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Abstract

Quantitative systems pharmacology (QSP) is an emerging field where mechanistic mathematical
models are used by the pharmaceutical industry to develop new drug therapies. My first real PhD job
was with one of the commercial pioneers in the QSP space: Entelos, Inc. At Entelos, we creating QSP
models from scratch based on the available literature, which requires reading a lot of papers. In the 5
years that I was at Entelos, I had read close to 3000 papers. In reflecting back on these experiences, here
I will discuss some observations related to signal integration, heterocellular signaling within tissues, and
observational bias that still apply to building QSP models based on the scientific literature.

Introduction

In quantitative systems pharmacology (QSP) [Sorger et al., 2011], creating a mechanistic mathematical
model of disease based on the available literature can involve reading a lot of papers. In the 5 years that
I was at Entelos (a commercial pioneer in the QSP space), I had read close to 3000 papers. In the early
2000’s, these were largely still on paper and involved someone going to the stacks at Stanford University
library and copying what we wanted to read. By “reading”, I mean digging into the paper looking for data
that we could use to calibrate /validate the model against. Many times these data were not mentioned in the
abstract or key findings of the paper but appeared in control or time-course experiments. From my current
perspective of West Virginia, we mined the scientific seams of literature for data.

In the 20 years since, some things have changed, others remain the same. While access to scientific
papers and the sharing of raw data has vastly improved, the practice of science remains largely the same.
The bread-and-butter publication in basic science is the product of a PhD student. In the process of defining
their dissertation, the PhD student narrows the scope of their proposed project to focus on the key question
and to graduate in a timely fashion. Experiments are then simplified to have a single experimental variable.
Measurements are acquired at a single time point and are analyzed using null hypothesis tests. If the results
are deemed to be statistically significant, their analysis suggests that the results observed after the designed
intervention is not explained by random chance. Additional experiments may be performed to help explain
the key finding, typically to provide a mechanistic explanation for a statistically significant result. While
these bread-and-butter publications provided the data foundation for the mechanistic mathematical models
of disease that we developed at Entelos, they also presented challenges for building these models particularly
related to signal integration, heterocellular signaling within tissues, and observational bias.
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Signal Integration

In short, atopic asthma is an immune-mediated disease of the lung whereby inhalation of some seemingly
innocuous substance, like mold or cat hair, causes a biphasic reduction in lung function - an immediate
reduction starting within minutes followed by an improvement and subsequent reduction 8-12 hours later.
In creating the mechanistic mathematical model, we modeled key cell types that are involved in the disease
and the secreted factors that they release. Cell types typically release a variety of secreted factors and each
secreted factor has an influence on multiple cell types. For instance, mast cells release pre-formed granules
when triggered with an appropriate antigen. These granules enable the rapid release of histamine and two
enzymes: chymase and tryptase. Histamine, in turn, influences the contractile state of smooth muscle cells
that can reduce the circumference of the airway, releases mucus into the airways by goblet cells that line the
airways, and influences the vascular permeability of endothelial cells causing swelling of the airway tissue.
The biochemical trigger that initiates the release of granules also initiates the synthesis and release of lipid
mediators like cysteinyl leukotrienes and PGD2. Cysteinyl leukotrienes also influence vascular permeability;
Cysteinyl leukotriene and PGD2 influence smooth muscle contraction; and Cysteinyl leukotrienes, PGD2
and chymase contribute to mucus secretion. The overlapping functions of these biochemical mediators, yet
differing secretion dynamics, implies that their relative importance in the early versus late phase of the
lung function response is different. A drug that targets only one of these biochemical mediators, like an
anti-histamine, may provide relief to the early phase but not the late phase.

Basic science papers, though, typically focus on characterizing isolated parts of this system (see [Lazebnik, 2002]
as similar critique), such as the action of one biochemical mediator on smooth muscle contraction. The chal-
lenge in integrating all data describing the behavior of the isolated parts is determining how a cell integrates
these different signals. Does a cell add them, is there a total maximum, are they added equally, or do some
mediators potentiate the response of others? These are all questions that come to the forefront when trying
to build a mechanistic mathematical model that integrates these data. Additional constraints, like clinical
studies of lung function measurements reported in time and in response to existing therapies, help narrow
down some of the options. However uncertainty remains as it is a characteristic weakness of how we study

Figure 1: A snapshot of the Asthma PhysioLab developed at Entelos showing that the biochemi-
cal mediators PAF, fibronectin, TNF-alpha, IL-3, GM-CSF, and IL-5 promote while TGF-beta
inhibits the activation of tissue eosinophils. The nodes depicted using a single oval outline, such as
PAF, represent state variables that are represented by ordinary differential equations. Nodes depicted using
a double oval outline, such as “tissue eosinophil activ’n stimuli”, represent dependent state variables cal-
culated using an algebraic equation that has all of the arrow-linked input nodes are the independent state
variables. The dots at the bottom of a single oval node note that the graphical depiction of this particular
state variable is incomplete as the node also appears (is aliased) at other locations in the graphical model,
where it may be connected to other arrows.
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integrated systems, like a tissue.

Party in the house tissue

Like a good party, normal function of a tissue is maintained in the presence of external challenges through
the efficient flow of information between different cell types present within that tissue, like the lung. In
contrast to man-made systems, biological systems present challenges for identifying how components of the
system causally influence each other. In engineering, causal relationships between system components are
inferred from a set of input cues and output responses. In context of atopic asthma, an input cue may be
a drug that neutralizes histamine and an output response may be lung function. Many approaches exist
for identifying simple-input-simple-output (SISO) systems - where a change in input causes a unique change
in output. However, approaches for identifying causal relationships among components of more complex
integrated closed-loop systems, like a tissue, are less well developed.

A closed-loop system is defined as a multi-component system where the output of one component provides
the input to another component. Closed-loop systems, like tissues, are particularly challenging as it is
impossible to identify the relationships among cells of a system based upon overall input (e.g. drugs) and
output (e.g. tissue function) measurements. One of the reasons for this is that changes in the internal
state of the system may alter the response of the system to a defined input, such that there is not a direct
causal relationship between overall system input and output. Historically, the causal mechanisms underlying
the behavior of closed-loop systems in physiology have been identified via ingenious methods for isolating
elements within the integrated system (i.e., “opening the loop”).

A classic example of opening the loop where the whole body is the closed-loop system is the discovery
of insulin and its’ role in connecting food intake to substrate metabolism. As insulin is only produced by
the endocrine pancreas, measuring plasma insulin provides a direct measure of the communication between
organs that relate food intake (occurs in the intestines) and substrate metabolism in the peripheral tissues
(like adipose tissue and muscle). We can then reduce the integrated system into a set of connected subsystems,
like the endocrine pancreas. The pancreas can then be approximated as a SISO subsystem where the glucose
concentration in the portal vein is the input and insulin release into the plasma is the output. Measuring
changes in insulin in the blood in response to changes in plasma glucose provide the basis for partitioning
alterations in system response (e.g., diabetes) into deficiencies in insulin production (i.e., type 1 diabetes)
and insulin action (i.e., type 2 diabetes). Treatment for diabetes is tailored to the deficiency in component
function that exists in the patient. In diabetes, “opening the loop” means identifying organ-level cross-talk
using blood measurements. In contrast, the cell-level cross-talk between different cell types within tissues
requires a more sophisticated experimental design than just measuring the number of cell types present.
There are some single-cell methods - like CellPhoneDB [Efremova et al., 2020] - that are trying to address
this, but this leads to the third point.

Observational bias

In clarifying our understanding of the biology that we wanted to model, we typically consulted with leading
experts in the field. We would read the literature and prepare questions for consulting visits. A common
theme that emerged from these conversations is that there are significant gaps in our understanding of
biology. As one consulting expert put it: we study what we know we can measure (a.k.a., the streetlight
effect [Battaglia and Atkinson, 2015]). As each discipline has their own tried-and-true methods to measure
aspects of biological systems, where does that collectively leave us? Well, a recent survey of the literature
reported that over 90% of scientific publications focus on only 20% of the genome [Stoeger et al., 2018]. I
would assume that 80% of the genome is there for a reason, but we just don’t clearly know why.

In addition to not knowing what 80% of the genome does, we also assume that cell-to-cell communication
occurs through the interaction of two molecular entities, such as a protein secreted by one cell type (e.g.,
insulin) interacting with a transmembrane protein expressed by another cell type (e.g., the insulin receptor)
or a transmembrane protein on one cell interacting with a transmembrane protein on another cell. We
have lots of methods to measure individual proteins. But less-biased ways of measuring biomolecules have
revealed additional modes of communication, such as through the cellular release of extracellular vesicles
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[Thery et al., 2018]. Extracellular vesicles are nano-scaled structures that contain proteins and coding and
non-coding RNA. If single proteins used for cell-to-cell communication are considered as individual words,
these extracellular vesicles could promote more complicated communication in the form of whole paragraphs.
The roles that these extracellular vesicles play in mediating cell-to-cell communication within tissues is just
tentatively emerging.

If understanding 20% of the genome is sufficient to develop effective drugs to treat disease, then we’re
good. However we’ve been fighting the “War on Cancer” since the 1970s and there many patients that are
underserved by the current treatment options. To mix metaphors: continually looking under the streetlight
and expecting a cure for cancer, isn’t that the definition of insanity? Of note cancer is a disease caused
by genetic alterations. As every cell can potentially re-express every gene in the genome, these genetic
alterations can re-introduce a gene product out of it’s evolutionarily designed context. Thus, our biological
knowledge constructed from the literature, which in aggregate represents normal biology, may not apply.

Then if everyone is looking at 20% of the genome, one strategy to make progress is to create a system
where you have the potential to look outside of that area. In numerical integration, antithetic sampling is
a similar idea used to accelerate convergence. But you don’t need a PhD to know that; if you like to find
eggs at an Easter Egg hunt, you don’t follow the crowd. I’ll talk about our approach in a separate article
[Klinke, 2023a].

Gestalt

To me, the most valuable part of building a mechanistic mathematical model is the process. To the company,
it was the product. The process of formulating a mechanistic model of pathophysiology really helps clarify
what we do and don’t understand about a particular disease area. In short, it forces you to connect the dots
in a quantitative way. This is really what separates mechanistic modeling from, say, bioinformatics, which
both rely on mathematics and a computer and involve biological data.

The focus on the modeling product is a bit problematic. When you make a model, whether it be a
mathematical or a biological one, you are abstracting the real system to create an artificial system that only
contains what you think are the key elements of the real system. Everything else is removed. We then use
these models to ask questions that are impossible or just difficult to ask in the real system. In order to
extrapolate the results obtained from the model system to inform our understanding of the real system, we
need to know whether the question that we asked of the model impinges on the elements that we thought
to be not important. The more simplified the model (like a cancer cell line in a dish), the more you leave
out (e.g., immune system, blood flow, stromal cells, different cancer clones). Maybe that’s ok, but you need
to really understand the biological context that you’re trying to model. When you try to sell a mechanistic
mathematical model as a shrink-wrapped product, you are missing the context. In my view, that is why
Entelos’ original business model failed. To do this work in academia can be difficult, as the enabling skills
are associated with different disciplines. More on that in a separate article [Klinke, 2023b].
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