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Abstract—In this paper, a new approach is proposed to
solve a multi-objective economic-emission scheduling problem
in microgrids (MGs) by simultaneously minimizing the energy
and emission costs of the MG with various distributed energy
resources (DERs). The proposed approach is an extension of a
computationally effective multiobjective optimization technique,
Pareto concavity elimination transformation (PaCcET). The
proposed approach, referred to as Fuzzified-PaCcET, employs
a fuzzy logic controller to dynamically revise crossover and
mutation rates in the original PaCcET leading to the faster
convergence of the solution. The proposed approach finds the
best Pareto front, also referred to as a Non-dominated set (NDS)
of solutions, instead of finding a single optimal solution. In
order to find the solutions on concave areas of the Pareto front,
an iterative objective space transformation is performed in the
PaCcET algorithm to allow a linear combination of objective
functions (in the transformed objective space). The proposed
Fuzzified-PaCcET-based scheduling is implemented on a MG
with various dispatchable and non-dispatchable DERs to find the
set of optimal solutions according to the total fuel cost of DERs, as
well as the most optimum environmental cost. In order to extract
the best compromise solution (BCS) among NDS of solutions,
a fuzzy-based method is implemented. The comparison of the
simulation results of the Fuzzified-PaCcET with that of PaCcET
shows that Fuzzified-PaCcET can generate better solution with
less computational burden.

Index Terms—Economic-emission scheduling, fuzzy logic con-
troller, multi-objective optimization, PaCcET.

I. INTRODUCTION

Microgrids (MGs) are small-scale power systems consisting
of various distributed energy resources (DERs) such as solar
photovoltaics (PVs), small wind turbines, fuel cells, micro-
tubines, energy storage devices, and other controllable loads.
MG can also be regarded as a single controllable system
providing both power and heat to a certain specific area, and it
can be operated in both grid-connected and isolated modes [1].
This enables MGs to meet its continuously varying demands
with the help of power imported from the main grid if it is
not economical or insufficient to supply only using its own
DERs. Therefore, the economic dispatch is needed for a grid
connected MG for its optimal operation [2].

Different techniques have been reported in the literature in
order to solve the economic emission dispatch (EED) prob-
lems in MGs and power systems. In [3], the multi-objective
economic load dispatch problem has been solved by reducing
it to a single objective problem by treating the emission

as a constraint with a permissible limit, which does not
consider the tradeoff between generation cost and emissions. A
stochastic EED has been formulated in [4], where uncertainties
in the system production cost and random nature of the load
demand have been considered. A dynamic programming based
approach has been presented in [5] to solve EED problem
in real-time. In [6], a dynamic non-dominated sorting multi-
objective biogeography-based optimization technique has been
proposed to solve multi-objective dynamic EED problem
considering charging of plug-in electric vehicles (PEVs). An
interior search algorithm has been applied in [7] to solve multi-
objective EED problem. In [8], an exchange market algorithm,
inspired by the method of exchange of shares by stockholders,
has been proposed to solve EED and reliability problem in
case of thermal power plants. In [9], a normal boundary
intersection method has been proposed to solve multiobjective
EED problem considering combined heat and power.

The multi-objective optimization problems including EED
have been solved using different types of evolutionary algo-
rithms including Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), Multi-objective Fireworks Algorithm (MOFWA),
Multi-objective Particle Swarm Optimization (MOPSO), and
Pareto Concavity Elimination Transformation (PaCcET), to
name a few. NSGA-II has been implemented for dynamic
EED problem in [10], where a nonlinear constrained multi-
objective optimization problem has been formulated. In [11],
a θ-dominance based evolutionary algorithm (θ-DEA) has
been proposed to solve combined heat and power EED prob-
lem. A time-varying acceleration particle swarm optimization
(TVAC-PSO) has been presented in [12] for stochastic multi-
objective optimization of combined heat and power economic-
emission dispatch. In [13], a NSGA-II based approach has
been proposed to determine optimal or near-optimal sizes and
locations of multi-purpose utility-scale shared energy storage
in distribution systems. In [14], a Paired Bacteria Optimization
(PBO) algorithm has been been proposed to solve Security
Constrained Optimal Power Flow (SCOPF) with distributed
load variations and uncertain wind power. In [2], the multi-
objective economic emission dispatch problem has been solved
using PaCcET.

This paper proposes the Fuzzified-PaCcET, an extension
to PaCcET, to solve a multi-objective Economic Emission
scheduling problem that minimizes the emission apart from



minimizing generation cost of various distributed energy re-
sources (DERs). The Fuzzified-PaCcET employs a fuzzy logic
controller to dynamically revise crossover and mutation rates
in the original PaCcET leading to the faster convergence of
the solution. The Fuzzified-PaCcET is implemented on a MG
with various DERs to obtain the most economic operating
condition not only by minimizing the total fuel cost but also by
finding the most environmentally friendly solutions. To extract
the best compromise solution (BCS) from NDS of solutions,
an approach based on fuzzy set theory is implemented. The
results show that the Fuzzified-PaCcET can generate better
solution than PaCcET with less computational time.

The rest of the paper is organized as follows. The method
of formulation of economic-emission scheduling problem with
the description of objective functions and constraints are pre-
sented in Section II. Section III describes the proposed multi-
objective optimization technique, which is the combination of
the original PaCcET and a fuzzy logic controller. Also, the
proposed solution methodology is explained in Section III.
Section IV presents the simulation results and discussions,
along with the comparison of the proposed Fuzzified-PaCcET
technique with PaCcET in terms of convergence and the dom-
inated hypervolume. Section V provides concluding remarks.

II. ECONOMIC-EMISSION SCHEDULING PROBLEM
FORMULATION FOR MGS

Since the objective of this paper is to minimize both
economic and emission costs, a multi-objective economic-
emission scheduling problem is to be formulated. The two
objectives for the economic-emission scheduling problem un-
der consideration are as follows [2].

1) Economic cost minimization

min{Fg =
T∑
t=1

[
qtP

t
grid+

Ng∑
i=1

(aiP
i,t
DER

2
+biP

i,t
DER+ci)

]
}, (1)

2) Fuel emission minimization

min{Eg =
T∑
t=1

[ Ng∑
i=1

(kieP
i,t
DER)

]
}, (2)

where qt and P tgrid are electricity rate and the amount of
power exchanged between the main grid and the MG at time
t, respectively. The total scheduling time T is divided into
subintervals t. P tgrid is positive if power is being bought from
the main grid and negative if power is being sold to the main
grid. The generation cost comprising of power generation and
operation and maintenance costs of a DER is a quadratic
function of P i,tDER, the active power of DER i at time t. In (1),
ai, bi, and ci represent the cost coefficients of each DER and
Ng represents the total number of dispatchable DERs. Non-
dispatchable resources such as solar photovoltaics (PVs) and
wind-turbines are considered as negative loads. Equation (2)
is the other objective function that represents the cost related
to emission as an index for environmental conservation, where
kie is the emission cost coefficient of ith DER.

The constraints of the optimization problem are as follows.

Ng∑
i=1

P i,tDER +

Nnd∑
j=1

P j,tnd + P tgrid − P tload = 0, (3)

P imin < P i,tDER < P imax, (4)

where (3) represents active power balance equation, P j,tnd is
the active power generated by jth non-dispatchable resource
at time t, P tload is the total load of MG at time t, and Nnd
is the total number of non-dispatchable resources. Equation
(4) represents the active power limit constraint of dispatch-
able DER, P imin and P imax respectively being minimum and
maximum limit of ith DER.

III. PROPOSED MULTI-OBJECTIVE OPTIMIZATION
TECHNIQUE

A. Background

The proposed Fuzzified-PaCcET technique draws from
many distinct concepts from within multi-objective research,
some of which are briefly described as follows [15].

Dominance: A solution dominates another solution if it
scores lower on all criteria. A solution is said to weakly dom-
inate another solution if it scores equal on some objectives,
but less on other ones.

Pareto front: The outcome of a multi-objective optimization
problem is a set of solutions referred to as Pareto front. Each
point (or solution) in the Pareto front cannot be dominated by
other points in feasible solutions.

Utopian and nadir points: The best possible solution ob-
tained by optimizing each objective function individually is
referred to as utopian point. This point is an infeasible and
unattainable solution due to the conflict between the objec-
tives. Nadir point is the upper bound of the Pareto front. It is
the solution resulting from the worst value for each objective
function in the Pareto front. It is to be noted that the nadir
point is a concept that is different from the worst feasible
point in the complete set of solutions.

Dominated hypervolume: The dominated hypervolume
refers to the feasible space of multi-objective optimization
problem that is enclosed by nadir and Pareto points. This con-
cept is widely used as a criterion to compare the accuracy and
performance of different types of multi-objective optimization
techniques.

B. Fuzzified-PacCET

Fuzzified-PaCcET, an extension to PaCcET, is a new itera-
tive multi-objective transformation. It transforms the objective
space in such a manner as to make the Pareto Front convex,
and a single user-defined parameter is sufficient for it [15].
Fuzzified-PaCcET is composed to two main components, viz,
the original PaCcET and a fuzzy logic controller.
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Fig. 1. Visualization of PaCcET. It transforms the green cross (a normalized
point) to red cross (a transformed point) and green dots on the normalized
border (λnorm

B ) to red ones on the transformed border (λB) [15].

1) PaCcET: PaCcET searches the points in the Pareto front
in multi-objective optimization problem based on the linear
combination of multiple objective functions in the transformed
space using optimizers with single objective function. The
PaCcET starts by calculating the utopian uo and nadir unadir

points by minimizing each objective function individually. In
the first step, all other points are normalized and mapped from
multi-objective space (λ) to a normalized space (λnorm) using
(5).

vnorm(i) =
v(i)− uo(i)

unadir(i)− uo(i)
, (5)

where vnorm(i) is the ith element of normalized point v.
In the second step, the normalized space λnorm is mapped

to a transformed space (λτ ) using (6)-(11) .

r =
vnorm

|vnorm|
, (6)

L1 : ‖vnorm‖1 =
∑
i

vnormi , (7)

L2 : ‖v‖B = min(γ) 3 γr ≥ p∗I , (8)

L3 = ‖v‖hp = β 3
∑
i

βri = (m− 1), (9)

dτ = L3
L1

L2
= ‖v‖hp

‖vnorm1 ‖
‖v‖B

, (10)

vτ = dτr, (11)

where L1 is linear combination or Manhattan distance from
uo,norm to vnorm, L2 is distance from uo,norm to the nor-
malized dominated border λnormB along r, L3 is distance from
uo,norm to the normalized utopian hyperplane λnormB along r,
m is the number of objective functions, and p∗I is the Pareto
front at Ith iteration. Figure 1 shows all the variables employed
in the PaCcET.
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Fig. 2. The membership function of inputs and outputs of fuzzy logic
controller.

In the last step a function, referred to as PaCcET Linear
Combination (PLC), is determined which is a linear combina-
tion of the elements of vτ .

PLC =
∑
i

vτi . (12)

PaCcET finds the points with PLC less than 1 in each iter-
ation using single-objective optimizers. In this paper, genetic
algorithm (GA) is used as single objective optimizer.

2) Fuzzy logic controller: Since GA is used as single
objective optimizer, normally crossover and mutation rates are
constants. Contrary to this, the proposed Fuzzified-PaCcET
technique utilizes a fuzzy logic controller to dynamically up-
date crossover and mutation rates. The crossover and mutation
rates are updated in such a manner so as to enhance diversity of
the population in the early stage of evolution, improve global
search ability in the medium stage of evolution, and strengthen
the convergence of the algorithm in the late stage of evolution
[16]. The inputs of the fuzzy logic controller are x1 and x2
and its outputs are crossover rate pc and mutation rate pm.

The fuzzy logic controller consists of three parts: fuzzi-
fication, fuzzy reasoning, and defuzzification. In fuzzification
process, the crisp quantities are converted into fuzzy quantities.
The crisp quantities x1(n) and x2(n) for nth generation,
given respectively by (13) and (14), are converted into fuzzy
quantities using membership functions shown in Figure 2(a)
and 2(b).

x1(n) =
|Fmax(n)− F avg(n)|

|Fmax(n)|
, (13)

x2(n) =
|F avg(n)− F avg(n− 1)|

|Fmax(n)|
, (14)

where x1(n) denotes the normalized Euclidean distance be-
tween maximum objective vector Fmax and average objective
vector F avg both at nth generation, x2(n) denotes the nor-
malized euclidean distance between average objective vector
at nth generation and that at (n− 1)th generation.



The membership functions for inputs and outputs of fuzzy
logic controller are shown in Figure 2. Each membership
function µ, lying on the interval [0,1], expresses the degree
of membership that the specific combination of parameters
has in a particular fuzzy set. The inputs x1 and x2 have three
fuzzy sets, viz, L (low value), M (medium value), and H (high
value). Crossover rate pc has three fuzzy sets, viz, L, M, and
H as shown in Figure 2(c), and mutation rate pm has four
fuzzy sets, viz, EL (extra low value), L, M, and H as shown
in Figure 2(d).

In the fuzzy reasoning part, also referred to as fuzzy
inference system, the fuzzy values of the outputs are obtained
on the basis of fuzzy rules. For the rule-based fuzzy reasoning,
linguistic variables are used as antecedents and consequents.
The antecedents are used to express an inference, which when
satisfied result in certain consequents [17]. Table I shows the
IF-THEN fuzzy rules in the early, medium, and late stages of
evolution [16]. The fuzzy rule-based system adopts IF-THEN
fuzzy rules, given by, IF antecedent and THEN consequent.
For example, in the early stage of evolution, if x1 is M and
x2 is L, then membership function M is used as fuzzy set for
crossover rate pc and membership function H is used as fuzzy
set for mutation rate pm.

The degree of membership for crossover and mutation rates
are determined as follows.

µ(pc) = µ(pm) = min{µ(x1), µ(x2)}. (15)

In the defuzzification part of the fuzzy logic controller, the
fuzzy quantities µ(pc) and µ(pm) are converted to crisp
quantities pc and pm, respectively. The crisp value of an output
is determined using the centroid method. The centroid method,
also referred to as center of area or center of gravity, is the
most prevalent and is regarded as physically appealing of all
the defuzzification methods [18] and is given by the following
algebraic expression.

z∗ =

∫
µ(z).zdz∫
µ(z)dz

, (16)

where z any quantity to be defuzzified, i.e., z is pc or pm.

TABLE I
FUZZY RULES IN THE EARLY/MEDIUM/LATE STAGE OF EVOLUTION

Fuzzy value of crossover rate pc

µ(pc)
x1

L M H

x2

L L/M/L M/M/L H/H/L
M L/M/L M/M/L M/H/L
H L/M/M M/H/M M/M/M

Fuzzy value of mutation rate pc

µ(pc)
x1

L M H

x2

L H/H/L H/M/L M/M/EL
M H/L/L H/L/EL M/L/EL
H M/L/EL M/L/EL M/L/EL

In this way, the fuzzy logic controller is used to dynamically
update crossover and mutation rates over generations. Figure 3
shows the flowchart of Fuzzified-PaCcET technique to find
Pareto front of the multi-objective optimization problem.
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Fig. 3. Flowchart of the proposed economic-emission optimization technique

IV. CASE STUDIES AND DISCUSSIONS

A. Case Study Parameters

In this paper, the proposed Fuzzified-PaCcET is applied
to economic-emission multi-objective scheduling of microgrid
(MG) in either grid-connected or islanded mode. The MG
consists of three dispatchable DERs, one non-dispatchable
PV generation, and time-varying loads. In this paper, the
economic-emission scheduling of dispatchable DERs is per-
formed according to the most-probable PV generations and
loads during each scheduling period. The cost coefficients of
the dispatchable DERs are shown in Table II and load, PV
generation, and the electricity price for different scheduling
hours are presented in Table III. The day-ahead electricity
price schedule for distribution network retail customers is
adopted from the ComEd utility [19].

TABLE II
COST COEFFICIENTS DATA OF DISPATCHABLE DERS

Titles Pmax

(kW)
Pmin

(kW)
c

()
b

(/kWh)
a

(/kWh2)
ke

(/kWh)
DER1 200 40 954 63.6 0.0018 5
DER2 240 48 813 61.1 0.0011 6
DER3 400 80 1054 45.4 0.0005 8

B. Comparison

The superiority of PaCcET for solving multi-objective op-
timization problems in power systems, including economic-



TABLE III
HOURLY LOAD, PV GENERATION AND ELECTRICITY PRICE DATA

Hour Pload Ppv qt Hour Pload Ppv qt
(kW) (kW) (/kWh) (kW) (kW) (/kWh)

1 308 0 56 13 693 114 79
2 341 0 55 14 770 132 70
3 308 0 51 15 825 111 77
4 319 0 51 16 781 97.5 77
5 341 0 50 17 814 82.5 83
6 407 3 51 18 792 61.5 83
7 517 13.5 54 19 759 40.5 77
8 649 27 56 20 693 18 76
9 704 51 66 21 649 4.5 76

10 814 72 78 22 594 0 74
11 737 102 85 23 561 0 72
12 748 108 83 24 429 0 68

 

Fig. 4. Comparison of dominated hypervolume for Fuzzified-PaCcET and
PaCcET with respect to number of GA iterations

reliability scheduling or Volt-Var control in distribution net-
works, is previously established in [20], [21]. For compari-
son of Fuzzified-PaCcET with the original PaCcET, different
criteria can be used. According to our prior results, the con-
vergence and diversity of the best Pareto points are the most
important ones. Various metrics such as distance, diversity, and
hypervolume metrics can be used to compare the results of
different multi-objective optimization techniques. Dominated
hypervolume is a metric that measures the area enclosed by
the Pareto front and the nadir point. It identifies the closeness
between the Pareto front to the feasible area boundary. Figure 4
shows the percentage of dominated hypervolume as a function
of number of GA genrations for PaCcET and Fuzzified-
PaCcET. It can be seen from the figure that Fuzzified-PaCcET
proceeds faster than PaCcET towards the Pareto front.

Figure 5 and Figure 6 show the comparison of Pareto fronts
obtained using Fuzzified-PaCcET and PaCcET after 25 and
50 GA generations, respectively. In each of the scenarios, the
population size is 40. From these two figures, we can see
that Fuzzified-PaCcET converges to final solution faster than
PaCcET. But after large number of iterations, both the methods
may converge to same solutions.

 

Fig. 5. Pareto fronts obtained using Fuzzified-PaCcET and PaCcET after 25
GA generations

 

Fig. 6. Pareto fronts obtained using Fuzzified-PaCcET and PaCcET after 50
GA generations

C. Best Compromise Solution

Once the final Pareto front including non-dominated so-
lutions is obtained by Fuzzified-PaCcET technique, the best
compromise solution (BCS) is chosen from non-dominated
solutions using a fuzzy membership approach. The following
function is used to calculate the membership value of each
point on the final Pareto front [20].

µi(k) =


1 if fi(k) < fmi
fM
i −fi(k)
fM
i −fm

i
if fmi < fi(k) < fMi

0 if fMi < fi(k)

(17)

where µi(k) is the membership value of the ith objective func-
tion of kth Pareto point. For each Pareto point, the normalized
membership value, µnorm(k), is computed as follows.

µnorm(k) =

∑No

i=1 µi(k)∑NP

j=1

∑No

i=1 µi(j)
, (18)

where No and NP are the number of objective functions and
Pareto points, respectively. The BCS is the solution with the
maximum value of µnorm.



 

Fig. 7. Hourly loads, scheduled power generation of DERs, and power ex-
change between main grid and MG based on Fuzzified-PaCcET optimization

Using the BCS obtained using (17) and (18), the values
of P i,tDER and P tgrid over the entire scheduling horizon can
be computed. Figure 7 shows the hourly loads, scheduled
power generation of DERs, and the power exchange between
the main grid and the microgrid when the Fuzzified-PaCcET
algorithm is run for 100 generations with the population size
of 40. In the figure, transparent bars with red border represent
the power transfer P tgrid. When the transparent bar is above
the load line, the power is sold to the main grid and when it is
below the load line, the power is bought from the main grid.

V. CONCLUSION

In this paper, a Fuzzified-PaCcET technique has been
proposed for economic-emission scheduling of microgrids
with dispatchable DERs. The proposed Fuzzified-PaCcET is
composed of a fuzzy logic controller in addition to the
original PaCcET. The PaCcET has been used to iteratively
transform multi-objective space to allow a linear combination
of objective functions to find the solutions on concave areas of
the Pareto front. The fuzzy logic controller has been employed
to dynamically update crossover and mutation rates at different
stages of evolution of the Pareto solution. The comparison of
the dominated hypervolume of the Pareto solutions between
PaCcET and Fuzzified-PaCcET has shown that Fuzzified-
PaCcET can generate superior solution with less number of
iteration and computational time. This feature makes it more
attractive for practical applications with resource-constrained
computational devices.
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