2000

Benign colon tissue 2000

Colon adenocarcinomas 2000

Total 10000

Table 4: Distribution of Cancer (lung and colon) dataset
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Lung Cancer Dataset Label

Lung adenocarcinoma lung aca 0

Lung benign tissue lung n 1

Lung squamous cell carcinoma lung scc 2

Table 5: Labeling for lung cancer dataset

Colon Cancer Dataset Label

Colon adenocarcinoma colon aca 0

Colon benign tissue colon n 1

Table 6: Labeling for colon cancer dataset

3.2. Pre-processing

Initially, in our methodology, we downsized the input image to 128x128 while keeping the same image size to

train the model. We transformed the scaled image into bgr2rgb and then into a NumPy array to work with picture

intensity values. Then, perform scaling, a procedure that normalizes the value of image intensity values within a

range (0 to 1). To reduce computational complexity, the image is scaled by dividing the image array by 255. Finally,

we added the image label as Image labeling, which is an important step because it allows us to identify malignant

photos. Fig. 2 depicts the pre-processing steps of our proposed model. Table 5 and Table 6 show labeling for lung

and colon cancer dataset, respectively.

Image Resize: 128x128

Image Convertion: bgr2rgb

Image Convertion: image to numpy array

Image Scaling: image/255

Image Labeling

Cancer Image

Figure 2: Pre-processing steps

After pre-processing, the resultant images are sharper, bright-colored, and more discernible details are visible

than the original which are suitable to drive into the model and get better performance than others. Fig 3 depicts

the before and after image pre-processing for lung cancer adenocarcinoma, squamous cell carcinoma, and benign
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tissue respectively, where the upper part (a,b,c) are before pre-processing and the lower part (d,e,f) are the after

pre-processing of lung cancer image.

(a) before (b) before (c) before

(d) after (e) after (f) after

Figure 3: Lung adenocarcinoma, squamous cell carcinoma, benign tissue before and after pre-processing

Fig 4 depicts the before and after image pre-processing for colon cancer adenocarcinoma and colon benign tissue

respectively, where a and b are the before and after pre-processing images for colon adenocarcinoma images and c

and d are the before and after pre-processing image for colon benign tissue image.

(a) before (b) after (c) before (d) after

Figure 4: Colon adenocarcinoma and benign image before and after pre-processing

3.3. Deep Feature Extraction

Transfer learning is the method of applying features learned on one problem to solve a new, related problem

(fchollet, 2021). This deep learning approach has received a lot of attention, so we adopt several existing models in

our methodology and adjust them to fit our needs. Rather than training all of the model’s layers, we isolate a few

and use the trained weights in those frozen layers to derive certain properties from our datasets (Thakur, 2021).
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The significant properties of an image have a big impact on how well an identification operation works. In our

paper, we analyze our datasets using five different TL models such as VGG16, VGG19, MobileNet, DenseNet169,

and DenseNet201 to extract features in addition to assessing each individual’s effectiveness by using various ML

algorithms (Talukder et al., 2022).

• VGG16, a CNN model produced by the Visual Geometry Group (VGG) of the University of Oxford, was

named the winner of the 2014 ILSVRC object identification algorithm (Karen Simonyan, 2021). VGG16’s

main contribution is to show that increasing network depth can enhance network performance in some cases.

VGG16 improves on the standard AlexNet by using numerous 33 convolution cores to substitute the larger

convolution cores (1111, 707, 55), which can extend the depth of the network and minimize the number of

network parameters (Yang et al., 2021). There are 3 parts to VGG16 transfer learning such as convolution,

pooling, and fully connected layers. Filters are employed in the convolution layer to extract information from

images, and the kernel, as well as stride size, are the most significant characteristics in this layer. To lessen

the dimensionality and calculations, the poling layer is employed to shrink the network’s spatial size. They

have fully connected interactions with the previous layers in fully connected layers.

• The VGG19 transfer learning model, which is also a CNN model, was introduced by (Simonyan and Zisserman,

2014). It is a 19 layers-weighted ground feature extractor that is extensively utilized (Lin and Guo, 2021).

The consisting of its layers are the combination of 16 convents and 3 dense layers which are the linked layers

to categorize pictures into 1000 item categories. The ImageNet repository was employed to develop VGG19,

which comprises over a million pictures separated into 1000 classes. The sequence of the model is 2 conv 1

max.pool, 2 conv 1 max.pool, 4 conv 1 max.pool, 4 conv 1 max.pool, 4 conv 1 max.pool and 3 FC layers. Due

to the employment of numerous 3x3 filters within every convnet, it is a widely common picture predictive

model.

• One of the Convolutional networks that have already been trained is MobileNet (Howard et al., 2017). The

quantity of parameters that have been lower than others distinguishes MobileNet from other existing models.

It is built on depthwise separable convolutions, which were developed in (Sifre and Mallat) to reduce the

computing effort in the initial few layers, depthwise and pointwise convolutions are two layers by which it is

constituted. The technique of filtering the input without creating additional features is known as depthwise

convolution. As a result, the pointwise convolution procedure, which generates innovative features, was

integrated. Thus, depthwise separable convolution was coined to describe the merging of two layers. It

assigns a unique filter for each stream of input using depthwise convolutions and afterward utilizes 1x1 Conv

(pointwise) for constructing a joint distribution of output from the depthwise layer. Batch Normalization

(BN) with Rectified Linear Unit (ReLU) is employed after each convolution. Its efficiency was determined

by a trade-off between delay and correctness. Due to the compactness, we can perform our tasks using this

method on the CPU in lieu of the GPU. It can be used for categorization, identification, and segmentation in

the same way as previous large-scale models that have been released (Sae-Lim et al., 2019).

• DenseNet is a Dense Convolution Neural Network, introduced by (Huang et al., 2017). In DenseNet, each

layer influences all other layers in a feed-forward manner [30]. There are five levels in a DenseNet block. The
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Dataset Before feature extraction After feature extraction

Lung 4200, 128, 128, 3 4200, 16384

Colon 2800, 128, 128, 3 2800, 16384

Cancer(lung and colon) 10000, 128, 128, 3 10000, 16384

Table 7: Shape of feature

very first four layers are dense, and the final layer is a transition layer. This dense block has a growth rate of

(k) for each layer. If the growth rate is 4 then a 2x2 average pool with a 1x1 conv and a stride of 2 exists in

the transition layer. There are 1x1 and 3x3 conv with a stride of 1 in the dense layer. Two popular DenseNet

networks such as DenseNet169 and DenseNet201 are utilized in our research experiment.

Fig. 5 illustrates a sample of the feature extraction procedure where it includes the original architecture of

VGG16 and deep feature extraction from the VGG16 model. The composition of the original VGG16 CNN model

has 13 convolutional (conv) layers, 3 fully connected (FC) layers, and 5 pooling layers. The sequence of the model

is 2 conv 1 pool, 2 conv 1 pool, 3 conv 1 pool, 3 conv 1 pool, 3 conv 1 pool and 3 FC layers. It employs a small

kernel (3x3) with 1 stride on all conv layers. The max pool layer continually derives after the conv layers. It takes 3

channels of images with a resolution of 224x224. In the 3 FC layers, the first two FC layers have an identical channel

size of 4096 and the last one has a channel size of 1000, which defines the number of class labels in the ImageNet

data. The soft-max layer is the output layer, and it’s in charge of the input image’s assigned probability. On the

other hand, the deep feature extraction from the VGG16 model is the same as the original VGG16 model except

for the last 3 FC layers. Without involving the last 3 FC layers, we have just extracted features from this model

and grazed them into different ML models after that we apply HPF and get the top 3 filtered ML algorithms and

then apply ensemble learning with these algorithms and evaluate the performance. The same procedure is applied

to all of the TL models to extract features.

In this feature extraction process, we fixed the last 3 FC layers and extracted the features from the last block

of the max-pooling layer. In the feature extraction process, the before and after feature shape is shown in 7 where

the input size of the image is 128*128*3. The final feature size after feature extraction is 16384. Hence, before

feature extraction the size of features is n*128*128*3, and after extraction n*16384. Here, n is the number of input

images. So, for lung cancer, the input feature size is 4200*128*128*3 and the output feature size is 4200*16384,

for colon cancer, the input feature size is 2800*128*128*3, and the output feature size is 2800*16384, for (lung and

colon) cancer, the input feature size is 10000*128*128*3 and output feature size is 10000*16384. After that, we

provision the extracted features into the ML algorithms to assess the efficiency of each machine learning model.

This procedure is applied for all of the above described TL models.

3.4. Machine Learning Algorithms

In this section, we have described several ML algorithms which is used in our model to evaluate the performance.

• Random Forest (RF) is a meta-approximation that employs averaging to enhance accuracy level and multiple

decision tree classifiers are fitted to various sub-trials of the dataset to prevent over-fitting (Alkhatib and
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Figure 5: A sample architecture of original VGG16 model and deep feature extracted VGG16 model

Abualigah, 2020; Ahmed et al., 2021). It is a combination of several uncut DTs derived from different bootstrap

samples of the training data and each attribute subset is sampled separately from the actual feature space

(Breiman, 2001). It creates several independent decision trees from the training dataset’s original features,

then votes to combine all of the trees into a single classification model (Pan et al., 2014). It achieves a better

prediction accuracy due to employing the outcomes of numerous decision trees to construct a prediction

(Ahsan et al., 2021).

• Support Vector Machine (SVM) is a classification procedure initiated with the detection of the hyperplane

and then the classification of the classes (Safaldin et al., 2021). For classification analysis, SVM is a popular

ML tool. SVM increases generalization by reducing the learning machine’s structural risk. SVM has been

used in many contexts because of its high recognition rate and fast training speed when classifying relatively

small datasets (Shen et al., 2016). It has been shown to be an efficient strategy for classification tasks because

it adheres to the proper risk management design to maximize generalizability. Furthermore, because solving

an SVM is effectively a convex optimization problem, the procured internally optimal solution must also be

a globally optimal one. As a result, SVM is used to train the base classifiers in this case (Gu et al., 2019).
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• Logistic Regression (LR) is a conventional parametric approach that is a generalized linear model extension

that has been typically employed in diverse areas, including health care (Yang et al., 2014). It uses a logit

relation equation to predict the output. Using backward/forward elimination with a p-value less than 0.05, we

can pick the most significant predictor parameters using the method’s iterative selection approach. The Re-

alimpo package in R 3.3.1 statistical program is used to measure the relative value of each variable (Grömping

et al., 2006). It conjectures to find out how to generate a categorical output from input variables and also

forecasts a categorical dependent variable’s output. So, the final output must be either categories or discrete.

• Multilayer Perceptron (MLP) is a common ANN architecture that consists of a series of layers made up

of neurons as well as their connections. It can measure the weighted sum of its inputs before applying an

activation function to generate a signal that will be sent to the next neuron (Castro et al., 2017). Between the

input and output layers, it has one or more hidden layers. The neurons are arranged in layers and connections

are often guided from lower to upper layers, and the neurons in the same layer are not linked(Ramchoun et al.,

2016). In the input layer, the number of neurons equals the number of measurements for the pattern query,

while the number of neurons in the output layer equals the number of classes.

• Extreme Gradient Boosting (XGB) is a supervised ML technique that improves speed and performance by

using gradient-boosted decision trees. It is fast as compared to other implementations of gradient boosting

(Chen and He, 2015). The final prediction is made by a combination of the residuals of prior models which are

predicted from the generated novel models (Talukder et al., 2023). It uses a gradient descent strategy to reduce

loss and to boost up the model for improved performance. It’s a scalable end-to-end tree-boosting method

that data scientists utilize to obtain cutting-edge outcomes on a variety of machine learning problems (Chen

and Guestrin, 2016). The objective functions in XGboost consist of two parts training loss and regularization

with θ the optimal settings for xi training data and yi labels. Equ. 1 Shows objective functions of XGBboost.

O(θ) = L(θ) + Ω(θ) (1)

Here, L stands for the training loss function, which indicates how well our model predicts the training datasets.

• Light Gradient Boosting (LGB) is a new gradient learning paradigm based on the decision tree idea (Ke et al.,

2017). It outperforms XGBoost, is distinguished by its use of less storage, its use of a leaf-wise growth technique

with depth limits, and its use of a histogram-based algorithm to speed up the learning process (Yang et al.,

2020). LightGBM builds a k-width histogram by discretizing continuum floating-point eigenvalues into k bins

employing the aforementioned histogram algorithm. Moreover, the histogram approach does not necessitate

extra archiving of pre-sorted findings and results can be saved in an 8-bit integer upon feature determination,

which reduces storage use to 1/8 of what it was before. In spite of this, the model’s efficiency suffers because

of the strict dividing mechanism (Mohammadi et al., 2021).

3.5. High-Performance Filtering

High-Performance Filtering (HPF) is a process in which we have selected the top three ML algorithms to feed

into our ensemble learning process. The output of this HPF process is to find the estimators which we can feed into
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Algorithm VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

RF 93.57 94.05 95.71 94.52 96.9 94.95

SVM 96.9 97.62 98.57 97.14 98.1 97.67

LR 96.9 96.67 98.81 97.14 98.33 97.57

MLP 96.9 96.67 98.1 97.62 99.05 97.67

XGB 94.05 95.71 96.19 95.95 97.38 95.86

LGB 95.24 96.43 97.38 96.67 98.1 96.76

Table 8: Accuracy performance of ml algorithms on TL for lung cancer (in %)

Algorithm VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

RF 97.5 97.14 99.29 98.57 98.93 98.29

SVM 99.64 99.29 100.0 99.29 99.64 99.57

LR 99.64 99.29 100.0 99.29 99.64 99.57

MLP 99.64 99.29 100.0 99.29 99.64 99.57

XGB 95.36 97.5 98.93 98.21 98.93 97.79

LGB 97.14 97.86 99.64 99.29 99.29 98.64

Table 9: Accuracy performance of ml algorithms on for colon cancer (in %)

our ensemble learning model to generate our final output. To optimize the consistency and accuracy of estimates,

we use the best three algorithms in the ensemble learning process. In some circumstances, if we acquire worse

accuracy in half of the six ML algorithms, the ensemble learning models would not outperform the base learners.

Moreover, if we select the top two ML algorithms the robustness is comparatively legislation. Hence, to circumvent

these issues, we select the top three or half of the trained ML algorithms. Moreover, the model’s training time will

be comparatively less than the top 4 as it used only top 3 and the accuracy rate will be comparatively higher than

the top 2 as it used top 3.

In the following section, we have tabulated the feature extraction performance of our experiments as well as

visualized the accuracy performance in the graphical form. In Table 8, 9 and 10 show that among all the algorithms

the SVM, LR, and MLP provide the better performance.

• For 8 table, the average accuracy rate is 94.95%, 97.67%, 97.67%, 97.67%, 95.86%, 96.76% for RF, SVM, LR,

MLP, XGB, and LGB. Among all SVM, LR, and MLP give the highest average accuracy than others. Hence,

we select these top three algorithms for lung cancer to fit into the ensemble models and further analysis.

• For 9 table, the average accuracy rate is 98.29%, 99.57%, 99.57%, 99.57%, 97.79%, 98.64% for RF, SVM, LR,

MLP, XGB, and LGB. Among all SVM, LR, and MLP give the highest average accuracy than others. Hence,

we select these top three algorithms for colon cancer to fit into the ensemble models and further analysis.

• For 10 table, the average accuracy rate is 95.8%, 98.54%, 98.42%, 98.58%, 96.70%, 97.28% for RF, SVM, LR,

MLP, XGB, and LGB. Among all SVM, LR, and MLP give the highest average accuracy than others. Hence,
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Algorithm VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

RF 95.2 94.7 96.8 95.5 96.8 95.8

SVM 97.9 97.8 99.4 98.3 99.3 98.54

LR 98.0 97.6 99.2 98.1 99.2 98.42

MLP 98.4 97.9 99.0 98.3 99.3 98.58

XGB 95.6 95.6 97.0 97.5 97.8 96.7

LGB 96.1 96.2 98.5 97.7 97.9 97.28

Table 10: Accuracy performance of ml algorithms on TL for lung and colon cancer (in %)

we select these top three algorithms for (lung and colon) cancer to fit into the ensemble models and for further

analysis.
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Figure 6: Accuracy performance analysis of ML algorithms on TL for lung and colon cancer

Fig 6 illustrates that for lung, colon, and lung and colon graphs, among all the ML algorithms SVM, LR, and

MLP outperform for each TL model. As a result, we select the most performance gained algorithms from all ML
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algorithms such as SVM, LR, and MLP for lung, colon and lung and colon cancer.

After successfully filtering the high-performance ML algorithms, we fit these into our ensemble model to get

better performance. For each dataset, we fit those selected top 3 selected ML algorithms and fit into the two ensemble

voting classifiers namely majority (hard) and weighted average (soft). After that, we assess the effectiveness of our

models for each dataset.

3.6. Ensemble Learning

Ensemble learning (EL), also known as multiple classifier or committee-based learning, is a way of training and

integrating numerous learners to successfully deal with a problem (Zhou, 2016). During the last few generations, it

has sparked a lot of attention, particularly in the AI and machine learning areas. It is not only justified and fairly

efficient, but it is also incredibly adaptable in a broad variety of essential areas and contributes significantly, so this

attention is pretty well deserved (Dietterich et al., 2002). Regarding majority rule voting, hard employs anticipated

class labeling. Soft estimates each class label using the argmax where the intended function’s maximum value is

returned, of the summing of the estimated probabilities, which is ideal for just a group of well-calibrated learners

(Pedregosa et al., 2011).

In soft voting, we forecast the class labels depending on the classifier’s estimated probabilities (Kumari et al.,

2021), where we used averaging the class probability (Raschka, 2015). In the implementation by default, it calculates

the soft voting using a uniform value. Hence, the weight that is used in the weighted average process is a uniform

value. Moreover, it has been used since the classifiers that we have used are well-calibrated which means the scores

of the classifiers are in good agreement with probability estimations. The way of the soft voting procedure is shown

in the following equation.

ŷ = argmax

n∑
j=1

(wjpj)

where, wj is the weights of classifiers and pj is the prediction of classifiers.

Fig. 7 illustrates the EL process with HPF, where the deep extracted features are fed into the different ML

algorithms, and then by applying HPF we get three algorithms; after that, we apply EL to these filtering algorithms.

In EL, the soft and hard voting algorithms are utilized to evaluate the performance. After getting the estimators

from HPF, we use ensemble learning with the HPF algorithm. Where we used our estimators with hard and soft

for hard and soft voting classifiers respectively.

4. Experimental setup and performance metrics

The experiments are carried out on a machine running Microsoft Windows 10 Pro, with an Intel(R) Core (TM)

i3-6006U CPU running at 2.00GHz, 2000Mhz, 2 cores, 4 logical processors, and 120GB SSD, 1TB HDD, 8GB RAM

and 26GB Virtual Memory. The experiment is carried out in Anaconda Navigator using a Jupyter notebook. To

implement the suggested model, the Python programming language and various common libraries such as pandas,

NumPy, Matplotlib, Seaborn, TensorFlow, Keras, Scikit-learn, and others are utilized.

Numerous performance metrics appraise our proposed model, including accuracy, recall, precision, f1-score, ROC
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curve, confusion matrix, MSE, MAE, and RMSE. The metrics for appraising the performance are formulated in the

following:

• The Confusion Matrix is a technique to assess machine learning classification efficiency. It is a table-like

structure with four (TP, TN, FP, FN) combinations of predicted and actual values. Table 6 shows a confusion

matrix where the TP (True Positive) denotes a correctly anticipated positive value, TN (True Negative)

denotes a correctly projected negative value, FN (False Positive) gives an inaccurately forecasted positive

value, and FN (False Negative) indicates an incorrectly predicted negative value. It is very useful in helping

to determine accuracy, recall, precision, f1-score, and ROC curve.

Actual positive Actual negative

Predicted positive TP FP

Predicted negative FN TN

Table 11: Confusion Matrix

• Accuracy is the most obvious performance metric, and it is directly proportional of correctly predicted obser-

vations to total observations.

Accuracy =
TP + TN

TP + FP + FN + TN
(2)
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• The ratio between the correctly predicted positive value and the total number of predicted positive values is

defined as precision. It is depicted as:

Precision =
TP

TP + FP
(3)

• The ratio between the correctly predicted positive value and all numbers of actual values is defined as recall.

It is depicted as:

Recall =
TP

TP + FN
(4)

• The harmonic means of precision and recall values for a classification problem is defined as f1-score. f1-score

is depicted as:

F1− score = 2 ∗ (precision ∗ recall)
(precision+ recall)

(5)

• The mean absolute error (MAE) is a metric for comparing errors within related measurements that describe

a similar occurrence. It is an absolute inaccuracy of the arithmetic average of predicted and actual values

(Willmott and Matsuura, 2005).

MAE =

n∑
i=1

pred(i)− act(i)

n
(6)

• The mean squared error (MSE) is a statistic that calculates the mean of the squared residuals, or the mean

squared discrepancy between actual and forecast values. Because of variability or if the predictor does not

allow for data that could generate a good prediction, the most important fact about MSE is that it is usually

typically absolutely positive (rather than zero) (Lehmann and Casella, 2006) (Das et al., 2004).

MSE =

n∑
i=1

(pred(i)− act(i))2

n
(7)

• The most commonly used evaluation metric in regression problems is the root mean square error (RMSE). It

is premised on the notion that error is unbiased and seems to have a normal distribution. Outlier attributes

have quite a massive effect on RMSE.

RMSE =

√√√√ n∑
i=1

(pred(i)− act(i))2

n
(8)

where pred(i) is the predicted value of i, act(i) is the actual value of i, and n is the total number of values.

• ROC curves are two dimensional plots that are often used to analyze and examine the effectiveness of classifiers

(Fawcett, 2004). ROC graphs clearly demonstrate a classifier’s sensitivity or specificity exchange for all

potential classification thresholds, enabling the grading and picking of classifiers based on particular user

requirements, which are commonly linked with variable error costs and accuracy expectations (Krzanowski

and Hand, 2009) (Vergara et al., 2008). AUC reflects the level of distinction while ROC is indeed a likelihood

curve. It indicates how well the model can discriminate distinct categories. On the y-axis is the true positive

rate, while on the x-axis is the false positive rate. AUC approaching 1 indicates that a predicted model is good

at separability amongst class labels whereas approaching 0 indicates a lousy predicted model. In actuality,
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lousy signifies that the consequence is being mirrored (Narkhede, 2018). It’s a strategy for visualizing the

classification’s efficiency (Gorunescu, 2011). Models with higher ROC curves are superior classifiers (Yulianto

et al., 2019).

• K-fold Cross-Validation (CV) is a basic procedure for dividing a training set into k smaller sets. The strategy

for each of the k ”folds” is to utilize the folds as training data for a model, which is then verified using the

remaining data, and the average of the values computed in the loop is then included as an evaluation metric

using k-fold cross-validation.

Our cancer detection trials were carried out using a k-fold CV with a value of k=10. The dataset is partitioned

into 80% for training and the rest of the 20% for testing in k-fold, and the dataset gets folded into 10 separate

folds, each of which is used as a testing component throughout the folding process. The procedure of k-fold

cross-validation is depicted in Fig. 8.
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Iteration
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E10

 For
k=10

Performance
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Figure 8: k-fold cross-validation process

5. Performance Evaluation and Analysis

This section analyzes the performance of different TL methods, followed by the analysis of our hybrid model

based on the selected high-performance TL model and voting classifier model. We have found that among all TL

models MobileNet model outperforms other models, and the soft voting classifier gives the highest performance

than the hard voting classifier.

5.1. Performance evaluation of lung cancer

Table 12 and Fig. 9 illustrate the performance of different TL models based on hard and soft voting in tabular

format and visual graphical bar chart respectively. From Table 12 we can see that the average accuracy rate for

hard and soft voting classifiers is 97.66% and 98.05% respectively. Moreover in Fig. 9 for the graphical bar chart, we

can see that the graphical upper bar is soft and lower is hard voting classifier, where for VGG16 96.9%, 97.14%; for

VGG19 96.9%, 97.14%; for MobileNet 98.81, 99.05%; for DenseNet169 98.57%, 99.05%; for DenseNet201 97.66%,
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Voting Classifer VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

Hard 96.9 96.9 98.81 97.14 98.57 97.66

Soft 97.14 97.14 99.05 97.86 99.05 98.05

Table 12: Accuracy performance analysis for ensemble models on lung cancer dataset

TL VGG16 VGG19 MobileNet DenseNet169 DenseNet201

Hard 96.9 96.9 98.81 97.14 98.57

Soft 97.14 97.14 99.05 97.86 99.05

Average 97.02 97.02 98.93 97.5 98.81

Table 13: Accuracy performance analysis for TL models on lung cancer dataset

98.05% for hard and soft respectively. Hence, it’s so clear that the soft voting classifier outperforms better than

hard voting classifier. So, we select a soft voting classifier in our proposed model for the lung cancer dataset.
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Figure 9: Accuracy performance analysis for ensemble models on lung cancer dataset

Table 13 shows the performance of different TL models in tabular format and insights that the MobileNet TL

model gives the highest average performance among all other TL models where the average accuracy rate for VGG16,

VGG19, MobileNet, DenseNet169, and DenseNet201 is 97.02%, 97.02%, 98.93%, 97.5%, and 98.81% respectively.

Besides in Fig. 9, we can see that the graphical upper bar chart is pointed to the MobileNet as having the highest

accuracy rate among others. So, we select MobileNet in our proposed model for the lung cancer dataset.

In Fig. 10 we can observe the performance of the MobileNet TL model. In performance bar chart, we can

visualize that the accuracy, precision, precision, recall, f1-score are 99.05%, 99.03%,99.06%, 99.04% respectively

and in error bar chart, the MAE, MSE, RMSE are 0.95%,0.95%, 9.67% respectively. we can insight that the

accuracy rate is much higher and the error rate is much lower. In Fig. 11 we can see the confusion matrix and

ROC Curve for the MobileNet TL model. In the Confusion Matrix, we can see that the TP rate is 30.48%, 34.29%,

34.29%; TN rate is 68.81%, 64.76%, 65.48%; FP rate is 0.48%, 0.48%, 0.0%; FN rate is 0.24%, 0.48%, 0.24% for

lung squamous cell carcinoma, lung adenocarcinomas, and lung benign tissue respectively. Here, we can insight

that the true positive and true negative rate is very high, and false positive and false negative are very low. The
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large number of TP and TN than FP and FN is a very crucial point for machine learning models to detect lung

cancer. In the ROC Curve, we can see that the AUC score is 99.96% for the soft voting classifier and the curve is

very well fitted in the graph as it is close to 1 which is a sign of a better performance model.
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Figure 10: Performance analysis for ensemble soft voting classifier for lung cancer
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Figure 11: Confusion matrix and ROC Curve for ensemble soft voting classifier for lung cancer

5.2. Performance evaluation of colon cancer

Table 14 and Fig. 12 illustrate the performance of different TL models based on hard and soft voting in tabular

format and visual graphical bar chart respectively. From Table 14, we can see that the average accuracy rate for

hard and soft voting classifiers are 99.57% and 99.57% respectively. Moreover in Fig. 12 the graphical bar chart, we

can see that the graphical upper bar is soft and hard voting classifiers with the same level, where 99.64%, 99.29%,

100%, 99.29%, 99.64%, 99.57% for VGG16, VGG19, MobileNet, DenseNet169, and DenseNet201 respectively for

both hard and soft voting classifier. As we know soft voting achieves an accuracy rate based on probabilities in lieu

of class labels. So, we select a soft voting classifier in our proposed model for the colon cancer dataset.
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Voting Classifier VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

Hard 99.64 99.29 100 99.29 99.64 99.57

Soft 99.64 99.29 100 99.29 99.64 99.57

Table 14: Accuracy performance analysis for ensemble models on colon cancer dataset
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Figure 12: Accuracy performance analysis for ensemble models on colon cancer dataset

Table 15 shows the performance of different TL models in tabular format and insights that the MobileNet TL

model gives the highest average performance among all other TL models where the average accuracy rate for VGG16,

VGG19, MobileNet, DenseNet169, and DenseNet201 is 99.64%, 99.29%, 100%, 99.29%, and 99.64% respectively.

Besides in Fig. 12, we can see that the graphical upper bar chart is pointed to the MobileNet as having the highest

accuracy rate among others. So, we select MobileNet in our proposed model for the lung cancer dataset.

In Fig. 13, we can observe the performance of the MobileNet TL model. In the performance bar chart, we can

visualize that the accuracy, precision, precision, recall, and f1-score are 100% for each and in the error bar chart,

the MAE, MSE, and RMSE are 0% for each. we can insight that the accuracy rate is the highest and the error rate

is zero. In Fig. 14, we can see the confusion matrix and ROC Curve for the MobileNet TL model. In the Confusion

Matrix, we can see that the TP rate is 44.29%; TN rate is 55.71%; FP rate is 0.0%; FN rate is 0.0% for colon cancer

(colon adenocarcinomas and colon benign tissue) respectively. Here, we can observe that the true positive and true

negative rate is very high, and false positive and false negative is very low. The large number of TP and TN than

FP and FN is a very crucial point for machine learning models to detect colon cancer. In the ROC Curve, we can

see that the AUC score is 100% for the soft voting classifier and the curve is very well fitted in the graph as it is 1

which is a sign of a perfect performance model.

TL VGG16 VGG19 MobileNet DenseNet169 DenseNet201

Hard 99.64 99.29 100 99.29 99.64

Soft 99.64 99.29 100 99.29 99.64

Average 99.64 99.29 100 99.29 99.64

Table 15: Accuracy performance analysis for TL models on colon cancer dataset
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Figure 13: Performance analysis for ensemble soft voting classifier for colon cancer
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Figure 14: Confusion matrix and ROC Curve for ensemble soft voting classifier for colon cancer
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Voting Classifer VGG16 VGG19 MobileNet DenseNet169 DenseNet201 Average

Hard 98.3 98.0 99.3 98.3 99.2 98.62

Soft 98.4 98.1 99.3 98.5 99.3 98.72

Table 16: Accuracy performance analysis for ensemble models on (lung and colon) cancer dataset

The accuracy rate of colon cancer is achieved at 100% which is a very promising result ever in colon cancer

detection. With the help of proper pre-processing, feature extraction and efficient ensemble soft voting classifier

give these good results. Among all transfer learning models, the MobileNet model gives better feature extraction

than others so the accuracy label reached the highest ever. As we already know that ensemble learning is a multiple

classifiers system (Gudivada et al., 2016). It’s better to get a prediction from multiple models than a single model,

which makes a model more robust and efficient. Hence, we have used the ensemble method to get a pleasant model

with good performance results.

5.3. Performance evaluation of cancer (lung and colon)

Table 16 and Fig. 15 illustrate the performance of different TL models based on hard and soft voting in tabular

format and visual graphical bar chart respectively. From Table 16, we can see that the average accuracy rate for

hard and soft voting classifiers is 98.62% and 98.72% respectively. Moreover in Fig. 15 for the graphical bar chart,

we can see that the graphical upper bar is soft and lower is hard voting classifier, where for VGG1698.3%, 98.4%;

for VGG19 98.0%, 98.1%; for MobileNet 99.30, 99.30%; for DenseNet169 99.3%,98.5%; for DenseNet201 99.2%,

99.3% for hard and soft respectively. Hence, it’s so clear that the soft voting classifier outperforms better than hard

voting classifier. So, we select a soft voting classifier in our proposed model for the (lung and colon) cancer dataset.
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Figure 15: Accuracy performance analysis for ensemble models on (lung & cancer) cancer dataset

Table 17 shows the performance of different TL models in tabular format and insights that the MobileNet TL

model gives the highest average performance among all other TL models where the average accuracy rate for VGG16,

VGG19, MobileNet, DenseNet169, and DenseNet201 is 98.35%, 98.05%, 99.30%, 98.40%, and 99.25% respectively.

Besides in Fig. 15, we can see that the graphical upper bar chart is pointed to the MobileNet as having the highest

accuracy rate among others. So, we select MobileNet in our proposed model for the (lung and colon) cancer dataset.
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TL VGG16 VGG19 MobileNet DenseNet169 DenseNet201

Hard 98.3 98.0 99.3 98.3 99.2

Soft 98.4 98.1 99.3 98.5 99.3

Average 98.35 98.05 99.3 98.4 99.25

Table 17: Accuracy performance analysis for TL models on cancer (lung and colon) dataset

In Fig. 16, we can observe the performance of the MobileNet TL model. In performance bar chart, we can

visualize that the accuracy, precision, precision, recall, f1-score are 99.30%, 99.27%,99.27%, 99.26% respectively

and in error bar chart, the MAE, MSE, RMSE are 0.7%,0.7%, 8.37% respectively. we can insight that the accuracy

rate is much higher and the error rate is much lower. In Fig. 17, we can see the confusion matrix and ROC Curve

for the MobileNet TL model. In the Confusion Matrix, we can see that the TP rate is 19.1%, 18.1%, 21.8%, 22.1%,

18.2%; TN rate is 80.3%, 81.3%, 78.2%, 77.8%, 81.7%; FP rate is 0.5%, 0.1%, 0.0%, 0.0%, 0.1%; FN rate is 0.1%,

0.5%, 0.0%, 0.1%, 0.0% for lung squamous cell carcinoma, lung adenocarcinomas, lung benign, colon benign, and

colon adenocarcinomas respectively. Here, we can observe that the true positive and true negative rate is very high,

and false positive and false negative is very low. The large number of TP and TN than FP and FN is a very crucial

point for machine learning models to detect lung cancer. In the ROC Curve, we can see that the AUC score is

99.99% for the soft voting classifier and the curve is very well fitted in the graph as it is close to 1 which is a sign

of a better performance model.
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Figure 16: Performance analysis for ensemble soft voting classifier for (lung and colon) cancer

5.4. Discussion

In our proposed model, we have evaluated our model using deep feature extraction and ensemble learning

approach based on high-performance filtering and locating the best TL models for feature extraction as well as

ensemble models providing a better accuracy rate. The proposed method is compared with the methods in other

papers and significantly achieves the highest accuracy than others. The comparison study of our proposed model

with others is illustrated in tabular format in Table 18. In comparison, the dataset that we have utilized and

compared with others is the same dataset (HPI LC25000) and the number of images employing the methods is
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Figure 17: Confusion matrix and ROC Curve for ensemble soft voting classifier for (lung and colon) cancer

slightly different. The similar datasets with a tiny variation of datasets make the comparison as a fair comparison

to estimate the performance.

In our experiments, we achieve the highest performance accuracy rate: lung dataset 99.05%; colon dataset 100%;

(lung and colon) dataset 99.30% which outperforms the others. Hence, Among all of the preceding in both lung

and colon cancer detection, our proposed hybrid model significantly achieves the highest accuracy.

5.5. Speed and complexity analysis

The prediction speed is the time needs to predict cancer and the resource usage cost is simply the complexity

of the ML model. The time and space complexity, time requires to execute an operation and the space requires to

store data, are very important to determine the efficiency of any algorithm (Zhu et al., 2022) (Abdelsamea et al.,

2019). In the following section, we have mentioned the prediction speed and complexity analysis. The diagnosis of

lung and colon cancer has an overall computational complexity of O(n²). In our method, we take the estimators

from the HPF process that requires O(n²) and build an ensemble learning method that consumes O(n) time to

complete, so the overall complexity is O(n²) + O(n) ∼ O(n²). The other ML models such as RF, SVM, LR, MLP,

XGB, and LGB take O(tlogn), O(n²), O(m), O(n²), O(td), and O(tl) respectively, where n is the number of data

points, m is the number of features, t denotes the number of trees, l is the level of the trees, and d is the depth of

the trees. On the other hand, diagnosing lung and colon cancer has an overall space complexity of O(n²). In our

method, we take the estimators from the HPF process that requires O(n²) and build an ensemble learning method

that consumes O(n) time to complete, so the overall complexity is O(n²) + O(n) ∼ O(n²). The other ML models

such as RF, SVM, LR, MLP, XGB, and LGB take O(et), O(km), O(m), O(n²), O(et+g), and O(et+l) respectively,

where n is the number of data points, m is the number of features, t denotes the number of trees, e is the number

of nodes, l is the level of the trees, and g is the output values for each leaf in decision trees. The analysis of time

and space complexity is shown in Table 19. Furthermore, we estimated the prediction time (sec) on the system

having 4 cores CPU, 16GB RAM, and 1 GPU employed by our proposed model while working with the 420 (lung),
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SI. No. Author Approach Dataset Accuracy (In %)

1 Hatuwal and Thapa (2020) CNN

HPI Lung (Borkowski et al., 2019)

97.20

2 Mangal et al. (2020) SCNN 97.89

3 Shandilya and Nayak (2022) CAD 98.67

4 Our proposed model Hybrid Model 99.05

5 Tasnim et al. (2021)

CNN (MaxPool)

CNN (AvgPool)

MobileNetV2

HPI Colon (Borkowski et al., 2019)

97.49

95.48

99.67

6 Liang et al. (2020) MFF-CNN 96

7 Mangal et al. (2020) SCNN 96.61

8 Qasim et al. (2020) CNN 99.6

9 Yildirim and Cinar (2022) MA ColonNET 99.75

10 Our proposed model Hybrid Model 100

11 Masud et al. (2021) 2D FW+ CNN

HPI Lung and Colon (Borkowski et al., 2019)

96.33

12 Sikder et al. (2021) CNN 93

13 Adu et al. (2021) DHS-CapsNet 99.23

14 Our proposed model Hybrid Model 99.30

Table 18: Comparison analysis of lung and colon cancer

Method RF SVM LR MLP XGB LGB HPF EL Proposed Model

Time Complexity O(tlogn) O(n²) O(m) O(n²) O(td) O(tl) O(n²) O(n) O(n²)

Space Complexity O(et) O(km) O(m) O(n²) O(et+g) O(et+g) O(n²) O(n) O(n²)

Table 19: The time and space complexity of the ML Models

280 (colon), and 1000 (lung and colon) testing images. For lung, colon, and (lung and colon) cancer, our approach

encloses the prediction times of 2s, 0s, and 14s, respectively. The prediction time grows as the number of testing

images grows. The analysis of prediction time is shown in Table 20.

Method RF SVM LR MLP XGB LGB Proposed Model

Prediction Time (sec)

Lung Dataset 0 2 0 0 0 0 2

Colon Dataset 0 0 0 0 0 0 0

Lung and Colon Dataset 0 14 0 0 0 0 14

Table 20: The prediction time (sec) of the ML Models

6. Conclusion

This paper presented a hybrid model for lung and colon cancer detection that integrates pre-processing, k-

fold (10 fold) cross-validation, feature extraction using several TL models, devoting ML algorithms, picking the

best algorithms using HPF and suit into ensemble learning models. After that select the best ensemble voting
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classifier model and most suitable feature extraction TL model. Moreover, we employed five TL models in feature

extraction such as VGG16, VGG19, MobileNet, DenseNet169, and DenseNet201. At the same time, for evaluating

the performance using ML algorithms, we used six popular algorithms namely RF, SVM, LR, MLP, XGB, and LGB.

This extensive development has been evaluated by a set of performance metrics such as accuracy, recall, precision,

f1-score, ROC Curve, MAE, MSE, and RMSE. After considering our experiments, we choose the MobileNet model

for Feature extraction among all TL models, and an ensemble soft voting classifier from two ensemble models to

evaluate our performance. Our experiment uses the LC25000 lung and colon histopathological image datasets and

finds that our hybrid model is best suited for diagnosing lung and colon cancer. In terms of performance metrics,

our suggested model performed admirably and outperformed other techniques. The accuracy rate for lung cancer

detection is 99.05%; for colon cancer, it is 100%, and for lung and colon cancer, it is 99.30%. We believe our

developed model could be applicable in clinics for the automated diagnosis of lung and colon cancers. Even though

the architecture delivers greater accuracy, further sophisticated work on image pre-processing and the proposed

model would make the task more adequate. A good feature extraction leads to producing better performance

results if the image is clear and sharp to extract features is an inadequacy in this paper. In the future, we will go

to explore the newly available lung and colon cancer dataset with efficient preprocessing to build a deep learning

approach to enhance the performance to detect lung and colon cancer.
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