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Abstract

As automated vehicles gradually become available to travelers, many cities will
experience a mixed traffic flow consisting of both legacy and automated vehicles. Al-
though the overall market penetration of automated vehicles may be known, the pro-
portion of automated vehicles may vary in space and time due to spatial and temporal
variations in automated vehicle demand. Since automated vehicles are expected to
behave differently than legacy vehicles, this results in a flow-density relationship that
varies in both time and space with the local proportion of automated vehicles. We
model this scenario using a multiclass kinematic wave theory. Assuming a triangular
flow-density relationship (with shape parameters varying with the automated vehicle
proportion), we develop a multiclass Newell’s method for finding exact solutions to
the multiclass kinematic wave theory. The solution method takes the form of a lin-
ear program with postprocessing. We then extend this method to a multiclass link
transmission model. We develop a faster solution method for the receiving flow which
consists of iteratively solving a system of linear equations. Numerical results from dy-
namic traffic assignment on the downtown Austin city network demonstrate the com-
putational tractability of this method and explore the effects of automated vehicles on
traffic congestion.

1 Introduction

Many previous studies have predicted that automated vehicles will behave significantly dif-
ferently in traffic than legacy (human-driven) vehicles. Of course, for platooning (cooperative
adaptive cruise control), automated vehicles (AVs) have a significantly different flow-density
relationship (Shladover et al., 2012; Melson et al., 2018; Ye and Yamamoto, 2018). Even
when automated and legacy vehicles are mixed together, previous studies have suggested that
differing reaction times and car-following behaviors could lead to greater capacity (Levin and
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Boyles, 2016; Ghiasi et al., 2017) and stability (Schakel et al., 2010; Talebpour and Mah-
massani, 2016) of traffic flow.

Since AVs will likely comprise only a fraction of all vehicles in the network for many years,
predicting the future impacts of a mixed traffic flow is a relevant problem for practitioners and
policymakers. This necessitates a model in which the traffic flow varies based on the dynamic
proportion of AVs. Although the overall market penetration of AVs in a city may be known,
spatial and temporal variations in demand and turning movements may result in space-
and time-varying AV proportions that differ significantly from the network-wide market
penetration. For instance, AVs may be substantially more expensive than legacy vehicles.
Higher-income residences in the network may generate a significantly higher proportion of
AV trips than lower-income residences, resulting in spatial variations across the network.

Perhaps the most obvious modeling approach is to construct microsimulation models in
which individual vehicles use different car-following models based on their driver type (legacy
or automated) (e.g. Schakel et al., 2010; Zhu and Zhang, 2018). Unfortunately, the detailed
dynamics within microsimulation require high computation times for large city networks.
Solving dynamic traffic assignment (Chiu et al., 2011) to predict the effects of route choice
on traffic congestion further increases the computation time. Solving traffic assignment
is important because Braess (1968) and Daganzo (1998) showed that improvements to the
network capacity could result in greater congestion, which Melson et al. (2018) demonstrated
for AVs specifically.

Although they are not as detailed as microsimulation, dynamic network loading models
based on the kinematic wave theory of traffic flow (Lighthill and Whitham, 1955; Richards,
1956) are used in traffic flow modeling for their ability to model time-dependent traffic flow
with manageable computation times. For instance, the dynamic traffic assignment model
VISTA (Ziliaskopoulos and Waller, 2000) uses the cell transmission model (Daganzo, 1994,
1995) to propagate flow. We propose a multiclass kinematic wave theory in which the
flow-density relationship varies in space and time with respect to the local proportion of
AVs. Levin and Boyles (2016) developed a multiclass cell transmission model to solve the
multiclass kinematic wave theory and used it for dynamic network loading. However, the
cell transmission model is only an approximate solution to the kinematic wave theory and
contains numerical errors, particularly in the propagation of congested states. Newell (1993)
observed that the kinematic wave theory is easily solved along certain characteristic curves,
which Yperman et al. (2005) converted into the link transmission model (LTM). We develop
a multiclass LTM for the multiclass kinematic wave theory, which is made challenging by
the fact that characteristic curves may have to pass through space- and time-dependent
variations in the flow-density relationship.

The kinematic wave theory can be alternatively solved by transforming it to Lagrangian
coordinates. For instance, van Wageningen-Kessels et al. (2009, 2010) used Lagrangian co-
ordinates to solve a multiclass kinematic wave theory, although their work did not consider
a mix of human and automated vehicles changing the flow-density relationship. Lagrangian
coordinates are definitely worth consideration for modeling a mix of human and AV flows.
However, our goal is to construct a model suitable for dynamic network loading in a network
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of links and nodes. To the best of the authors’ knowledge, all kinematic wave theory-based
models for dynamic network loading on realistic city networks are solved using Eulerian co-
ordinates. This is because intersections would be “moving” in the Lagrangian perspective
while in Eulerian coordinates they remain stationary. Therefore, we have chosen to address
this problem with Eulerian coordinates, and we construct a link flow model which is compat-
ible with the large body of existing work on dynamic network loading and dynamic traffic
assignment based on the kinematic wave theory.

The contributions of this paper are as follows. We formulate a multiclass kinematic
wave theory and derive some general results that assist with the structure of the solution
method. We then assume that the flow-density relationship is triangular, with the congested
wave speed varying with the proportion of automated vehicles. This assumption is used to
derive a multiclass version of Newell (1993)’s method to find exact solutions to the multi-
class kinematic wave theory. The solution method involves solving a linear program then
post-processing the optimal solution with other constraints to find an exact value for the
cumulative count at an arbitrary (t, x) point. The primary motivation of this paper is to
extend the multiclass Newell’s method to a multiclass LTM. We present a faster solution
algorithm for the multiclass LTM which involves iteratively solving a system of linear equa-
tions. Numerical results on a calibrated large city network demonstrate solving a dynamic
traffic assignment model using this multiclass LTM, and explore the impacts of AV market
penetration on city-wide congestion.

The remainder of this paper is organized as follows. Section 2 reviews literature rele-
vant to multiclass modeling of traffic flow, in particular automated vehicles. In Section 3,
we formally define the multiclass kinematic wave theory. Section 4 derives the multiclass
Newell’s method, first presenting a simplified example, then presenting the general solution.
Section 5 adapts the multiclass Newell’s method to the specific characteristics of LTM. Nu-
merical results from dynamic traffic assignment are presented in Section 6, and we conclude
in Section 7.

2 Background

For decades, traffic assignment models have modeled travel times as a continuous function of
traffic volumes for their favorable analytical properties (Beckmann et al., 1956). Such models
have recently been extended to mixed legacy and AV flow. Levin and Boyles (2015) modified
the standard Bureau of Public Roads travel time function to include a capacity that varied
with the proportion of AVs. However, static traffic assignment models cannot capture how
time-varying proportions of automated vehicles affect traffic congestion. Although the over-
all proportion of AVs in a network may be known, local variations in the proportion affect
the local capacity and propagation of congested waves. The effects of time-varying conges-
tion (separate from AV flow differences) have long been recognized and modeled through
microsimulation or mesoscopic flow models such as the kinematic wave theory (Lighthill and
Whitham, 1955; Richards, 1956). Research on efficient solutions to the kinematic wave the-
ory has been used for dynamic network loading, yielding dynamic traffic assignment models
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that can predict time-dependent congestion across city networks (Chiu et al., 2011). The
multiclass flow of a mix of legacy and automated vehicles creates additional challenges for
these network models. In addition to time-varying densities, the flow-density relationship
itself can vary in space and time with the proportion of AVs present. These variations in
the flow-density relationship move with the traffic flow, and are therefore interdependent on
the solution to the kinematic wave theory.

Modeling multiclass flow is important because of the demonstrated behavioral differ-
ences of AVs. Results from microsimulation (Kesting et al., 2007; Davis, 2007; Shladover
et al., 2012; Zhu and Zhang, 2018; Liu et al., 2018) and live demonstrations (Ploeg et al.,
2011; Milanés et al., 2013) on homogeneous segments of road have shown increases in capac-
ity from cooperative adaptive cruise control (Shladover et al., 2015) that reduces following
headways. It is not clear whether these capacity improvements apply to networks as well,
but these studies nevertheless demonstrate that multiclass flow may behave differently from
legacy vehicle flow. Connected and cooperative vehicle control has also resulted in improve-
ments in string stability (Schakel et al., 2010; Ploeg et al., 2011; Talebpour and Mahmassani,
2016), although these results may not be true of non-cooperative AVs. One major limita-
tion demonstrated traffic flow improvements is driver comfort (Nowakowski et al., 2010).
Improvements in capacity and stability from automated driving largely result from lower re-
action times admitting shorter following headways (Kesting and Treiber, 2008; Chen et al.,
2017; Makridis et al., 2019). Until vehicle manufacturers and drivers are comfortable with
short headways, capacity increases may be limited (Vander Werf et al., 2002; Shladover et al.,
2012; Makridis et al., 2019), or capacity may even decrease (Calvert et al., 2017; James et al.,
2019). Nevertheless, most studies suggest significant (positive or negative) changes in traffic
flow resulting from AVs. Some of these traffic flow differences are assumed to be limited to
AV-exclusive lanes (Chen et al., 2016; Vander Laan and Sadabadi, 2017; Liu and Song, 2019;
Melson et al., 2018) where connectivity and automation are minimally interrupted by hu-
man driving. Other studies have explored technologies for efficient automated driving within
mixed traffic flow (Kesting et al., 2007; Gong and Du, 2018) hat vary with the AV market
penetration (Talebpour and Mahmassani, 2016; Zhu and Zhang, 2018; Ye et al., 2018). This
paper focuses on the latter category. Since the exact characteristics of future automated
driving are difficult to determine, the focus of this study is on solving a multiclass kinematic
wave theory where the flow-density relationship can be adjusted to model AV differences in
traffic flow.

Although many previous studies have used car-following models of automated driving to
model traffic flow differences, the computation times required for these models often discour-
age their use for solving dynamic traffic assignment on large city networks. Static multiclass
traffic assignment models (Levin and Boyles, 2016; Wang et al., 2019) have been studied
but fail to capture the time-varying changes in congestion, especially due to the varying
flow-density relationship. The kinematic wave theory is often an useful middle ground with
dynamic traffic flow but more computational efficiency than microsimulation. Thus far,
multiclass variants of the kinematic wave theory have only been solved by approximation
methods like the cell transmission model. This is partially because solving the standard
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kinematic wave theory is challenging by itself. Although the kinematic wave theory was pro-
posed decades ago by Lighthill and Whitham (1955) and Richards (1956), efficient solutions
were discovered much later. The cell transmission model (Daganzo, 1994, 1995), a Godunov
(1959) approximation, is still widely used for dynamic network loading. Newell (1993)’s
method for finding exact solutions with a triangular flow-density relationship was used in
the relatively recent development of LTM (Yperman et al., 2005). A Lax-Hopf method for
exact solutions to the general kinematic wave theory was developed by Claudel and Bayen
(2010a,b).

Given the difficulty in solving the standard kinematic wave theory, it is perhaps not sur-
prising that most previous work on multiclass kinematic wave theory has relied on numerical
approximation methods. Levin and Boyles (2016) developed a multiclass cell transmission
model which was used by Patel et al. (2016) to analyze city networks. Tiaprasert et al.
(2017) developed an extended multiclass cell transmission model with better modeling of
first-in-first-out and overtaking behaviors. Zhu and Ukkusuri (2018) and Chen et al. (2020)
used multiclass cell transmission models to study how variable speed limit control for AVs
would affect surrounding legacy vehicle traffic.

The multiclass kinematic wave theory has previously been studied outside of the con-
text of AVs (Logghe and Immers, 2008; Jin, 2012; van Wageningen-Kessels et al., 2014).
The multiple classes could be motivated by heterogeneity in physical vehicle characteris-
tics (Van Lint et al., 2008; Liu et al., 2015) or driver behavior (Van Aerde and Rakha, 1995).
van Wageningen-Kessels et al. (2009, 2010) used a Lagrangian transformation to solve the
problem. To the best of our knowledge, a LTM for efficiently solving other multiclass kine-
matic wave theory problems has yet to be proposed. Although the motivation and context
for this paper is focused on mixed legacy and automated vehicle traffic, the ideas may be
relevant to the multiclass kinematic wave theory in other contexts.

3 Multiclass kinematic wave theory

Consider a length of road from x = 0 to x = L. Let Nm(t, x) be the cumulative count of
vehicles of class m, i.e the number of vehicles that have passed point x at or before time
t. The total cumulative counts are given by N(t, x) =

∑
m∈M

Nm(t, x) where M is the set

of all vehicle classes. Let qm(t, x) = ∂Nm(t,x)
∂t

and km(t, x) = −∂Nm(t,x)
∂x

be the flow and
density of class m, respectively. For completeness we define the total flow and density as
q(t, x) =

∑
m∈M

qm(t, x) and k(t, x) =
∑
m∈M

km(t, x), respectively. Assume that the cumulative

counts for each class satisfy a conservation law, i.e.

∂qm(t, x)

∂x
+
∂km(t, x)

∂t
= 0 (1)

which results in a conservation law for the total cumulative counts also. Let

q(t, x) = f(k(t, x)) (2)
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be the vector-valued flow-density relationship which specifies the flow of each class as a
function of the class-proportions of density km(t,x)

k
and total density. For the results in

Section 3, f(k) may be a general flow-density relationship with any concave shape. Assume
that f(k) is not separable by class, so that the partial differential equations cannot be solved
separately. For instance, flow may be 0 when the total density

∑
m∈M

km(t, x) is equal to

some maximum density value, meaning the flow of one class depends on the density of other
classes. Assume first-in-first-out (FIFO) behavior within the link.

The problem is to find Nm(t, x) for any (t, x) point given initial and boundary condi-
tions. Initial condition c(0, x) specifies the initial cumulative counts at time t = 0. Up-
stream boundary conditions c(t, 0) and downstream boundary conditions c(t, L) specify re-
strictions on entering and exiting flow, respectively. These conditions are generally relevant.
LTM (Yperman et al., 2005) uses only upstream and downstream boundary conditions, and
the generalized Lax-Hopf formula (Claudel and Bayen, 2010a,b) is constructed for similar
initial and boundary conditions, albeit for a single class. For formality, we observe that
c(t, x) can be defined everywhere, except with c(t, x) = ∞ where (t, x) is not an initial
point (t = 0), upstream point (x = 0), or downstream point (x = L). The class-specific
values are necessary to propagate class proportions according to the specified flow-density
relationship f(k). For instance, Levin and Boyles (2016) proposed a flow-density relation-
ship for mixed human and automated-vehicle traffic flow that varies with the proportion of
automated vehicles.

Claudel and Bayen (2010a) observed that the single-class kinematic wave theory can be
written as a Hamilton-Jacobi partial differential equation:

∂N(t, x)

∂t
− ψ

(
−∂N(t, x)

∂x

)
= 0 (3)

which leads to an exact formula for solving N(t, x) (for a single class):

N(t, x) = inf
u,T≥0

{c(t− T, x+ Tu) + Tϕ∗(u)} (4)

where c(t, x) defines the conditions imposed on the solution, and ϕ∗(u) is the Legendre-
Fenchel transform of the flow-density relationship. For a triangular flow-density relationship,
this formula simplifies to Newell (1993)’s method (Jin, 2015). Unfortunately, neither the
Hamilton-Jacobi theory nor the method of characteristics are designed to propagate class
proportions in time and space, in addition to flows and densities. Hence, Levin and Boyles
(2016) proposed a cell transmission model to find an approximate solution. However, due to
numerical errors in such approximations, an exact solution is preferable.

3.1 Class proportion regions

Assume that the order of vehicles does not change within x ∈ [0, L], i.e. each vehicle can
be labeled with a cumulative count number that remains constant within x ∈ [0, L]. This
is equivalent to assuming first-in-first-out behavior. In reality, this assumption is broken by
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lane-changing. However, within the kinematic wave theory where vehicle speed is a function
of density, this assumption is reasonable. This assumption ensures that class proportions
move with vehicles. Shockwaves occur in the standard (single class) kinematic wave theory
as the separation of regions of different density. Some shockwaves move with vehicles, and
others move backwards in space, meaning that vehicles can cross a shockwave boundary. In
the multiclass kinematic wave theory, shockwaves separate regions of different total density
as well as regions of different class proportions.

Since class proportions move with vehicles, the class proportions can be described with
respect to vehicle labels. Consider I different regions of class proportions. Region i is defined
as the vehicles between vehicle bi−1 and bi which are the boundary vehicles. For instance, a
region might be defined as the vehicles that enter the upstream boundary between a specified
time, i.e. bi−1 = N(ti−1, 0) and bi = N(ti, 0) where ti−1 < ti. Within a region, vehicle class
proportions are constant. However, note that class proportions are not all-or-nothing within
a region. It is fully possible to have k1(t, x) > 0 and k2(t, x) > 0 with a corresponding

flow-density relationship f(k). The key defining property is that the proportion km(t,x)∑
m′
km′ (t,x)

is constant throughout each region. For example, this could be used to model a region of
density with 50% legacy vehicles and 50% AVs, uniformly distributed throughout the region.

Proposition 1. When traffic flow obeys first-in-first-out behavior, class proportion regions
move with vehicles.

Proof. Suppose that at x = 0, the class proportions between b1 and b2 are Nm(t2,0)−Nm(t1,0)
N(t2,0)−N(t1,0)

where N(t1, 0) = b1 and N(t2, 0) = b2. At any points (t′1, x
′
1) and (t′2, x

′
2) such that x′1 ≤ L

and x′2 ≤ L with N(t′1, x
′
1) = b1 and N(t′2, x

′
2) = b2,

Nm(t′2, x
′
2)−Nm(t′1, x

′
1)

N(t′2, x
′
2)−N(t′1, x

′
1)

=
Nm(t2, 0)−Nm(t1, 0)

N(t2, 0)−N(t1, 0)
(5)

due to FIFO.

Each region has an unique flow-density relationship q(t, x) = fi(k(t, x)) that is specific
to the class proportions of region i. When class proportions are constant within regions, the
class-dependent flow-density relationship f(k) can be simplified to a scalar function q(t, x) =
fi(k(t, x)) that describes the flow within that region. Similarly, the initial and boundary
conditions can be written as a scalar c(t, x), with the bi labels indicating the boundary
vehicles between different class proportion regions. Figure 1 shows space-time trajectories of
vehicles of two classes as they enter a queue. The speed of the shockwave separating the queue
from the uncongested region behind it varies based on the flow-density relationship of the
vehicle class. However, the class regions move with the traffic. Consequently, the multiclass
cumulative counts Nm(t, x) can be simplified to tracking a single cumulative count N(t, x)
while also tracking the size and location of class proportion regions as function of time.
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𝑥

𝑡

Vehicle class 1

Vehicle class 2

𝐿

Figure 1: Illustration of space-time diagram for vehicles of two different classes, with different
flow-density relationships.

3.2 Space- and time-varying flow-density relationship

The standard kinematic wave theory is typically used with a space-varying flow-density rela-
tionship (varying across links due to capacity and other factors). A space- and time-varying
flow-density relationship is admissible also. The flow-density relationship fi is included via
the Legendre-Fenchel transform

ϕ∗i (ui) = sup
k∈Dom(fi)

{kui + fi(k)} (6)

corresponding to region i (Claudel and Bayen, 2010a). Notice that the boundaries of these
space- and time-varying regions depend on vehicle trajectories. This is not limiting because
the trajectory of the lower bound of region i (here lower bound refers to the first vehicle of
region i which has the lowest cumulative count label among all vehicles in i) depends on
the movements of vehicles ahead of it, i.e. vehicles in region i − 1. Hence the location of
the boundary between regions i − 1 and i can be known before computing the cumulative
counts within region i. Figure 2 illustrates how the class regions might affect the search
along characteristics. Passing the boundary between regions 1 and 2, a different congested
wave speed is used for the characteristic speed. This relationship is formalized in Proposition
2.

Proposition 2. Let c(t, x) describe the initial or boundary conditions. The Lax-Hopf formula
for a flow-density relationship that varies for I different space-time regions is

N(t, x) = inf
ui∈[−vi,wi],Ti∈R+

{
c

(
t−

I∑
i=1

Ti, x+
I∑
i=1

Tiui

)
+

I∑
i=1

Tiϕ
∗
i (ui)

}
(7)
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Region 2
𝑡1, 𝑥1

−𝑤2

𝑣

−𝑤1

𝑡, 𝑥

Region 1

𝑥

𝑡

𝐿

Figure 2: Illustration of searching along characteristics to evaluate N(t, x).

such that the point

(
t−

i+1∑
j=I

Tj, x+
i+1∑
j=I

Tjuj

)
corresponds to the trajectory of the boundary

vehicle bi.

Proof. By induction on I. Basis: By Theorem 3.1 of Claudel and Bayen (2010a), the
Lax-Hopf formula for a single region is

N(t, x) = inf
u1∈[−v1,w1],T1∈R+

{c(t− T1, x+ T1u1) + T1ϕ
∗
1(u1)} (8)

= inf
u1∈[−v1,w1],T1∈R+

{
c

(
t−

1∑
i=1

Ti, x+
1∑
i=1

Tiui

)
+

1∑
i=1

Tiϕ
∗
i (ui)

}
(9)

Inductive step: Given the space-time trajectory of vehicle bI , the Lax-Hopf formula for
region I + 1 is

N(t, x) = inf
uI+1∈[−vI+1,wI+1],TI+1∈R+

{
c(t− TI+1, x+ TI+1uI+1) + TI+1ϕ

∗
I+1(uI+1)

}
(10)

= inf
uI+1∈[−vI+1,wI+1],TI+1∈R+

{
bI + TI+1ϕ

∗
I+1(uI+1)

}
(11)

because the lower boundary of region I+1 has a cumulative count number of bI . The space-
time trajectory of bI is determined by the Lax-Hopf formula for I regions, i.e. equation (7),
which then yields

N(t, x) = inf
ui∈[−vi,wi],Ti∈R+

{
c

(
t′ −

I∑
i=1

Ti, x
′ +

I∑
i=1

Tiui

)
+

I∑
i=1

Tiϕ
∗
i (ui) + TI+1ϕ

∗
I+1(uI+1)

}
(12)
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with (t′, x′) on the space-time trajectory of bI . Equation (12) can be simplified to

N(t, x) = inf
ui∈[−vi,wi],Ti∈R+

{
c

(
t−

I+1∑
i=1

Ti, x+
I+1∑
i=1

Tiui

)
+

I+1∑
i=1

Tiϕ
∗
i (ui)

}
(13)

for I + 1 regions.

Notice that Proposition 2 does not depend on the shape of the flow-density relationship
(other than requiring concavity). As discussed in Claudel and Bayen (2010a), Jensen’s
inequality simplifies the search over any curve connecting (t, x) to a boundary point (t′, x′)
such that c(t′, x′) is defined.

Given an arbitrary (t, x) point, the Lax-Hopf formula (7) can detect when (t, x) lies
outside of region i. Proposition 3 shows that if (t, x) is outside of region i, then calculating
N(t, x) through equation (7) using the first i regions will return a value greater than bi,
indicating that (t, x) lies beyond region i. It may not return the correct value of N(t, x), but
the relationship N(t, x) > bi is sufficient to determine that regions i+ 1, i+ 2, i+ 3, . . . need
to be included to obtain the correct N(t, x) value.

Proposition 3. Suppose that (t, x) lies outside of region i, i.e. N(t, x) > bi. Then the
Lax-Hopf formula (7) using regions 1 . . . i will return a value N ′(t, x) > bi.

Proof. Since vehicle bi is within region i, the trajectory of bi can be determined by the Lax-
Hopf formula (7) using the first i regions. Therefore, if N(t, x) > bi, the Lax-Hopf formula
(7) must return a (possibly incorrect) value N ′(t, x) > bi since the vehicle label at (t, x) is
greater than bi.

4 Multiclass Newell’s method

For the remainder of this paper, like Newell (1993) we assume that the flow-density relation-
ship fi(k) for each region i has the triangular shape

fi(k) = min {vk,−wi(k −K)} (14)

where K is the jam density, wi is the congested wave speed, and v is the free flow speed.
Sections 4–4.2 and 5 apply for any triangular flow-density relationship. Only the numerical
results in Sections 4.3 and 6 use a specific shape of the flow-density relationship from Levin
and Boyles (2016).

To further simplify the problem, we make assumptions based on the expected nature of
our intended context, i.e. a mixture of human and automated vehicles. Since K depends on
the physical length of vehicles, we assume that K is independent of the class proportions.
We also assume that v is independent of the class proportions because it is based on the
speed limit for the road. A single free flow speed value of v simplifies the search among
forward-moving characteristics, but the method could easily be generalized to a region-
specific free flow speed. However, wi is expected to vary based on class proportions. Levin
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and Boyles (2016) predicted that higher wi values were likely for automated vehicles, resulting
in correspondingly higher capacities. Let kc

i be the critical density of region i corresponding to
capacity Qi = vkc

i . The critical densities and capacities also depend on the class proportions
because they vary with the congested wave speed. The Legendre-Fenchel transform of fi(k)
is

ϕ∗i (u) = sup
k∈Dom(fi)

{ku+ fi(k)} = vkc
i + ukc

i (15)

defined for wave speeds u ∈ [−v, wi]. As observed by Newell (1993) and Himpe et al. (2016),
since ϕ∗i (u) is linear, the infimum in equation (7) occurs at a characteristic wave speed of
u = −v or u = wi.

4.1 Two-region multiclass Newell’s method

To develop intuition about the general solution method, we first present the multiclass
Newell’s method for two regions. The upper bound of region 1 is b1, so region 1 is active
for vehicles [−∞, b1], and region 2 is active for vehicles (b1,∞]. As illustrated in Figure 2
and proven in Proposition 2, the search along backwards-moving characteristics may involve
two different congested wave speeds w1 and w2 corresponding to regions 1 and 2 of the flow-
density relationship. Since the free flow speed is uniformly v, forward-moving characteristics
always move at speed v, which avoids the need to adjust the speed of the forward-moving
characteristics when passing region boundaries for this problem.

The objective is to find N(t, x) for an arbitrary point (t, x) ∈ R+× [0, L]. With two class-
proportion regions, (t, x) could fall into either of the two regions. It is not known a priori
which region (t, x) belongs to, as that depends on the trajectory of the boundary vehicle b1.
By Proposition 3, the first step is to calculate N(t, x) using only region 1:

N(t, x) = inf
u1∈[−v,w1],T1∈R+

{c(t− T1, x+ T1u1) + T1ϕ
∗
1(u1)} (16)

This can be evaluated using Newell’s method, tracing the forward- and backward-moving
characteristics to the known condition c(t, x). If the returned value of N(t, x) satisfies
N(t, x) ≤ b1, then (t, x) is in region 1, and the returned N(t, x) value is correct. Other-
wise, N(t, x) must be calculated using region 2.

Because the triangular flow-density relationship is used, there are two possible charac-
teristic speeds to check: v and wi (Newell, 1993). Figure 2 illustrates that the problem is
to find where the trajectory of vehicle b1 intersects the line of slope −w2 at point (t1, x1)
satisfying

x1 − x = −w2(t1 − t) (17)

The point (t, x) is where we want to find the cumulative count N(t, x). (t1, x1) is the point
on the trajectory of the boundary vehicle b1 intersecting a line of slope −w2 from (t, x).
However, the trajectory of b1 may not be known exactly. That trajectory is determined as
the set of (t, x) points such that N(t, x) = b1 — which can be evaluated using the Lax-Hopf
formula (7). Figure 3 illustrates this search for (t1, x1) along the two characteristic lines of
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(a) Uncongested characteristic

Region 2
𝑡1, 𝑥1

−𝑤2

−𝑤1

𝑡, 𝑥

Region 1

𝑥

𝑡

𝐿

(b) Congested characteristic

Figure 3: Illustration of searching along characteristics to evaluate (t1, x1).

slope v and −w1 that determine N(t1, x1). These result in two systems of equations that
can be evaluated separately.

4.1.1 Uncongested characteristic for (t1, x1)

The problem is to find (t1, x1) such that N(t1, x1) = b1, (t1, x1) lies on the characteristic of
slope −w2 passing through (t, x), and that (t1, x1) lies on a characteristic of slope v such
that c(t0, x0) = b1 and

x0 − x1 = v(t0 − t1) (18)

Equations (17) and (18) together have variables (t0, x0) and (t1, x1). However, the point
(t0, x0) can be simplified by splitting it into two cases: either (t0, x0) is part of an initial
condition with t0 = 0, or (t0, x0) is part of an upstream condition with x0 = 0. Since N(t, x)
is constant along a characteristic of slope v (Newell, 1993), in either case the remaining
variable of x0 or t0 can be determined by evaluating where c(t0, x0) = b1. That results
in two equations (17) and (18) with two variables (t1, x1), which can be solved to obtain
solution (tu1, x

u
1) where the superscript u is used to denote the solution from the uncongested

characteristic.

4.1.2 Congested characteristic for (t1, x1)

When a second congested characteristic of slope −w1 determines (t1, x1), the second equation
to determine point (t0, x0) on the initial or boundary condition becomes

x0 − x1 = −w1(t0 − t1) (19)

Since N(t, x) increases at the rate of K∆x along backwards-moving characteristics (Newell,
1993), N(t1, x1) − N(t0, x0) = K(x0 − x1). The point (t1, x1) satisfies N(t1, x1) = b1, but
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since x1 is a variable, the point (t0, x0) cannot be determined by b1 alone. Instead, a third
equation can be written:

c(t0, x0) +K(x0 − x1) = b1 (20)

The system of equations (17), (19), and (20) has 3 variables — (t1, x1) and (t0, x0) with
t0 = 0 (initial condition) or x0 = L (downstream boundary condition). Solving this system
yields (tc1, x

c
1) where the superscript c is used to denote the solution from the congested

characteristic. If multiple solutions exist, the correct solution minimizes b1 +K(x′−x1) due
to the infimum in the Lax-Hopf formula (7).

4.1.3 Combining (tu1, x
u
1) and (tc1, x

c
1)

Due to the infimum, the correct solution is the characteristic with the lowest N(t, x) value.
Since b1 is a constant vehicle label, we have two possible values for the point where the
trajectory of b1 intersects the line with slope −w2 through (t′, x′): (tu1, x

u
1) and (tc1, x

c
1). Since

∂N
∂t
≥ 0 and ∂N

∂x
≤ 0, and the congested characteristic through (t′, x′) has a negative slope

of −w2, N(t, x) is nondecreasing along that characteristic. Therefore, the correct value of
(t1, x1) for the trajectory of vehicle 1 is t1 = max {tu1, tc1} since that corresponds to a later
arrival time of vehicle b1, or equivalently, a lower value of N(t, x) along the characteristic of
slope −w2.

There are two particular corner cases associated with the value (t1, x1). First, observe
that x1 > x (and t1 < t). Otherwise, point (t, x) is in region 1, and that case was handled
already. Second, it is possible that x1 > L, i.e. the intersection of the backwards-moving
characteristic of slope −w2 with the trajectory of vehicle b1 is outside of the range x ∈ [0, L].
In that case, c(t, x) is the limiting condition, and the standard Lax-Hopf formula for region
2 can be used:

N(t, x) = inf
u2∈[−v,w2],T2∈R+

{c(t− T2, x+ T2u2) + T2ϕ
∗
2(u2)} (21)

Once the correct value of (t1, x1) is determined, with x < x1 ≤ L, then the maximum
value of N(t, x) based on the congested characteristic is b1 +K(x− x1) (Newell, 1993) since
N(t1, x1) = b1 and the cumulative count increases by K∆x along a characteristic moving
at speed −w2 in region 2. The second bound on N(t, x) is based on the forward moving
characteristic: finding point (tu0, x

u
0) such that c(tu0, x

u
0) is defined (or less than∞) and (tu0, x

u
0)

is on a line of slope v passing through (t, x), i.e. xu
0 − x = v(tu0 − t). Since the cumulative

count does not change along this characteristic, N(t, x) can be calculated as

N(t, x) = min {N(t1, x1) +K(x− x1), N(tu0, x
u
0)} (22)

4.2 Multi-region multiclass Newell’s method

The problem is to find points (ti, xi) such that N(ti, xi) = bi. As suggested in Section 4.1,
these points form a system of linear equations as they are connected via characteristic lines of
slope −wi. With multiple regions,the calculation of the backwards-moving characteristic is
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more complicated because there are multiple characteristics. The objective is to find a point
(ti, xi) on the characteristic of slope −wi+1 through point (ti+1, xi+1) such that N(ti, xi) = bi.
We first discuss how to handle a downstream boundary condition (defined for x = L), then
discuss the changes needed for an initial condition (defined for t = 0) in Section 4.2.3.

4.2.1 Downstream boundary condition

For a downstream boundary condition, the objective is to find Ti ≥ 0 for all i ∈ [1, I] such
that

t0 = t−
I∑
i=1

Ti (23)

and

x0 = x+
I∑
i=1

Tiwi = L (24)

where x0 = L because backwards moving waves intersect the downstream boundary of L.
The intermediate points where region i ends are labeled (ti, xi) and can be found by

ti = t−
I∑

j=i+1

Tj (25)

and

xi = x+
I∑

j=i+1

Tjwj (26)

Proposition 4 formally proves that defining (ti, xi) through Ti as in equations (25) and (26)
achieves a point (ti, xi) on the line of slope −wi+1 through point (ti+1, xi+1).

Proposition 4. For i ∈ [2, I − 1], point (ti−1, xi−1) is on the line with slope −wi through
point (ti, xi). Point (t, x) is on the line with slope −wI through point (tI−1, xI−1).

Proof. Point (tI−1, xI−1) is defined by equations (25) and (26) as

tI−1 = t−
I∑
i=I

Ti = t− TI (27)

and

xI−1 = x+
I∑
i=I

Tiwi = x+ TIwI (28)

Therefore t − tI−1 = TI and x − xI−1 = −TIwI , so (tI−1, xI−1) is on a line of slope −wI
through (t, x). Similarly, as defined by equations (25) and (26),

ti − ti−1 = t−
I∑

j=i+1

Tj − t+
I∑
j=i

Tj = Ti (29)
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and

xi − xi−1 = x+
I∑

j=i+1

Tjwj − x−
I∑
j=i

Tjwj = −Tiwi (30)

so (ti−1, xi−1) is on a line of slope −wi through (ti, xi).

Newell (1993) showed that along characteristics moving at speed −wi, the cumulative
count increases at the rate of K∆x. The objective is for intermediate points (ti, xi) to
satisfy

N(ti, xi) = bi (31)

To achieve this, we impose the constraint

c(t0, x0) +K(x0 − xi) ≥ bi (32)

The ≥ term in constraint (32) comes from the fact that N(ti, xi) is the minimum of uncon-
gested (upstream) conditions and congested (downstream) conditions. However if c(t0, x0) +
K(x0 − xi) < bi then N(ti, xi) < bi also, which violates condition (31). Notice that if

c(t0, x0) ≥ bi, then constraint (32) admits xi = 0 (meaning
i∑

j=1

Tj = 0). The intuitive in-

terpretation is that if c(t0, x0) ≥ bi, then regions j = 1 . . . i are not part of the congested
characteristic as the region boundary vehicle bi passed x = L before the congested charac-
teristic reaches x = L. To achieve a linear program, we assume that c(t0, L) is linear, i.e. a
constant flow constraint, such as a capacity. A piecewise linear definition of c(t0, L) can be
handled by treating each piece separately via the inf-morphism property.

When (ti, xi) is determined by upstream (uncongested) conditions, constraint (32) may
not hold with equality. Since N(t, x) is constant along uncongested characteristics of speed
v (Newell, 1993), we can find the smallest value t̂i such that c

(
t̂i, 0
)

= bi, then trace a line
of slope v to (ti, xi):

N(ti, xi) ≥ c
(
t̂i, 0
)

= bi (33)

with
t̂i = ti −

xi
v

(34)

As discussed in Section 4.1.3, the correct value of ti is the larger one. Combining equations
(33) and (34) yields

ti ≥ t̂i +
xi
v

(35)

meaning that vehicle bi can intersect the line of slope wi+1 at time ti or greater (if congested
conditions determine bi’s trajectory). If bi does not cross the line x = 0 during t ∈ [0,∞),
there should be a maximum value x̂i ∈ [0, L] such that c (0, x̂i) = bi. (If x̂i < 0, then t̂i > 0.
If x̂i > L, then region i is never active.) These two possibilities are illustrated in Figure 4.
If we have an x̂i ∈ [0, L] and not a t̂i ∈ [0,∞), then equation (33) can be rewritten as

N(ti, xi) ≥ c (0, x̂i) = bi (36)
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Figure 4: Illustration of boundary vehicles crossing the initial or upstream conditions.

Equation (36) is equivalent to

ti ≥
xi − x̂i
v

(37)

because vti is the minimum time for bi to traverse the distance xi − x̂i at free flow speed v.
Since N(ti, xi) is defined by the minimum value of N from tracing the forward and back-

ward characteristics, the objective is to find the minimum value of ti subject to constraints
(32) and (35) or (37) (whichever is appropriate). This leads to the following linear program:

min
I∑
i=1

ti (38a)

s.t. ti = t−
I∑

j=i+1

Tj ∀i ∈ [0, I] (38b)

xi = x+
I∑

j=i+1

Tjwj ∀i ∈ [0, I] (38c)

x0 = L (38d)

c(t0, x0) +K(x0 − xi) ≥ bi ∀i ∈ [1, I − 1] (38e){
ti ≥ t̂i + xi

v
if t̂i ∈ [0,∞)

ti ≥ xi−x̂i
v

if x̂i ∈ [0, L]
∀i ∈ [1, I − 1] (38f)
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Ti ≥ 0 ∀i ∈ [1, I] (38g)

Constraint (38f) is noteworthy as it encapsulates two constraints. As discussed in the deriva-
tion of equations (35) and (37), either a t̂i ∈ [0,∞) or a x̂i ∈ [0, L] defines the point at which
vehicle bi passes the initial or upstream boundaries. Whichever is appropriate should be
used.

Once intermediate points (ti, xi) are known, then N(t, x) can be determined as the min-
imum of several constraints. First, N(t, x) is upper-bounded by the forward-moving charac-
teristic of speed v passing through point (t, x).

N(t, x) ≤ c
(
t− x

v
, 0
)

(39)

The calculation of the backwards moving characteristic is more complicated because (ti, xi)
has two possible values: N(ti, xi) = bi, or xi = L with N(ti, xi) > bi. In the latter case,
Ti = 0 (region i is not active). Their effect on N(t, x) can be summarized as follows. If
xI−1 < L, then

N(t, x) ≤ bI−1 +K(xI−1 − x) (40)

because along characteristics moving at speed −wI−1 in region I − 1, the cumulative count
increases at the rate of K∆x (Newell, 1993). Regardless of which regions are active,

N(t, x) ≤ c(t0, x0) +K

(
(xI−1 − x0) +

I∑
i=0

K(xi − xi+1)

)
= c(t0, x0) +K(x0 − x) (41)

Unfortunately, if I regions are considered but N(t, x) < bI , then constraint (38e) will
cause linear program (38) to be infeasible. One possible algorithm for avoiding the infeasi-
bility is to solve J? = max {J ∈ [1, I] : linear program (38) is feasible}. This requires solving
a series of linear programs for each point (t, x). Instead, we suggest an alternative by allow-
ing constraints (38e) and (38f) to be exceeded, but penalizing the excess. Rewrite constraint
(38e) as

c(t0, x0) +K(x0 − xi)− bi ≥ −λi (42)

where λi ≥ 0 is the amount by which constraint (38e) is exceeded. Similarly, rewrite con-
straints (38f) as {

ti − t̂i − xi
v
≥ −λi if t̂i ∈ [0,∞)

ti − xi−x̂i
v
≥ −λi if x̂i ∈ [0, L]

(43)

Then objective (38a) is modified to

min
I∑
i=1

ti + β
I∑
i=1

λi (44)

If β is sufficiently large, then λi = 0 is optimal if linear program (38) is feasible. If not, then
the revised linear program will be feasible but the optimal solution will have λi > 0, which
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will indicate that (ti, xi) was not found because (t, x) occurs before region i. Linear program
(38) can thus be written as

min
I∑
i=1

ti + β

I∑
i=1

λi (45a)

s.t. ti = t−
I∑

j=i+1

Tj ∀i ∈ [0, I] (45b)

xi = x+
I∑

j=i+1

Tjwj ∀i ∈ [0, I] (45c)

x0 = L (45d)

c(t0, x0) +K(x0 − xi)− bi ≥ −λi ∀i ∈ [1, I − 1] (45e){
ti − t̂i − xi

v
≥ −λi if t̂i ∈ [0,∞)

ti − xi−x̂i
v
≥ −λi if x̂i ∈ [0, L]

∀i ∈ [1, I − 1] (45f)

Ti ≥ 0 ∀i ∈ [1, I] (45g)

λi ≥ 0 ∀i ∈ [1, I] (45h)

The number of variables in linear program (45) scales linearly with the number of class
proportion regions considered. After solving linear program (45), N(t, x) is the maximum
value satisfying several constraints, including (39) and (41). Constraint (40) is modified as
follows: find the largest active region Ĩ with λĨ = 0, i.e.

Ĩ = max {i ∈ [1, I] : λi = 0} (46)

If λi > 0, then constraints (38e) or (38f) do not hold, meaning that region i occurs after
point (t, x). Then if Ĩ > 0,

N(t, x) ≤ bĨ−1 +K
(
xĨ−1 − x

)
(47)

4.2.2 Piecewise-linear downstream boundary conditions

Linear program (45) can be modified for a piecewise-linear downstream boundary condition
by solving with each piece separately with the additional constraint

t[ ≤ t0 ≤ t] (48)

where t[ and t] are the lower and upper bounds of t for which the condition applies, re-
spectively. Then, using the inf-morphism property (Claudel and Bayen, 2010a), the correct
solution is the one that obtains the lower N(t, x) value. However, two additional issues arise
due to the addition of constraint (48). First, the value of (ti, xi) in the optimal solution may
not have either (45e) or (45f) as an active constraint, i.e. N(ti, xi) > bi, to achieve feasibility
with constraint (48). This issue is illustrated in Figure 5(a). If w2 > w1, the correct value
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(b) Ti > 0 with λi > 0

Figure 5: Illustration of issues caused by the addition of constraint (48). Dotted lines indicate
the optimal characteristics without constraint t0 ∈

[
t[, t]

]
.

of (t1, x1) may be too high for a line of slope −w1 to reach the boundaries of the constraint
t0 ≤ t]. In this case, constraint (40) should only be applied when constraints (45e) or (45f)
are active. Second, due to the shallowness of a slope wi, it is possible to have Ti+1 > 0 while
λi+1 > 0, which means that N(ti, xi) < bi. Figure 5(b) illustrates this as N(t1, x1) < b1 yet
because w1 < w2, T2 > 0 is needed to achieve t0 ≥ t[. In this case, (t0, x0) should not be
achievable with constraints (38e) and (38f) in place. This results in a incorrect (too small)
value of c(t0, x0) being applied to constraint (41). In this case, constraint (41) on N(t, x)
should not be used.

4.2.3 Initial condition

Linear program (45) can be used with a slight modification to handle an initial condition
(defined for t = 0). Replace constraint (45d) with the following:

t0 = 0 (49)

The remainder of the constraints are sufficiently general to hold for both a downstream and
initial condition.

4.3 Numerical demonstration of multiclass Newell’s method

We demonstrate the multiclass calculation of N(t, x) by considering a 2-class scenario of
legacy and automated vehicles. Using the triangular flow-density relationship derived by
Levin and Boyles (2016), the congested wave speed for region i with an automated vehicle
proportion of pAV

i is

wi =
`

pAV
i τAV + (1− pAV

i ) τHV
(50a)
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with capacity of

Q =
v

v (pAV
i τAV + (1i− pAV

i ) τHV) + `
(50b)

where τHV and τAV are the reaction times of legacy and automated vehicles, respectively,
and ` = 1

K
is the vehicle length. For this demonstration, we used specific values of τHV =

1.5s, τAV = 0.25s, v = 30mi/hr, and K = 240veh/mi. We consider a 1-mile length of
road with a red traffic signal (0 flow) from t = 30s to t = 210s. We defined two regions:
region 1, for vehicles [0, 50], with 0% automated vehicles, and region 2, for vehicles (50,∞),
with 100% automated vehicles. Therefore, capacities for regions 1 and 2 are 1800vph and
4800vph, respectively. The initial condition c(0, x) was set at a density of 40veh/mi, with
c(0, x) = 40 − kx. Upstream entering flow was 1200veh/hr for t ∈ [0, 60) then 2400veh/hr
for t ∈ [60,∞). These parameters are not intended to suggest representative values for
automated vehicle flow. Rather, the purpose is to provide a demonstration of the multiclass
Newell’s method for solving N(t, x).

The solution method described in Section 4.2 was implemented in Java, using IBM’s
CPLEX 12.6 to solve linear programs. At a time interval of 1s and a spatial interval of 0.01mi,
computing the cumulative count map for t ∈ [0, 360]s and x ∈ [0, 1]mi required 41.48s on a
desktop computer with an Intel Core i5–8600K at 3.60GHz with 16GB of memory. Comput-
ing the density map required 77.34s. Density was approximated by k(t, x) ≈ N(t,x)−N(t,x+ε)

ε
.

The cumulative counts are shown in Figure 6(a) and the densities are shown in Figure
6(b). There are several interesting patterns of note. First, from t = 60s to t = 360s, entering
density is 80veh/mi, which exceeds the critical density of region 1 (60veh/mi) but is well
within the uncongested regime of region 2. Consequently, the shockwave separating the queue
from the entering flow changes speed at (155s, 0.79mi). Downstream, and after the traffic
signal turns green at t = 210s, the queue initially dissipates at a rate of 1800veh/hr, with a
density of 60veh/mi, until the 50th vehicle has passed. Thereafter, the queue dissipates at
the rate of 4800veh/hr, or a density of 160veh/mi, due to the higher capacity of region 2.

20



(a) N(t, x) (b) k(t, x)

Figure 6: Illustration of computed cumulative count map and density map from multiclass
traffic flow scenario

5 Multiclass link transmission model

We now apply the multiclass Newell’s method into a multiclass version of Yperman et al.
(2005)’s link transmission model for dynamic network loading. This paper focuses on de-
veloping a link transmission model for a mixture of human and AV flows with a changing
flow-density relationship. Dynamic traffic assignment for a single-class of vehicles is well-
established in the literature, and the methods in this paper can be used with existing node
models (Tampère et al., 2011) and dynamic traffic assignment algorithms (Levin et al., 2015).
For more information on dynamic network loading, we refer the reader to Yperman (2007)
which describes the single-class link transmission model for link flow modeling as well as its
connection to node models. In Section 6, we will demonstrate a dynamic traffic assignment
using the multiclass link transmission model on a city network, combined with standard node
models for traffic signals, merges, and diverges. As with other link models, the multiclass link
transmission model must calculate sending and receiving flows, which are then used by the
node models to calculate entering and exiting flow and the upstream and downstream ends
of each link. The link transmission model stores the upstream and downstream boundary
conditions up to time t. Cumulative count values within the link are not stored.

5.1 Class proportion regions

Consider discretized time with time step ∆t. The class proportion regions are defined sep-
arately for each link. The class proportion region boundaries could be chosen in several
ways. To work with both continuous and discrete flow, we define the region boundaries to
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coincide with time steps. Flow entering between time t and t + ∆t is defined as one class
proportion region, with boundaries N(t, 0) and N(t+ ∆t, 0). We assume that Nm(t, 0) and
Nm(t+ ∆t, 0) are known, then we can calculate the average entering flow between [t, t+ ∆t)
as

qm(t, 0) ≈ Nm(t+ ∆t, 0)−Nm(t, 0)

∆t
(51)

We then create a new class proportion region applying to the vehicles entering between t
and t + ∆t with proportions of qm(t,0)∑

m′∈M
qm′ (t,0)

. This implicitly assumes that class proportions

are uniformly mixed between t and t+ ∆t. If desired, a higher resolution of class proportion
regions could be implemented.

However, when working with continuous flows, class proportions at the upstream end of
each link between time t and t + ∆t are assumed to become uniformly distributed. This
is not a problem at centroids, but violates FIFO at the upstream ends of internal links.
Although there are fewer mixing points in this LTM than the multiclass CTM (Levin and
Boyles, 2016), mixing still occurs. This is actually a general problem with dynamic network
loading of multi-commodity flow (Carey et al., 2014). For other papers, the commodities
are typically paths or destinations, and vehicle class becomes an additional identifier in this
paper. Bar-Gera and Carey (2017) studied methods of ensuring FIFO holds in continuous
dynamic network loading models. Although addressing this issue is outside the scope of this
paper, it is worth studying in future work.

5.2 Sending flow

The sending flow is the maximum flow that could exit in one time step, and the receiving
flow is the maximum flow that could enter in one time step. The sending flow S(t) can be
calculated by

S(t) = N(t+ ∆t, L)−N(t, L) (52)

where N(t+ ∆t, L) is the maximum value found based on constraints within the link. (The
actual flow may be less than the sending flow depending on downstream constraints from
the node model.) Although N(t, L) is stored, N(t + ∆t, L) must be calculated. Since L
is the downstream boundary, the only characteristic that can reach a boundary condition
is the uncongested characteristic, which always travels at speed v regardless of the class
proportions. Therefore,

N(t+ ∆t, L) = N

(
t+ ∆t− L

v
, 0

)
(53)

Due to equation (53), only L
v

time steps of the upstream cumulative count need to be stored.
Sending flow is also constrained by capacity, which is not a constant value because it

depends on the class proportions. Given class proportion regions 0 . . . I, the first class
proportion region of consideration, i[, is the first region active on the time interval [t, t+∆t):

i[ = arg max
i∈[0,I]

{bi−1 ≤ N(t, L)} (54)
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Then the capacity constraint Q̃ can be constructed using the following algorithm. Add up
Qi[ of vehicles until either the class region boundary bi[ or the time step ∆t is reached. If the
class region boundary is reached, then continue with the next region i[ + 1 until 1 time step
has elapsed. This calculation is defined by Algorithm 1. Q̃ and τ̃ are state accumulation
variables. b̃ is the region lower bound, which could be bi−1 or N(t, L). For each class region

i, that region can apply for up to τ = bi−b̃
Qi

time (after which the class region transitions to

i+ 1). If the remaining time ∆t− τ̃ > τ , then add Qiτ to the capacity variable Q̃, update b̃
and τ̃ , and continue with region i + 1. Otherwise, add Qi(∆t − τ̃) capacity and terminate.
The sending flow calculation can then be summarized by

S(t) = min

{
Q̃,N

(
t+ ∆t− L

v
, 0

)
−N(t, L)

}
(55)

Algorithm 1 Calculating capacity for sending flow

1: Q̃← 0
2: b̃← N(t, L)
3: τ̃ ← 0
4: for i = i[ to I do
5: τ = bi−b̃

Qi

6: if τ̃ + τ ≥ ∆t then
7: Q̃← Q̃+Qi (∆t− τ̃)
8: return Q̃
9: else

10: Q̃← Q̃+Qiτ
11: τ̃ ← τ̃ + τ
12: b̃← bi
13: end if
14: end for

5.3 Receiving flow

Like the sending flow, the receiving flow R(t) is calculated as

R(t) = N(t+ ∆t, 0)−N(t, 0) (56)

N(t + ∆t, 0) requires tracing a congested characteristic, which has variable speed. The
method for tracing this characteristic is defined in Section 4.2. However, there are some
useful implementation results to be discussed here. First, we prove in Proposition 5 that
only L

w[ time steps of downstream cumulative counts need to be stored, which determines the
memory requirements. Second, observe that if a class region i ends with boundary vehicle
bi such that N

(
t+ ∆t− L

w[ , L
)
≥ bi, then class region i is no longer relevant to calculating

N(t+ ∆t, 0), and can be discarded from memory. The capacity constraint for the receiving
flow can be estimated based on the class proportions of upstream link sending flows.
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Proposition 5. Downstream cumulative counts must be stored for the previous L
w[−∆t time,

where w[ is the minimum congested wave speed.

Proof. To calculate N(t + ∆t, 0), the multiclass Newell’s method follows a congested char-

acteristic of speeds wi to a time t+ ∆t−
I∑
i=1

Ti such that
I∑
i=1

Tiwi = L. Since wi ≥ w[,
I∑
i=1

Ti

can be upper-bounded by
I∑
i=1

Ti ≤ L
w[ therefore

t+ ∆t−
I∑
i=1

Ti ≥ t+ ∆t− L

w[
(57)

which requires looking back at most L
w[ −∆t in time.

5.4 Iterative algorithm for receiving flow

The repeated use of solvers to calculate N(t+∆t, 0) can limit the computational performance
of large dynamic network loading models. In this section we present a polynomial time
algorithm based on iteratively solving a system of linear equations. The multiclass link
transmission model benefits from certain simplifications that are not true in the general
multiclass Newell’s method. First, since only the sending and receiving flows are calculated,
N(t + ∆t, x) is calculated for x = L or x = 0. When x = L, the solution is simply looking
backwards along an uncongested wave of speed v. When x = 0, the solution involves looking
backwards along a congested wave with varying speed. However, due to the construction of
the region boundaries, N(t+∆t) is in region I + 1 where region I has boundary vehicle bI =
N(t, 0). The second simplification is therefore that the class boundary region is known with
certainty when calculating N(t+∆t, 0). This suggests that N(t+∆t, 0) can be calculated by
iteratively solving a system of linear equations. The iteration occurs because the intermediate
points (ti, xi) satisfyingN(ti, xi) = bi could be determined either by congested or uncongested
conditions. The first iteration can assume that all (ti, xi) points are determined by congested
conditions, then revise them to use uncongested conditions if they result in the contradiction
that N(ti, xi) = bi yet N(ti, xi) ≤ c

(
ti − xi

v
, 0
)
.

We assume here that I ≥ 3. If I < 3, then the method of Section 4.1 may be used
instead. For the first iteration, assume that congested conditions determine all points (ti, xi).
Therefore, N(t + ∆t, 0) is determined by following a congested characteristic back to the
downstream boundary condition c(t, L). This results in the following system of equations:

c(t0, L) +K(L− x1) = b1 (58a)

K(xi − xi+1) = bi+1 − bi ∀i ∈ [1, I − 1] (58b)

− w1(t1 − t0) = x1 − L (58c)

− wi+1(ti+1 − ti) = xi+1 − xi ∀i ∈ [1, I − 1] (58d)

− wI+1(t+ ∆t− tI) = 0− xI (58e)
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The simplified solution involves removing equations (58b), (58c), and (58d) to obtain a
system of equations in only three variables: t0, tI , and xI . These equations can be removed
because the difference in cumulative count between boundary vehicles bi+1 and bi is constant,
so K(xi−xi+1) is also constant. Since wi+1 is given, the difference ti+1−ti can be determined
as

ti+1 − ti =
xi+1 − xi
−wi+1

=
bi+1 − bi
Kwi+1

(59)

Equations (58a) and (58b) can be combined into

c(t0, L) +K(L− xI) = bI (60)

Equations (58b) and (59) can be used to find tI − t0 as

tI − t0 =
b1 − c(t0, L)

Kw1

+
I∑
i=2

bi − bi−1

Kwi
(61)

When c(t0, L) is linear (as it is for LTM), equations (58e), (60), and (61) form a system
of three equations with variables t0, tI , and xI . Assume that c(t0, L) = c0 + q0t0. Solving
this system results in the solution

t0 =

bI−c0−KL+KwI+1(t+∆t)

KwI+1
+ c0−b1

Kw1
−

I∑
i=2

bi−bi−1

Kwi

q0
KwI+1

+ 1− q0
Kw1

(62)

with tI and xI found through equations (61) and (60), respectively. Using equations (58c)
and (59), all intermediate points (ti, xi) can be found.

The prior solution to (ti, xi) points assumed that all points were determined by congested
conditions. It is easy to check whether any given (ti, xi) point should be determined by
uncongested conditions instead: c

(
ti − xi

v
, 0
)
< bi. Let î indicate the furthest vehicle position

determined by uncongested conditions, i.e.

î = max
{
i ∈ [1, I] : c

(
ti −

xi
v
, 0
)
< bi

}
(63)

Then the true value of (t̂i, xî) is on a line of slope v from a point t′ such that c(t′, 0) = bî.
Given c(t, 0), that t′ can be uniquely determined and can be hereafter treated as a constant.
This works because the cumulative count does not change along a uncongested characteristic
and is therefore independent of the length of that characteristic. We now have a revised
system of linear equations:

v(t̂i − t
′) = xî − 0 (64a)

0− xI = −wI+1(t+ ∆t− tI) (64b)

K(xi − xi+1) = bi+1 − bi ∀i ∈
[̂
i, I − 1

]
(64c)

xi+1 − xi = −wi+1(ti+1 − ti) ∀i ∈
[̂
i, I − 1

]
(64d)
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As before, we want to simplify equations (64) to have only variables t̂i, xî, tI , and xI .
Equations (64c) can be simplified to

K (xî − xI) = bI − bî (65)

Using equation (59), equation (64d) can be simplified to

tI − t̂i =
I∑

i=î+1

bi − bi−1

Kwi
(66)

Equations (64a), (64b), (65), and (66) now form a system of four equations with four vari-
ables. The solution is

t̂i =

bI−bî
K

+ vt′ + wI+1(t+ ∆t)− wI+1

I∑
i=î+1

bi−bi−1

Kwi

v + wI+1

(67)

with tI , xI , and xî found by equations (66), (64b), and (65), respectively. Intermediate
(ti, xi) points can be calculated by equations (64c) and (64d). As before, if some of these
intermediate points should be instead determined by uncongested conditions, calculate a new
î using equation (63) and solve equations (64) again. The algorithm to calculate N(t+∆t, 0)
using iterative systems of linear equations is summarized in Algorithm 2.

Algorithm 2 Iterative algorithm for calculating the receiving flow for the multiclass LTM

1: Set î← 1

2: if I + 1− î ≤ 1 then
3: Solve N(t, 0) using Newell (1993)’s method (1 region)
4: else if I + 1− î ≤ 2 then
5: Solve N(t, 0) using 2-region multiclass Newell’s method (Section 4.1)
6: end if

7: if î = 1 then
8: Solve equations (58e), (60), and (61) for N(t, 0)
9: else

10: Solve equations (64a), (64b), (65), and (66) for N(t, 0)
11: end if
12: if

{
i ∈ [1, I] : c

(
ti − xi

v
, 0
)
< bi

}
= ∅ then

13: return bI +KxI
14: else
15: î← max

{
i ∈ [1, I] : c

(
ti − xi

v
, 0
)
< bi

}
16: go to line 2
17: end if
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Figure 7: Downtown Austin city network

6 Numerical results from dynamic traffic assignment

We implemented the multiclass LTM in a dynamic traffic assignment model that discretizes
flow and tracks the location, path, and driver type (legacy or automated) of individual
vehicles with a time step of ∆t = 15s. By discretizing vehicles, we can reduce the FIFO
issues discussed in Section 5.1. The sending and receiving flows calculated by the multiclass
LTM are used to determine the propagation of vehicles along links and through nodes. This
same software package (albeit with a different link flow model) has been used for numerical
results in previous studies (e.g. Levin and Boyles, 2016; Levin et al., 2017). We conducted
a demonstration of dynamic traffic assignment using the multiclass LTM on the downtown
Austin city network, shown in Figure 7. This network was constructed by the Network
Modeling Center at The University of Texas at Austin for project work for the City of
Austin, and was calibrated to match observations from 2010. The network includes 171
zones, 546 nodes, and 1247 links, and has a demand of around 62,836 vehicles over 2 hours.

6.1 Convergence properties of dynamic traffic assignment

We solved dynamic traffic assignment using the method of successive averages. Normal
convergence of dynamic traffic assignment was observed with the multiclass LTM in use.
For instance, Figure 8 shows the gap with respect to iteration for a scenario with 50% AVs.
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Figure 8: Convergence of dynamic traffic assignment using the multiclass LTM

This gap is defined as

gap =
TSTT− SPTT

TSTT
(68)

where TSTT is the total system travel time and SPTT is the shortest path travel time. A
gap of under 2% was achieved after 30 iterations, which is typical for this network and for
dynamic traffic assignment (Levin et al., 2015). We note that due to the discontinuities
in travel times caused by LTM, the existence and uniqueness properties of dynamic user
equilibrium cannot be analytically established. The average computation time per iteration
was 19.2s on a desktop with an Intel Core i5-9400 processor clocked at 2.90 GHz with 24.0GB
of memory. Most of the additional computational effort of Algorithm 2 compared with LTM
occurs when the number of class proportion regions is large. Efforts to reduce the number
of regions whenever possible are important for achieving a lower computation time. For
example, one new region is usually created for each link per time step. However, if the
entering flow is zero, then a new region does not have to be created for that link. If the
entering flow for a link has a AV proportion identical to the last region, then a new region
also does not need to be created there.

6.2 Effects of AV market penetration on traffic congestion

Next, we evaluated the sensitivity of network travel times with respect to AV market pene-
tration. Link capacities and congested wave speeds were scaled according to equation (50).
To retain as much of the original network parameters as possible, link capacities were not
set equal to the output of equation (50b). Instead, we calculated Q for pAV

i and with 0 AV

28



market penetration, then scaled the calibrated link capacities proportionally. Formally, if
Q̃a is the link capacity of link a, and Q

(
pAV
i

)
is the capacity calculated by equation (50b),

then the new link capacity for region i is chosen as Q̃a
Q(pAV

i )
Q(0)

. Congested wave speeds were
then determined by the triangular shape of the flow-density relationship, with a fixed jam
density. We used reaction times of τHV = 1s and τAV = 0.5s. For each AV market pene-
tration, 10 Monte Carlo simulations were performed to reduce the effects of stochasticity in
the demand. Because flow is discretized, each vehicle is randomly determined to be either a
legacy or automated vehicle with probability given by the overall AV market penetration.

The results presented here assume that intersection capacity increases with the AV market
penetration as specified by the flow-density relationship (50). It is possible that intersection
capacity may be higher for AVs due to signal-free intersection controls (Dresner and Stone,
2004), but such controls were not included in these results. It is also possible that AVs might
instead behave more cautiously at intersections, resulting in lower intersection capacities than
predicted here. These results are also highly dependent on the shape of the flow-density
relationship for AVs, and it is possible that AVs might reduce capacity instead (Shladover
et al., 2012; Calvert et al., 2017; James et al., 2019).

Figure 9 shows the average travel time as a function of the city-wide AV market pen-
etration. Error bars show the standard deviation of travel times from the Monte Carlo
simulations. Since legacy and automated vehicles share all links, the average travel times
do not vary based on the driver type. Interestingly, the average travel times remained rela-
tively constant between 10% and 50% AVs. We note that Braess (1968) and Daganzo (1998)
demonstrated that increases in capacity could result in higher travel times due to selfish
route choice, which was actually demonstrated for cooperative adaptive cruise control by
Melson et al. (2018). The lack of improvement could also be due to intersection capacity
limitations and queue spillback. Although in these results, the intersection capacity increases
with the time- and space-dependent AV market penetration, queue spillback could reduce
the flow improvements achieved by capacity increases at intersections. At 60% and higher
AV market penetrations, travel times decreased consistently.

Of course, the effects that AVs have on congestion depend both on the network and the
legacy and automated vehicle driving parameters. The results in Figure 9 are compared with
other results in the literature. For freeways, Shi and Prevedouros (2016) and Yu et al. (2019)
observed a similar pattern as shown in Figure 9: speeds increased only slightly at low market
penetrations but had an increasing impact at higher market penetrations. However, they
predicted more continuous effects than shown in Figure 9. Intersection controls could be
causing the difference. Ghiasi et al. (2017) predicted even larger increases in capacity at low
market penetrations, but without network results. Patel et al. (2016) found that congestion
decreased steadily with increasing AV proportions even at low market penetrations, but Levin
and Boyles (2016) observed that traffic signals were a major bottleneck for the downtown
Austin network.
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Figure 9: Effects of AV market penetration on travel times

7 Conclusions

This paper extended Newell (1993)’s method for a multiclass kinematic wave theory. Like
the original, the proposed method finds exact solutions under triangular flow-density rela-
tionships. We started by exploring the multiclass kinematic wave theory, then recognizing
that when vehicles obey first-in-first-out behavior, that the class-specific cumulative counts
Nm(t, x) can be adequately described by a single aggregate cumulative count N(t, x) and
class proportion regions that move with the traffic flow. We wrote a corresponding mul-
ticlass Lax-Hopf formula (Claudel and Bayen, 2010a). Restricting ourselves to triangular
flow-density relationships with varying capacities and congested wave speeds, we developed
a linear program to implement a multiclass Newell (1993)’s method to find exact solutions
to the multiclass kinematic wave theory.

With the ultimate goal of a multiclass link transmission model, we developed a more
efficient iterative algorithm for calculating receiving flows. The multiclass link transmission
model was demonstrated on the downtown Austin city network. Dynamic traffic assignment
was observed to converge normally, and computation times on this city network were easily
manageable. Numerical results show a non-linear decrease in overall congestion due to greater
AV market penetration.

There are many future opportunities for this research. The multiclass LTM could be
used for more accurate city-scale predictions of traffic flow and congestion with varying
proportions of automated vehicles to prepare for their future use on public roads. The
presented solution method is fairly complex, and it may be possible to use the problem
structure to achieve a more efficient solution method. The flow-density relationship for

30



autonomous vehicles may not follow a triangular shape, so extending the results in Sections
4 and 5 to more general flow-density relationships would be valuable. It may be possible to
use Lagrangian coordinates and/or variational theory (Daganzo, 2006; Leclercq et al., 2007;
Laval and Leclercq, 2013) to develop a more efficient solution method. The predictions of this
model should also be verified against microsimulation. Multiclass flow that does not strictly
adhere to the first-in-first-out property on links is more challenging to model, and could be
the subject of future work. Although the standard LTM (Yperman et al., 2005) has been
used in system optimal dynamic traffic assignment (Levin, 2017; Chakraborty et al., 2018),
the complexity of the multiclass Newell’s method makes formulating the system optimal
dynamic traffic assignment problem challenging for multiclass flow. Finally, other multiclass
kinematic wave theory problems might be able to adapt the concepts and methods presented
here.
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P.-D. Braess. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung, 12(1):
258–268, 1968.

S. Calvert, W. Schakel, and J. Van Lint. Will automated vehicles negatively impact traffic
flow? Journal of Advanced Transportation, 2017, 2017.

M. Carey, H. Bar-Gera, D. Watling, and C. Balijepalli. Implementing first-in–first-out in the
cell transmission model for networks. Transportation Research Part B: Methodological, 65:
105–118, 2014.

S. Chakraborty, D. Rey, E. Moylan, and S. T. Waller. Link transmission model-based linear
programming formulation for network design. Transportation Research Record, 2672(48):
139–147, 2018.

D. Chen, S. Ahn, M. Chitturi, and D. A. Noyce. Towards vehicle automation: Roadway
capacity formulation for traffic mixed with regular and automated vehicles. Transportation
research part B: methodological, 100:196–221, 2017.

31



R. Chen, T. Zhang, and M. W. Levin. Effects of variable speed limit on energy consumption
with autonomous vehicles on urban roads using modified cell-transmission model. Journal
of Transportation Engineering, Part A: Systems, 146(7):04020049, 2020.

Z. Chen, F. He, L. Zhang, and Y. Yin. Optimal deployment of autonomous vehicle lanes with
endogenous market penetration. Transportation Research Part C: Emerging Technologies,
72:143–156, 2016.

Y.-C. Chiu, J. Bottom, M. Mahut, A. Paz, R. Balakrishna, T. Waller, and J. Hicks. Dynamic
traffic assignment: A primer. Transportation Research E-Circular, (E-C153), 2011.

C. G. Claudel and A. M. Bayen. Lax–Hopf based incorporation of internal boundary con-
ditions into hamilton–jacobi equation. part i: Theory. IEEE Transactions on Automatic
Control, 55(5):1142–1157, 2010a.

C. G. Claudel and A. M. Bayen. Lax–Hopf based incorporation of internal boundary condi-
tions into hamilton-jacobi equation. part ii: Computational methods. IEEE Transactions
on Automatic Control, 55(5):1158–1174, 2010b.

C. F. Daganzo. The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B: Methodological,
28(4):269–287, 1994.

C. F. Daganzo. The cell transmission model, part ii: network traffic. Transportation Research
Part B: Methodological, 29(2):79–93, 1995.

C. F. Daganzo. Queue spillovers in transportation networks with a route choice. Transporta-
tion Science, 32(1):3–11, 1998.

C. F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and appli-
cations. Networks and Heterogeneous Media, 1(4):601–619, 2006.

L. Davis. Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp.
Physica A: Statistical Mechanics and its Applications, 379(1):274–290, 2007.

K. Dresner and P. Stone. Multiagent traffic management: A reservation-based intersec-
tion control mechanism. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pages 530–537. IEEE Computer
Society, 2004.

A. Ghiasi, O. Hussain, Z. S. Qian, and X. Li. A mixed traffic capacity analysis and lane
management model for connected automated vehicles: A markov chain method. Trans-
portation Research Part B: Methodological, 106:266–292, 2017.

S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of
the equations of hydrodynamics. Matematicheskii Sbornik, 89(3):271–306, 1959.

32



S. Gong and L. Du. Cooperative platoon control for a mixed traffic flow including human
drive vehicles and connected and autonomous vehicles. Transportation research part B:
methodological, 116:25–61, 2018.

W. Himpe, R. Corthout, and M. C. Tampère. An efficient iterative link transmission model.
Transportation Research Part B: Methodological, 92:170–190, 2016.

R. M. James, C. Melson, J. Hu, and J. Bared. Characterizing the impact of production
adaptive cruise control on traffic flow: an investigation. Transportmetrica B: Transport
Dynamics, 7(1):992–1012, 2019.

W.-L. Jin. A kinematic wave theory of multi-commodity network traffic flow. Transportation
Research Part B: Methodological, 46(8):1000–1022, 2012.

W.-L. Jin. Continuous formulations and analytical properties of the link transmission model.
Transportation Research Part B: Methodological, 74:88–103, 2015.

A. Kesting and M. Treiber. How reaction time, update time, and adaptation time influence
the stability of traffic flow. Computer-Aided Civil and Infrastructure Engineering, 23(2):
125–137, 2008.

A. Kesting, M. Treiber, M. Schönhof, and D. Helbing. Extending adaptive cruise control to
adaptive driving strategies. Transportation Research Record, 2000(1):16–24, 2007.

J. A. Laval and L. Leclercq. The hamilton–jacobi partial differential equation and the three
representations of traffic flow. Transportation Research Part B: Methodological, 52:17–30,
2013.

L. Leclercq, J. A. Laval, and E. Chevallier. The lagrangian coordinates and what it means
for first order traffic flow models. In Transportation and Traffic Theory 2007. Papers Se-
lected for Presentation at ISTTT17Engineering and Physical Sciences Research Council
(Great Britain) Rees Jeffreys Road FundTransport Research FoundationTMS Consultan-
cyOve Arup and Partners, Hong KongTransportation Planning (International) PTV AG,
2007.

M. W. Levin. Congestion-aware system optimal route choice for shared autonomous vehicles.
Transportation Research Part C: Emerging Technologies, 82:229–247, 2017.

M. W. Levin and S. D. Boyles. Effects of autonomous vehicle ownership on trip, mode, and
route choice. Transportation Research Record: Journal of the Transportation Research
Board, (2493):29–38, 2015.

M. W. Levin and S. D. Boyles. A multiclass cell transmission model for shared human and
autonomous vehicle roads. Transportation Research Part C: Emerging Technologies, 62:
103–116, 2016.

33



M. W. Levin, M. Pool, T. Owens, N. R. Juri, and S. T. Waller. Improving the convergence
of simulation-based dynamic traffic assignment methodologies. Networks and Spatial Eco-
nomics, 15(3):655–676, 2015.

M. W. Levin, H. Fritz, and S. D. Boyles. On optimizing reservation-based intersection
controls. IEEE Transactions on Intelligent Transportation Systems, 18(3):505–515, 2017.

M. J. Lighthill and G. B. Whitham. On kinematic waves. ii. a theory of traffic flow on long
crowded roads. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, volume 229, pages 317–345. The Royal Society, 1955.

H. Liu, J. Wang, K. Wijayaratna, V. V. Dixit, and S. T. Waller. Integrating the bus vehicle
class into the cell transmission model. IEEE Transactions on Intelligent Transportation
Systems, 16(5):2620–2630, 2015.

H. Liu, X. Kan, S. E. Shladover, X.-Y. Lu, and R. E. Ferlis. Impact of cooperative adaptive
cruise control on multilane freeway merge capacity. Journal of Intelligent Transportation
Systems, 22(3):263–275, 2018.

Z. Liu and Z. Song. Strategic planning of dedicated autonomous vehicle lanes and au-
tonomous vehicle/toll lanes in transportation networks. Transportation Research Part C:
Emerging Technologies, 106:381–403, 2019.

S. Logghe and L. H. Immers. Multi-class kinematic wave theory of traffic flow. Transportation
Research Part B: Methodological, 42(6):523–541, 2008.

M. Makridis, K. Mattas, and B. Ciuffo. Response time and time headway of an adaptive
cruise control. an empirical characterization and potential impacts on road capacity. IEEE
Transactions on Intelligent Transportation Systems, 21(4):1677–1686, 2019.

C. L. Melson, M. W. Levin, B. E. Hammit, and S. D. Boyles. Dynamic traffic assignment
of cooperative adaptive cruise control. Transportation Research Part C: Emerging Tech-
nologies, 90:114–133, 2018.

V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura. Co-
operative adaptive cruise control in real traffic situations. IEEE Transactions on intelligent
transportation systems, 15(1):296–305, 2013.

G. F. Newell. A simplified theory of kinematic waves in highway traffic, part i: General
theory. Transportation Research Part B: Methodological, 27(4):281–287, 1993.

C. Nowakowski, J. O’Connell, S. E. Shladover, and D. Cody. Cooperative adaptive cruise
control: Driver acceptance of following gap settings less than one second. In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, volume 54, pages 2033–2037.
SAGE Publications Sage CA: Los Angeles, CA, 2010.

34



R. Patel, M. W. Levin, and S. D. Boyles. Effects of autonomous vehicle behavior on arterial
and freeway networks. Transportation Research Record: Journal of the Transportation
Research Board, (2561), 2016.

J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw, and H. Nijmeijer. Design and
experimental evaluation of cooperative adaptive cruise control. In 2011 14th International
IEEE Conference on Intelligent Transportation Systems (ITSC), pages 260–265. IEEE,
2011.

P. I. Richards. Shock waves on the highway. Operations research, 4(1):42–51, 1956.

W. J. Schakel, B. Van Arem, and B. D. Netten. Effects of cooperative adaptive cruise
control on traffic flow stability. In 13th International IEEE Conference on Intelligent
Transportation Systems, pages 759–764. IEEE, 2010.

L. Shi and P. Prevedouros. Autonomous and connected cars: Hcm estimates for freeways
with various market penetration rates. Transportation Research Procedia, 15:389–402,
2016.

S. E. Shladover, D. Su, and X.-Y. Lu. Impacts of cooperative adaptive cruise control on
freeway traffic flow. Transportation Research Record, 2324(1):63–70, 2012.

S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Ferlis. Cooperative adaptive cruise
control: Definitions and operating concepts. Transportation Research Record, 2489(1):
145–152, 2015.

A. Talebpour and H. S. Mahmassani. Influence of connected and autonomous vehicles on
traffic flow stability and throughput. Transportation Research Part C: Emerging Tech-
nologies, 71:143–163, 2016.

C. M. Tampère, R. Corthout, D. Cattrysse, and L. H. Immers. A generic class of first order
node models for dynamic macroscopic simulation of traffic flows. Transportation Research
Part B: Methodological, 45(1):289–309, 2011.

K. Tiaprasert, Y. Zhang, C. Aswakul, J. Jiao, and X. Ye. Closed-form multiclass cell trans-
mission model enhanced with overtaking, lane-changing, and first-in first-out properties.
Transportation Research Part C: Emerging Technologies, 85:86–110, 2017.

M. Van Aerde and H. Rakha. Multivariate calibration of single regime speed-flow-density
relationships. In Proceedings of the 6th 1995 Vehicle Navigation and Information Systems
Conference, pages 334–341, 1995.

J. Van Lint, S. P. Hoogendoorn, and M. Schreuder. Fastlane: New multiclass first-order
traffic flow model. Transportation Research Record, 2088(1):177–187, 2008.

35



F. van Wageningen-Kessels, J. Van Lint, S. Hoogendoorn, and C. Vuik. Multiple user classes
in the kinematic wave model in lagrangian coordinates. In Proc. Traffic Granular Flow,
pages 1–7, 2009.

F. van Wageningen-Kessels, H. Van Lint, S. P. Hoogendoorn, and K. Vuik. Lagrangian
formulation of multiclass kinematic wave model. Transportation research record, 2188(1):
29–36, 2010.

F. van Wageningen-Kessels, H. Van Lint, S. P. Hoogendoorn, and K. Vuik. New generic
multiclass kinematic wave traffic flow model: Model development and analysis of its prop-
erties. Transportation Research Record, 2422(1):50–60, 2014.

Z. Vander Laan and K. F. Sadabadi. Operational performance of a congested corridor with
lanes dedicated to autonomous vehicle traffic. International Journal of Transportation
Science and Technology, 6(1):42–52, 2017.

J. Vander Werf, S. E. Shladover, M. A. Miller, and N. Kourjanskaia. Effects of adaptive
cruise control systems on highway traffic flow capacity. Transportation Research Record,
1800(1):78–84, 2002.

J. Wang, S. Peeta, and X. He. Multiclass traffic assignment model for mixed traffic flow of
human-driven vehicles and connected and autonomous vehicles. Transportation Research
Part B: Methodological, 126:139–168, 2019.

L. Ye and T. Yamamoto. Impact of dedicated lanes for connected and autonomous vehicle
on traffic flow throughput. Physica A: Statistical Mechanics and its Applications, 512:
588–597, 2018.

L. Ye, T. Yamamoto, and T. Morikawa. Heterogeneous traffic flow dynamics under vari-
ous penetration rates of connected and autonomous vehicle. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pages 555–559. IEEE, 2018.

I. Yperman. The link transmission model for dynamic network loading. PhD thesis, KU
Leuven, 2007.

I. Yperman, S. Logghe, and B. Immers. The link transmission model: An efficient imple-
mentation of the kinematic wave theory in traffic networks. In Proceedings of the 10th
EWGT Meeting, Poznan, Poland, 2005.

H. Yu, S. Tak, M. Park, and H. Yeo. Impact of autonomous-vehicle-only lanes in mixed
traffic conditions. Transportation research record, 2673(9):430–439, 2019.

F. Zhu and S. V. Ukkusuri. Modeling the proactive driving behavior of connected vehicles:
A cell-based simulation approach. Computer-Aided Civil and Infrastructure Engineering,
33(4):262–281, 2018.

36



W.-X. Zhu and H. Zhang. Analysis of mixed traffic flow with human-driving and autonomous
cars based on car-following model. Physica A: Statistical Mechanics and its Applications,
496:274–285, 2018.

A. K. Ziliaskopoulos and S. T. Waller. An internet-based geographic information system
that integrates data, models and users for transportation applications. Transportation
Research Part C: Emerging Technologies, 8(1):427–444, 2000.

37


	Introduction
	Background
	Multiclass kinematic wave theory
	Class proportion regions
	Space- and time-varying flow-density relationship

	Multiclass Newell's method
	Two-region multiclass Newell's method
	Uncongested characteristic for (t1, x1)
	Congested characteristic for (t1, x1)
	Combining (t1u, x1u) and (t1c, x1c)

	Multi-region multiclass Newell's method
	Downstream boundary condition
	Piecewise-linear downstream boundary conditions
	Initial condition

	Numerical demonstration of multiclass Newell's method

	Multiclass link transmission model
	Class proportion regions
	Sending flow
	Receiving flow
	Iterative algorithm for receiving flow

	Numerical results from dynamic traffic assignment
	Convergence properties of dynamic traffic assignment
	Effects of AV market penetration on traffic congestion

	Conclusions

