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Abstract—This paper proposes a deep reinforcement learning
(DRL)-based framework for distribution network reconfiguration
(DNR). The objective of the proposed framework is to minimize
power losses in the network and various reliability indices includ-
ing System Average Interruption Frequency Index (SAIFI), Sys-
tem Average Interruption Duration Index (SAIDI), and Average
Curtailed Power (ACP). Constraints of the optimization problem
are radial topology constraint and all nodes traversing constraint.
The distribution network is modeled as a graph and the optimal
network configuration is determined by searching for an optimal
spanning tree. Contrary to existing analytical and population-
based approaches, where the entire analysis and computation is
to be repeated to find the optimal network configuration for each
system operating state, DRL-based DNR, if properly trained,
can determine optimal or near-optimal configuration quickly
even with changes in system states. The Q-learning, a model-
free reinforcement learning algorithm, is used by the proposed
DRL-based framework to learn the action-value function. The
effectiveness and efficacy of the proposed framework for DNR
is demonstrated through a case study performed on 33-node
distribution test system.

Index Terms—Deep Q Network, distribution system reliability,
network reconfiguration, reinforcement learning, and spanning
trees.

I. INTRODUCTION

The goal of electric utilities is to provide efficient, reliable,
and affordable electricity service to their customers through
utilization of available resources. Since power interruptions are
mostly due to failure of distribution system components [1],
enhancing the reliability of distribution systems is inevitable
to provide uninterruptible electric power supply to customers.
Reliability of distribution systems can be enhanced in two
ways: (a) optimal utilization of available resources using smart
grid technologies and (b) installation of redundant resources.
The option of installing redundant resources is not econom-
ical and a waste of resources. Therefore, sophisticated smart
grid technologies should be developed to optimally utilize
distribution system resources in an optimum manner. In this
context, distribution network reconfiguration (DNR) is one of
such smart grid technologies to provide efficient, economical,
and reliable supply of electricity. DNR can optimize exist-
ing resources by modifying the configuration of distribution
networks through changing status of sectionalizing and tie-
switches.

Several analytical and population-based intelligent search
approaches have been proposed in the literature to solve the
DNR problem. A two-stage robust model has been proposed in

[2] for DNR considering load uncertainty, where the first stage
selects a network configuration and the second stage performs
an AC optimal power flow for the given demand realization. In
[3], a spanning tree-based genetic algorithm has been proposed
for DNR with an objective of power loss minimization. A
genetic algorithm-based DNR has been proposed in [4] for
power quality and reliability improvement. Similarly, a genetic
algorithm has been used for DNR to improve the reliability
and optimal placement of distributed generators in [5]. In [6],
a mixed-integer quadratic programming has been used for
reliability constrained power loss minimization and a path-
based model has been adopted for the distribution system.
Also, a path-to-branch incidence matrix has been proposed in
[6] to incorporate the reliability indices in the DNR problem.
In [7], a neighborhood search algorithm has been used for
DNR to improve the reliability and reduce losses by taking
into account the uncertainties of data. An algorithm based
on binary particle swarm optimization has been used in
[8] to solve DNR problem considering maximization of the
reliability and minimization of active power losses.

Analytical and population-based intelligent search methods
used for DNR to improve reliability of distribution systems
have the following shortfalls. Accuracy and effectiveness of
analytical-based methods for DNR depend upon the accuracy
of models used, where accurate models impose scalability
challenges. Also, mathematical models are usually derived
based on several approximations and they require complete
system information. Population based methods, on the other
hand, are computationally expensive due to the large search
space, especially when system sizes increase.

Learning-driven approaches have been used to tackle the
limitations of analytical and population-based approaches
since learning-driven approaches can handle uncertainties by
extracting knowledge from historical data. Moreover, learning-
driven models are not required to be solved whenever new
scenarios are encountered because of their ability to use
their knowledge gained from historical data to solve for the
new scenarios. Out of various learning-driven approaches,
reinforcement learning (RL)-based approaches have the ca-
pabilities to learn from experiences during online operations
[9], [10]. Learning-driven approaches are, therefore, gaining
significant attention for optimal DNR.

In [11], batch-constrained RL has been used for the dynamic
DNR with the objective of minimizing network operational
costs. The RL algorithm proposed in [11] can learn the



network reconfiguration control policy from a historical dataset
without the use of an actual distribution network. In [12],
network power loss and number of switching actions in the
distribution network are minimized using a long-short term
memory (LSTM) network. RL has also been used to simul-
taneously reduce network power loss and improve voltage
profiles [13], where loop-based encoding is leveraged with
NoisyNet deep Q learning to improve training effectiveness
and computational efficiency.

In [14], a deep Q-Learning-based DNR has been proposed
for reliability improvement by minimizing the average cur-
tailed power. In [15], deep Q learning has been implemented
to minimize line congestion and voltage violation problems
while performing the DNR. The work presented in [15] has
been tested for the computational cost and the scalability
as compared to brute-force search algorithm and the genetic
algorithm. Although there are several similarities between
DNR for different objectives, optimum DNR for both power
loss reduction and reliability improvement is a challenging task
since it requires determining network power loss and reliability
indices for each possible configuration. Therefore, developing
intelligent learning-based approaches for DNR to decrease
network power losses and enhance reliability is pivotal.

This paper proposes a deep reinforcement learning (DRL)-
based framework for DNR to minimize network power loss
and enhance the reliability of distribution systems. In the
proposed optimization framework, the objective is to minimize
system power loss and various reliability indices including
System Average Interruption Frequency Index (SAIFI), Sys-
tem Average Interruption Duration Index (SAIDI), and Aver-
age Curtailed Power (ACP). In addition to nodal power balance
constraints, all-node-traversing and radiality constraints are
considered. In the training phase of the proposed algorithm,
Q values are predicted using forward propagation of a deep
neural network (DNN). Actions are selected using the Epsilon-
Greedy algorithm. When actions are passed through the train-
ing environment, the DRL agent gets rewarded (or penalized)
based on its performance. Target Q values are calculated based
on the reward. The mean squared error (MSE), which is
the most commonly employed loss function for regression,
is computed using the predicted and target Q values. Errors
are then back-propagated to update the weights of DNN. The
trained DRL agent is then used to find the best network
configuration. The proposed framework is validated through
a case study on a 33-node distribution test system, and the
results show that the proposed framework can effectively find
a network configuration with high reliability level and low
power loss.

The rest of the paper is organized as follows. Section II
explains the mathematical formulation of the DNR problem
with the loss minimization and reliability indices. Section
III describes the proposed framework and solution approach.
Section IV validates the proposed work through a case study
on the 33-node system with several scenarios. Section V
provides concluding remarks.

II. MATHEMATICAL MODELING

This section presents the mathematical formulation of the
DNR problem and describes states, actions, and reward func-
tion in the context of DNR.

A. Problem Formulation

This subsection presents the objective functions and the
constraints of the DNR problem under consideration.

1) Objective Functions: Reliability is one of the major
factors that indicates performance of the system. Reliability of
distribution systems can be quantified using several reliability
indices. Out of various reliability indices, SAIFI, SAIDI, and
Average Curtailed Power (ACP) are taken as reliability-related
objective functions for the problem under consideration since
they can capture the severity of the outages and are directly
affected by the topology or configuration of a distribution
network. The aforementioned objective functions, along with
the network power loss are explained as follows.

(a) SAIFI: It is the average number of interruptions a
customer would experience in a year. Mathematically, SAIFI
can be expressed as follows.

SAIFI =

∑
k∈Ωk

Nk × λk∑
k∈Ωk

Nk
, (1)

where Nk is the number of customers served by node k; Ωk is
the set of nodes with power demand; and λk is average annual
failure rate at node k, which can be defined as follows.

λk =
∑
l∈Ωlk

λl, (2)

where λl is the failure rate of branch (or edge) l; and Ωlk is
the set of branches (or edges) between substation node and
node k.

(b) SAIDI: It is the average duration of interruptions a
customer would experience in a year. Mathematically, SAIDI
can be expressed as follows.

SAIDI =

∑
k∈Ωk

Nk × Uk∑
k∈Ωk

Nk
, (3)

where Uk is the average annual power unavailability duration
at node k, which can be defined as follows.

Uk =
∑
l∈Ωlk

λlrl, (4)

where λl is the failure rate of branch (or edge) l; and rl is the
outage duration (or repair time) of branch (or edge) l.

(c) Average Curtailed Power (ACP): It is the average power
curtailment of a distribution system in a year. Mathematically,
ACP can be expressed as follows.

ACP =
∑
k∈Ωk

Pd,kUk, (5)

where Pd,k is the power demand at node k.



(d) Power Loss: The total power loss of the system is cal-
culated by adding power losses of all branches of a particular
configuration of the distribution network.

Ploss =
∑
k∈ΩB

Ploss,k, (6)

where ΩB is the set of branches (or lines) of the particular
configuration; and Ploss,k is the power loss of the kth branch.

2) Constraints: The DNR problem under consideration
is subjected to various constraints including nodal power
balance constraint, radiality constraint, and all-node-traversing
constraint.

(a) Node power balance constraint: The power balance
constraint at each node of the system can be expressed as
follows. ∑

j∈Ωg(j)

Pg,j +
∑

l∈ΩL(j)

Pl,j = PD,j (7)

where Ωg(j) is the set of sources connected to node j; ΩL(j)
is the set of lines connected to node j; Pg,j is the power
injected from source j; PD,j is the load at node j; and Pl,j is
the line power flow from node l to node j.

(b) Radiality constraint: Radiality constraint is always main-
tained in a distribution system in order to design the protection
coordination schemes. Each candidate configuration should
have a radial topology since most of the practical distribution
systems do not have loop structure.

(c) All-node-traversing constraint: A distribution system
operator should always configure the network in such a way
that all loads are supplied with power in non-contingent
scenarios. Therefore, for each candidate configuration, all-
node-traversing constraint should always be satisfied.

Constraints (b) and (c) are satisfied if we search for a
spanning tree. Consider a distribution network represented by
an undirected graph G = (N,E), where N is a set of nodes
(or vertices) and E is a set of edges (or branches). For the
graph, a node-branch incidence matrix can be constructed after
satisfying all-node-traversing constraint. If n = |N| denotes
the number of nodes and e = |E| denotes the number of edges
of a particular network configuration, then the node-branch
incidence matrix A ∈ Rn×e is the matrix with element aij
calculated as follows.

aij =


+1 if branch j starts at node i

−1 if branch j ends at node i

0 otherwise
(8)

If the node-branch incidence matrix A is full ranked, then
the radiality constraint is satisfied.

B. States, Actions, and Reward Function

The choice of states, actions, and reward function can play a
crucial role for the proper training of a reinforcement learning
(RL) agent. States, actions, and reward function must be,
therefore, chosen with careful consideration. For the DNR
problem under consideration, a vector of power demand of all
nodes is taken as the state. The action is a vector of opened

edges. The cost function at time step t is the sum of SAIFI,
SAIDI, ACP, and the system power loss, expressed as follows.

Ct = SAIFIt + SAIDIt +ACPt + Ploss,t (9)

The total reward at time step t is computed as follows.

Rt =

{
−Ct if all constraints are satisfied
−ρ if any constraint is violated

(10)

where ρ denotes the penalty factor.

III. PROPOSED FRAMEWORK

This work leverages recently advanced reinforcement learn-
ing techniques for DNR to improve reliability of distribution
systems. This section provides a brief overview of Deep Q
learning, reward function, and training attributes of the Deep
Q learning.

A. Deep Q Learning

A reinforcement learning (RL) is a branch of machine
learning in which an agent learns to take suitable actions
to maximize cumulative reward it gets from an uncertain
environment. In general, an RL system consists of four main
integrants: policy, reward, value functions, and environment
model. An agent decides the action to be taken based on the
policy. The policy maps states to actions. When the agent
takes an action, it gets rewarded (or penalized). Value function
calculates the expected value of cumulative reward that an
agent gets when it follows a certain policy. There are different
algorithms for RL. The choice of an algorithm depends on
many factors such as the continuous/discrete nature of states,
continuous/discrete action-space, etc. For the DNR problem
under consideration, the action-space is discrete in nature,
which makes Q-Learning a suitable candidate for the problem.
However, a basic Q-Learning needs large sized look-up tables
where state-action values are stored. To avoid the use of large
sized look-up tables, a deep neural network (DNN) is used
as an action-value function approximator. The addition of
DNN in the basic Q-Learning makes the framework a Deep
Q Network (DQN). The update rule for action-value function
in Q-learning is defined as follows [9].

Q(St, At)← Q(St, At) + α× [Rt+1

+γ ×max
a

Q(St+1, At+1)−Q(St, At)]
(11)

where At and St are the action and state of an agent at tth

iteration; Q(St, At) is the action-value function at tth iteration;
Q(St+1, At+1) is the action-value function at (t+1)th iteration;
α is the learning rate; and γ is the reward discount factor.

Instead of iteratively updating the action-value function, the
DNN is trained and the parameters of the action-value function
are optimized to minimize the mean-squared error (MSE) loss
function (i.e., regression loss function), which is expressed as
follows [16].

L(θ) = E[(Q(St, At|θ)− yt)
2] (12)



TABLE I
HYPER-PARAMETER SETTINGS OF THE PROPOSED DRL FRAMEWORK

Hyper-parameters Values

Number of hidden layers 2

No. of neurons in hidden layers 10, 10

Learning rate 0.001

Activation function of output layer Linear

Activation function of hidden layers ReLU

Optimizer Adam

where E denotes expectation operator; θ denotes the parameter
of action-value function Q(St, At); and yt denotes the target
action-value function, which is defined as follows.

yt = R(St, At)− γ ×max
a

Q(St+1, At+1|θ′) (13)

In (13), R(St, At) denotes reward function at tth itera-
tion and θ′ denotes the parameter of action-value function
Q(St+1, At+1).

B. Training Attributes

The training of DQN is performed for a certain number of
episodes (nep). The initial state of the system is the state with
a certain value of load active power at each node. The weights
of DNN are initialized with some random values. In each
episode, the predicted Q values corresponding to each edge of
the system is computed based on forward propagation of DNN.
For the selection of actions, the Epsilon-Greedy (exploration-
exploitation) algorithm [17] is used. The value of exploration
rate i.e., epsilon (ε) is initialized at εmax. In order to allow the
DQN to explore during initial episodes, εmax is set equal to 1
and as the episode progresses, the exploration rate is decreased
progressively and the exploitation rate is increased. Until 80%
of the total episodes, the epsilon is updated after each episode
based on (14).

εnew = εold −
εmax − εmin

0.8× nep
, (14)

where εmin is the minimum exploration rate. Since the DQN
sufficiently explores till 80% of the total episodes, the ex-
ploration rate is set to a very low value (e.g., 0.005) for the
last 20% of the episodes. The target Q value of the DQN is
computed using (13). The MSE losses for each episode are
computed based on (12) using the actual and target Q-values.
These MSE losses are back-propagated to update the weights
of the DNN.

Algorithm 1 provides the procedure of training the proposed
DRL-based DNR.

IV. CASE STUDY AND DISCUSSION

A. Case Study Parameters

The proposed framework is implemented on the 33-node
distribution test system. The case study parameters of the
system are as follows. The failure rate of each branch is
assumed proportional to its branch impedance. The highest

Algorithm 1: Training of the proposed DRL-based
DNR.

Input : System data including line data, load data,
etc.

Initialize parameters θ of the DQN with random values
for episode← 1 to nep do

Initialize the system with initial state (here, load
data at each node)

for t← 1 to T do
Generate action-value function Q based on
current state

Generate action using Epsilon-Greedy
Algorithm

Calculate the reward function Rt+1(St, At)
Calculate DQN Loss Function based on the
action-value function Q and the target
action-value function

Perform back-propagation to update parameters
θ of the DQN

Output : Indices of opened edges
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Fig. 1. 33-node distribution test system

failure rate (in this case 0.4 failures/year or f/yr) is assigned
to the branch with the largest impedance; the lowest failure
rate (in this case 0.1 f/yr) is assigned to the branch with
the smallest impedance; and linear interpolation is used to
determine the failure rates of remaining branches. Regarding
the outage duration (or repair rate) of each branch, its value is
assumed to be constant (6 hr is used). Normally-open switches
(or tie switches) are assumed to be fully reliable. The failure
rate (λk) and annual power unavailability duration (Uk) of
each node are determined based on the values of failure and
repair rates for each branch, respectively, using (2) and (4).
The customer data for the system under study have been taken
from [18].

The 33-node distribution test system is 100 kVA, 12.66 kV
radial distribution system with 33 nodes, 32 branches and 5
tie-lines. Therefore, the total number of branches in this system
is 37. All branches (including tie-lines) are numbered from 1
to 37 as shown in Fig. 1. The total load of the system is 3.71
MW. The detailed data of the system is provided in [19].



0 2000 4000 6000 8000 10000
Episodes

1000

900

800

700

600

500

400

300

200
To

ta
l R

ew
ar

ds

Fig. 2. Total Rewards of training episodes

0 2000 4000 6000 8000 10000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

 L
os

s

1e6

actual losses
running mean of actual losses

Fig. 3. MSE of losses of training episodes

B. Training

The training of the DQN for the 33-node system is per-
formed for 10,000 episodes. The system state is initialized
with a vector of load active power of all nodes. Initially, the
exploration rate is set very high (i.e., 1) to allow sufficient
exploration and the exploration rate is set to a very low
value (0.005) after reaching 80% of the total episodes. Due
to this reason, average reward goes on increasing (and MSE
loss goes on decreasing) till 80% of the total episodes, but
average reward and MSE loss saturate after reaching 80% of
the total episodes. Fig. 2 shows the actual rewards and running
mean (100-episode window) of actual rewards as the episode
progresses. It can be seen from Fig. 2 that as the number of
episodes increases, the running mean of the reward increases
and saturates after 8,000 episodes. Similarly, Fig. 3 shows the
actual values and running mean (100-episode window) of MSE
losses as the episode progresses. Fig. 3 also shows that initially
MSE loss is very high, goes on decreasing after a few episodes,
and saturates after 8,000 episodes.

TABLE II
RESULTS FOR THE BASE CASE SCENARIO

Base configuration with open edges 33, 34, 35, 36, 37

Network power loss 203.10 kW

SAIFI 1.3788 interruption/customer/yr

SAIDI 8.2730 hr/customer/yr

Average Curtailed Power 29.43 MWh/yr

TABLE III
FINAL RESULTS OBTAINED AFTER TRAINING OF THE PROPOSED

FRAMEWORK

Final configuration with open edges 3, 10, 15, 26, 35

Network power loss 185.53 kW

SAIFI 1.1098 interruption/customer/yr

SAIDI 6.6587 hr/customer/yr

Average Curtailed Power 23.59 MWh/yr

C. Comparison

The final results obtained after training of the proposed
algorithm are compared with the base case, where all tie-
switches are opened. When all tie-switches (switches 33, 34,
35, 36, and 37) are opened, the network power loss is 203.10
kW, SAIFI is 1.3788 interruption/customer/yr, SAIDI is 8.2730
hr/customer/yr, and average curtailed power is 29.44 MWh/yr.
These results are shown in Table II.

The final configuration obtained after training is the config-
uration with open edges 3, 10, 15, 26, and 35. For this config-
uration, the network power loss is 185.53 kW, SAIFI is 1.1098
interruption/customer/yr, SAIDI is 6.6587 hr/customer/yr, and
average curtailed power is 23.59 MWh/yr. These results are
shown in Table III. These results show that the proposed
approach can improve the reliability level and reduce power
loss in distribution systems.

V. CONCLUSION

This paper has proposed a DRL-based framework to deter-
mine the configuration of a distribution network with optimal
or near optimal values of network power loss, and various
reliability indices including SAIFI, SAIDI, and average cur-
tailed power. During the training of the proposed algorithm,
the weights of DNN were initialized with random values and
the system state was initialized with a vector of load active
power at each node. The target Q values were computed based
on the reward the DRL agent gets from the environment.
The predicted and target Q values were used to update the
weights of DNN. Case study was performed on the 33-node
distribution test system. The results exhibit the effectiveness
of the proposed framework to improve the reliability level and
reduce power loss in distribution systems.
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