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Abstract 

A mini review mold casting of metal-based materials via the Shaw process 

Ceramic mold casting refers to metal casting processes that employ ceramics as the 

mold material. The Shaw process and the Unicast process are types of ceramic mold 

casting that are used to manufacture items (e.g. golf clubs, impellers, etc.) from low to 

high volume, and from small to large tonnage. This mini review covers the academic 

and patent literature that focus on metal casting via the Shaw process. 

 

Keywords: Ceramic mold casting, Shaw process, slurry, manufacture. 

 

Introduction 

Casting is the process in which a molten metal is transferred to a hollow 3-dimensional 

container (mold) where the hollow is the desired shape of the product [1–3]. After the 

molten metal has been transferred to the mold, the metal and mold are cooled, and 

once sufficiently cool the product (i.e. the metal casting) is removed from the mold. 

Casting processes (e.g. investment casting, including lost-wax casting [4–13], plaster 

mold casting and sand casting [14–17] have been employed for hundreds of years and 

are well suited to producing complex shapes that are challenging or uneconomical to 

make by other methods [18,19], commonly (albeit not exclusively) employing ceramic 

molds to withstand the temperatures of molten metals [20–22]; we direct the avid 

reader to reference texts [23]. 

The Shaw process is a metal casting technique that combines investment 

casting with plaster mold casting and employs ceramic molds (with a 3-dimensional 

hollow generated from a reusable mold template/pattern), depicted in Figure 1. The 

ceramic molds are prepared from slurries composed of a mixture of ethyl silicate (also 

known as tetraethyl orthosilicate) that has been hydrolysed [24–32], alcohol, gelling 

agent, and mineral particles (chosen for their chemical, mechanical and thermal 

resistance to the conditions used in the casting process) [33–35]. The slurries solidify 

enabling removal of the mold template/pattern, and volatile substances (e.g. alcohol, 

water) are burned off by ignited/evaporated by exposure to a flame, yielding a ceramic 

mold with microscopic cracks [36,37]. The microscopic cracks enable gases to escape 

from the ceramic, and enable expansion/contraction during subsequent processes, but 



 

 

are too small for significant quantities of the metals cast within them to penetrate. The 

ceramic molds are cured/baked at ca. 980 °C to remove any residual volatiles, then 

cooled and stored. It is important to note that the Shaw process is the only casting 

process where cold ceramic molds can be filled with molten metal without cracking, 

nevertheless the molds are often warmed prior to being filled with molten metal to 

minimize shrinkage [18,19], although this can adversely affect the surface 

microstructure quality of the casting [38]. 

The Unicast process is a subtle variation on the Shaw process using molds that 

have been partially cured (without being ignited and cured/baked) so the reusable 

mold template/pattern imparting the 3-dimensional hollow can be removed [39]. For 

metals with high melting points the mold is then cured/baked at ca. 1040 °C prior to 

the metal casting, whereas for metals with low melting points the curing/baking is 

avoided, because the partially cured mold will withstand the casting process. 

Benefits of using ceramic molds include: the breadth of different metals/alloys 

that can be cast (ferrous/non-ferrous [e.g. Al, Cu, Mg, Ti, Zn]); being able to reuse the 

mold template/pattern (enabling storage of the bespoke template/pattern for long 

periods so the casting process can be repeated as/when necessary); high quality 

surface finish (µm scale roughness) and dimensional tolerances (minimising the 

necessity for polishing/defect removal); the ability to produce materials with intricate 

features (optionally combining ceramic mold casting and lost wax casting by employing 

resin/wax mold templates/patterns). For economic reasons it is predominantly used 

for small/medium batch production (most often for casting bespoke high value 

items).[40] 

Skilled toolmakers or patternmakers have traditionally manufactured tooling, 

and it is noteworthy that the material used by the toolmaker is determined by the 

same selection criteria as for the casting process. Metal tooling can be expensive as it 

is usually associated with high volume casting requirements or for high precision 

castings where longevity is also a consideration; wood patterns (soft wood) are 

traditionally associated with lower volume casting requirements; materials such as 

epoxy resins and hardwood offer a longer life and less wear than the softwood option. 

Tooling manufacture was traditionally done by hand but has evolved to the point 

where today small patterns can be manufactured by 3D stereolithography or if 



 

 

possible machined from resin bonded board on 5 Axis machines. The availability of a 

wide range of wood and manmade materials has enabled the manufacture of large 

skeletal wrapped patterns resulting in cheaper costs and quicker production times. 

Disposable or single use patterns can be manufactured from polystyrene, and low-cost 

tooling is also available from low-cost countries.[40] 

Additive manufacturing approaches can be employed to manufacture 

components with various dimensions, with tolerance ranges being dependent on the 

type of machine and operator (tolerances of 10-50 μm have been achieved). It is 

important to note that the mechanical properties of parts currently produced this way 

are likely to be inferior to those produced by casting, because even though casting can 

produce faults, selective laser melting/sintering (SLM/SLS) processes are limited by the 

powder size and will inherently have microporosity which can manifest in parts having 

lower stiffness and being more brittle. The range and grade of materials, and sizes of 

products produced by additive manufacturing approaches is increasing due in part to 

interest from specialised industries (e.g. aerospace/automotive) and the mass market. 

The mechanical properties of metal-based products are determined by the grain 

structure of the materials and the ability to be able to modify the microstructure by 

post cast treatments; use of SLS offers the additional benefit of being able to improve 

the surface properties (e.g. microstructure) and quality by conducting in situ laser 

processing. By comparison with casting approaches, additive manufacturing 

approaches tend to be somewhat slower and more costly, however, energy 

consumption per item can be lower and there are opportunities to automate 

processes with robotics [41–43]. 

This short review covers the patent and academic literature focusing on the 

Shaw process that is used worldwide to produce items for specialist applications (e.g. 

bowls, diffusers, fluid handling, impellers), in a variety of metals/alloys (including 

ferrous and non-ferrous materials) for a variety of industries, examples of which are 

depicted in Figures 2-6. 

 

Literature collection 

Literature searches with no publication date restriction were conducted in the Web of 



 

 

Science, Google Scholar, and Google Patents databases for the search term “Shaw 

process” and more broad terms for literature related to sustainability of foundry 

processes and environmental regulations. The titles and abstracts of published studies 

were reviewed, and inclusion criteria were full text records, primary research papers, 

review articles, and patent literature. We excluded duplicate studies, papers/patents 

published in non-English languages, and studies with unclear specifications. 

 

The Shaw process to prepare metal-based materials: materials science and 

engineering 

The metal casting process has been developed in a multitude of ways, commonly with 

a view to increase throughput. In the early 20th century, advances focused on 

homogenization of metal liquids within the cast to reduce the occurrence of defects 

throughout the material. Croning introduced a method of metal casting which resolves 

formation challenges from the air present within the hollow space inside of the casting 

mold, via utilization of electrical induction furnaces coupled with copper cooling tubes 

to reduce the presence of "dead heads" and hollow space present in the mold [44]. 

Siegfried introduced an alternative cooling technique for the casting of metal rods [45]. 

Instead of the inclusion of induction cooling via copper piping, Siegfried introduced a 

mold that is continuously chilled to provide the precise thermal conditions for a 

continuous process of casting metal rods, wherein molten metal is passed through a 

vertically aligned mold at a constant flow rate, which is in turn cooled, producing the 

solidified metal rod at the opposite end of the mold [45]. In addition, a similar 

continuous flow model has been applied for casting metal sheets. Hazelett used a 

continuous motion casting via the use of metal belts [46]. Rather than having a 

processed mold to shape the metal, the belts act as the mold, pressing the molten 

metal to the desired thickness whilst being cooled themselves to cool the metal, 

producing the metal sheets [46]. The continuous casting process has been applied and 

advanced in many ways. Atkin introduced a continuous casting process that reduced 

the levels of harmful surface deposits on the casting mold due to variations in the 

properties of metals in the alloy [47]. The process involves reversing the metal cast to 

allow any condensed metal on the surface of the molds to be reabsorbed, and thus 



 

 

preventing both build-up of metal deposits on the casting mold itself, and any harmful 

effects the condensed metal may possess [47]. Jolly et al. reported a method of 

forming metal patterns with the inclusion of fibrous reinforcement membrane 

composed of silicon [48]; such preforms act as the template for the metal to bind to 

within the mold, potentially enhancing physical properties (e.g. microstructure) of the 

metal solid.  

These technical improvements aim to prevent/reduce the presence of defects 

that may arise during the casting process. One issue with the casting process is the 

presence and movement of air within the mold. Air unable to leave the mold during 

casting can lead to defects on the metal surface or form cavities within the metals 

solids themselves, giving rise to poor quality structure/performance of the cast parts. 

Sutton et al. reported a method of inverted casting, using a bottom filling process to 

force the movement of air upwards [49]. The casting process also attempts to improve 

the quality of the metal parts by means of continuous casting using sand molds that 

are sequentially produced, controlling the flow velocity and pressure of the system. 

Although this method improves the quality of the product, the process was time 

consuming in comparison to previous techniques therefore best suited to small runs of 

bespoke parts. Paine reported an alternative method for reducing the air content and 

thus porosity within the product that involves the use of secondary casting chambers 

and reduction of pressure [50]. Using two chambers (an initial casting chamber and a 

cooling chamber) resulted in an increased rate of processing and output, allowing 

molten metal to be cast whilst another cools and solidifies [50]. While the presence of 

air can cause major defects in cast metals, turbulence defects caused by the 

movement of the molten metal in the casting system also has an impact on the quality 

of the products. The use of reduced pressure casting is advantageous for counteracting 

these associated problems. In addition, rapid thermal exchange coupled with reduced 

pressure can potentially increase the cooling rate of the solid within the mold. Poteri 

et al. reported a sealed casting mold that includes thermally conducting regions 

located at the bottom of the casting mold [51]. Having the thermally conducting 

regions at the bottom and the liquid inlets at the top, offers an instantaneous 

exchange of heat during the introduction of the metal to the mold, and having this in a 

sealed system offers pressure control, and therefore cooling control [51]. 



 

 

Vincent et al. reported a distributor device that has potential to further reduce 

the turbulence during casting [52]. The directional flow of metal through the 

distributor offers control over how the liquid is introduced to the mold. Reducing the 

flow rate of the metal reduces the entropy of the liquid during pouring, which in turn 

reduces any turbulence related problems [52]. Defects occurring in metal casting can 

be readily managed via means of controlling airflow, pressure, and heat exchange. One 

challenge of the latter is the rate of cooling, and the control of metal shrinkage during 

the cooling process. Powell et al. [53] reported a controlled mechanism that 

communicates with the casting mold and cooling metal to reduce the size and 

presence of shrinkage cavities in the mold. Imperfections, such as roughness of the 

metal surface and porosity within the metal, are a result of shrinkage cavities, leading 

to poor quality products. The use of feeder sleeves or risers that move during the 

cooling process reduces the presence of shrinkage cavities. Feeder sleeves allow 

molten metal present within them to flow back into the casting mold, compensating 

for the shrinkage of the cast metal, and further reducing the potential defects present 

within each product [53]. 

The process of manufacturing and the composition of casting molds has been 

altered and advanced in many ways over the previous century. Casting molds are 

required to withstand high temperatures that are a constant necessity when liquidizing 

and casting metals. A wide variety of materials has been used to process casting 

molds. Most typically used molds are comprised of sand and other silicates as they can 

withstand the high temperatures required [4,54,55]. Alternatives have included 

silicone, epoxy, and other low temperature molds for manufacturing low-melting-point 

materials. Shaw reported a method of developing casting molds that combines 

refractory materials with binders composed of alkyl compounds that, when forming 

the mold, are converted into combustible alcohols. This technique applies a "freezing" 

process on the mold from the combustion of the alcohol. As the alcohol is burnt off, 

heat transfer to the body of the mold is applied. This hardens the mold exterior, 

leading to a contraction of the mold interior and rendering it uniformly porous, which 

is beneficial for the removal of gases in the system [36,56]. 

Most casting processes utilize investment casting (or "lost-wax" casting) to 

form metal products. Despite its advantages over solid mold techniques, 



 

 

disadvantages have arisen from the use of wax as the casting mold, with several issues 

with the removal and recycling of the mold material itself. Removal of wax molds from 

the product in the early years were time consuming, as removing wax molds from the 

patterns requires very specific conditions (e.g. temperatures and solvents to dissolve 

the materials). Carter reported a combination of slurry solutions to use as molds for 

casting that overcome these disadvantages by using reagents that make up low 

temperature binders. In comparison to previously used high temperature binders, 

these low temperature binders were stable, do not break down with temperature 

changes, and maintain their rigid shape [57]; however, many low temperature and wax 

molds are non-reusable. Because of this, the more traditional sand and ceramic molds 

are more frequently applied to retain cost-effectiveness. Several methods were 

developed around the 1970s for the manufacturing of solid molds [58–60]. Subsequent 

developments of the mold manufacturing process have led to alterations in how the 

mold is formed, and the chemical composition of the mold itself [61]. The use of a 

ceramic slurry accompanied by alumina and mullite were shown to reduce the rate of 

cooling [62]. The combination of alumina and mullite led to further research into the 

chemical composition of the ceramic slurry, and zircon, chromite, and calcined clay are 

amongst a few of the materials incorporated into the slurry. The formed slurries 

possess greater particle sizes which allow for greater cool-down times, as well as 

hardened strength in comparison to ceramic molds reported in earlier developments 

[63]. Indeed, studies on the effects of binder composition on the structural and 

physical properties of the zircon ceramic mold by with the use of two different binders 

(ethyl silicate and ethyl silicate mixed with aluminium tri-sec-butoxide) showed the 

binder was very effective to produce a ceramic mold with homogeneously distributed 

pores that helped to remove gases evolved during casting. It was also found that the 

ceramic mold obtained using the ethyl silicate aluminium tri-sec-butoxide did not react 

with the liquid metal, and as a result burn on casting defects encountered in stainless 

steel castings were effectively eliminated (a potential solution to the chronic problems 

of decarburization and pitting defects, as no oxygen was coming from the silica) [64]. 

The use of alumina and camphor in slurries resulted in increased green strength of all 

the ceramics with increments of the slurry additives, with alumina increasing green, 

fired and corner strengths, and camphor improved the permeability of the shell at the 



 

 

expense of its strength [65,66]. The use of silicon nitride in slurries increases the cast 

density and resultant strength of the castings [67,68], likewise, slurries containing 

particulate metal oxides (e.g. silicon dioxide, aluminum oxide, titanium oxide and zinc 

oxide) and polyphosphates of the formula ((PO3)n) can improve the mechanical 

strength of casting molds at high thermal loads [69]. 

Post-processing after casting consumes large amounts of labour and energy. 

The effective removal of mold material that has adhered/fused to the casting, is 

traditionally achieved by air blasting (e.g. steel shot, aluminosilicates) to remove the 

media, however, foundries have begun to adopt the use of high pressure water 

blasting and ultrasonics to make the process more rapid; the effective removal of 

excess metal associated with feeding and introducing the metal into the mold cavity is 

traditionally removed by sawing, hammering, oxyacetylene and abrasive discs, and 

foundries have also begun to adopt the use of high pressure water blasting, 

ultrasonics, pneumatic shears, and/or plasma cutters to make the process more rapid 

[70]. Smoothing of cast surfaces was traditionally achieved by application of handheld 

power tools with grinding stones and metal burrs, however, attention is being devoted 

to carrying out the minimum amount of smoothing/polishing. One approach to this is 

the development of slurries with two or more refractory materials with different 

densities and particle size distributions, where the smaller denser refractory material 

migrates downward through the slurry toward the upward-facing mold surface, 

thereby yielding smoother and more accurate surfaces [71]. Waste heat recovery 

offers potential for cost cutting [72–77], and wastewater treatment to 

minimise/remove contamination from liquids (e.g. oil), solids (e.g. metal/alloy 

particulates, sand) etc. minimises disposal costs and potentially allows recycling of 

components [78–83]. Clearly, the ability to produce bespoke high precision castings of 

high value will motivate continuing innovation in this manufacture process. 

 

The Shaw process to prepare metal-based materials: sustainability 

Sustainability is an increasingly important focus of industry, and a driver of innovation 

in manufacture processes (e.g. investment in robotics to undertake 

hazardous/repetitive activities). Life cycle assessments evaluate the environmental, 



 

 

social and economic impacts of products, facilitating the development of more 

sustainable products, including initiatives to reduce the amount of waste we create, 

and reuse/recycle waste, and has been employed to assess metal casting processes 

[84]. The Shaw process consists of a series of steps which can be viewed through a 

sustainability lens, noting that the process is labour and energy intensive and can be 

hazardous: preparation of a reusable pattern made of metal (high volume and long 

lifetime), plaster (low volume as can easily be replaced and short lifetime), resin 

(medium volume and medium lifetime), wood (medium to low volume and medium 

lifetime), etc.; wherein production volumes are high (10,000s), medium (ca. 1000), low 

(100s); the lifetime of pattern equipment is determined by the quality of the storage 

facilities, and lifetimes are long (50 years), medium (20 years) or short (7 years); 

followed by fabrication of a mold on the pattern, removal of the mold (optional reuse 

of the pattern), removal of volatiles from the ceramic molds by burn off, casting (filling 

the ceramic molds with metals/alloy), hardening of the metals/alloys and cleaning to 

remove the mold material, finishing the product (smoothing cast surfaces). As noted 

above, the Shaw process is predominantly used for small/medium batch production 

(most often for casting bespoke high value items), and compliance with environmental 

regulations (e.g. the Department for Environmental, Food & Rural Affairs, DEFRA [85], 

in the United Kingdom; the Environmental Protection Agency, EPA, in the United 

States) in the countries in which the foundries are based affect the economics of this 

manufacturing process. 

 

Conclusion 

The Shaw process of metal casting is well established and enables the small/medium 

batch production of bespoke high value items. As highlighted in this short review, 

there has been significant investment of time and effort in the optimisation of this 

process with significant beneficial economic impacts for the industries involved. 

Additive manufacturing approaches to prepare metal-based materials represent an 

opportunity for the casting industry to produce items with bespoke properties for their 

customer base (e.g. for producing novel tooling [86–89], however, additive 

manufacturing approaches are still somewhat nascent by comparison with established 



 

 

casting approaches and require investment in new production facilities and staff (new 

hires and training/upskilling of the existing workforce). However, it is likely that 

additive manufacturing for rapid tooling will be increasingly important in the 

foreseeable future for both prototype modelling and final product development 

[21,44,90], due to its complementarity in terms of fit to the production of bespoke 

high value items and increasing realisation of the potential of industry 4.0. 
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Figures and legends/captions 

 

 

Figure 1. Schematic of the casting process. Figure reproduced with permission from 

The Open University (the OU), published under a Creative Commons BY-NC-SA 4.0. 

https://www.open.edu/openlearn/science-maths-technology/engineering-

technology/manupedia/ceramic-mould-casting  

 

 

 

 

 

Figure 2. Part produced by the Shaw Process. Courtesy of Bonds Precision Castings.  

 

https://www.open.edu/openlearn/science-maths-technology/engineering-technology/manupedia/ceramic-mould-casting
https://www.open.edu/openlearn/science-maths-technology/engineering-technology/manupedia/ceramic-mould-casting


 

 

 

Figure 3. Parts produced by the Shaw Process. Courtesy of Bonds Precision Castings. 

 

 

Figure 4. Parts produced by the Shaw Process. Courtesy of Bonds Precision Castings. 

 

 



 

 

 

Figure 5. Parts produced by the Shaw Process. Courtesy of Bonds Precision Castings. 

 

 

Figure 6. Parts produced by the Shaw Process. Courtesy of Bonds Precision Castings. 

 

 


