
Least Squares-Optimal Transport
(LS-OT) Regression for varying time
delays
B. Tsakam-Sotché, brice.tsakam@gmail.com Horgen, revised on August 17th 2024

Abstract
While analysing time series data, conventional linear regression methods leave us the choice with one
of two assumptions: either the dependent and independent variables are synchronous or fixed time
lags are assumed.
However the time lag might be varying over time, or noisy. The time lag becomes an additional source
of error beside the usual (measurement) noise. Ignoring the variable time lag amounts to a
specification error. We use optimal transport cost as a way to account for the time lag uncertainty and
make ordinary least squares (OLS) robust to this type of error or noise. Using the chain rule, this
enhancement to the conventional OLS regression model of noise easily generalises to multivariate
regression.

Introduction
We investigate the simple regression for non-synchronous time series. This type of
data is common in practice in a variety of contexts. We propose a method that is
relevant when all the usual assumptions for OLS are fulfilled but there is still an
incorrect model specification in the sense that the time lag variation is significant in
comparison to the variation of the dependent variable. This applies to situations
where the dependent and independent variables are connected with a transmission
link that is not instantaneous and might even exhibit shocks in the transmission
delay.

Current methods for this situation include OLS with multiple time lags, but with time
lag averaging to zero, the best regressor is one that assumes no time lag at all.
Hence we compare the proposed method with simple OLS regression with no time
lag assumption as a baseline.

OT distance, and optimal transportation plan are robustly calculated even for a very
large number of support points [9]. While fast solvers for the optimal transport (OT)
cost are available, the corresponding gradient is still challenging to compute. One
convenient approach is to use some flavour of automatic differentiation [7, 8]. In
practice this approach proves numerically unstable as the number of support points
in the distribution increases beyond a few dozens.

mailto:brice.tsakam@gmail.com

As an alternative, we use the transportation plan to derive an OT gradient and the
corresponding chain rule. Starting with simple regression as an example and then
generalising to functions only required to be continuously differentiable in all their
parameters.

First, we review OLS regression, Optimal Transport and the proposed Least-Square
Optimal-Transport (LS-OT) regression in Section 1. Section 2 presents the
experimentation methodology with synthetic data and we compare OLS and LS-OT
regression results in Section 3. We conclude with a discussion of the results,
limitations and further research.

Section 1

1.1 OLS regression
We first recall OLS basic assumptions[2| given observed data point (Y,X):

- The dependent variable is modelled as linear function of the independent
variables: y = slope * X

- The observations (Xi,Yi) are independent and identically distributed (iid)
- The non-dependent variables are linearly independent
- residuals eta = Y-y are normal, uncorrelated with bounded variance

The OLS [2] method aims at inferring the dependent variable yt from the
contemporary independent variable xt and time lags thereof xt-1, xt-2, etc. The linear
dependency factor slope, which is identified through an optimization process that
minimises OLScost defined as follows:
𝑂𝐿𝑆

𝑐𝑜𝑠𝑡
= Σ

𝑡
(𝑌

𝑡
− 𝑠𝑙𝑜𝑝𝑒 × 𝑋

𝑡
)²

Regression fit can be evaluated using the coefficient of determination r-squared
which is related to the ratio of unexplained over total variance:
𝑅2 = 1 − Σ

𝑡
(𝑌

𝑡
− 𝑦

𝑡
)²/ Σ

𝑡
(𝑌

𝑡
− 𝐸(𝑌

𝑡
))²

R2 = 1 in case of a perfect fit and R2 = 0 when none of the variance is explained by
the model.

1.2 Optimal Transport
Let’s consider the Optimal Transport cost [1]:

for which the optimal plan for which T*(M)=V, M𝑂𝑇
𝑐𝑜𝑠𝑡

= Σ 𝐶𝑜𝑠𝑡(𝑋, 𝑇(𝑋))

M and V are measures defined on the support set of points {X}. T*(M) is the optimal
transportation plan that moves the mass of M into V at a minimal cost given the Cost
matrix C.

In comparison, the OLS uses the Euclidean distance as cost and sets T to be a
linear function parameterized with Slope: T(X) = Slope * X.
We observe that this is identical to the Wasserstein distance when the transport cost
is defined by the Euclidean distance except that no error is allowed in the time axis
which can be seen as an infinite cost.

Section 2

2.1 Least-Squares Optimal-Transport regression
Now in the OT distance minimization framework, we have the flexibility to allow a
time lag and handle data that is not perfectly synchronous. We state the regression
problem as an optimization problem combining the OLS and OT costs, with a
trade-off parameter lambda:
𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑙𝑜𝑝𝑒) : 𝑂𝐿𝑆

𝑐𝑜𝑠𝑡
(𝑠𝑙𝑜𝑝𝑒) + 𝑙𝑎𝑚𝑏𝑑𝑎 × 𝑂𝑇

𝑐𝑜𝑠𝑡
(𝑠𝑙𝑜𝑝𝑒)

Where the OT cost calculation is parameterized with an isotropic cost matrix. As will
be shown in Section 1.4, the OT cost matrix can be parameterized to include the
OLS cost and the trade-off between OLS and OT costs. This simplifies the
formulation to:
𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑙𝑜𝑝𝑒) : 𝑐𝑠𝑡 × 𝑂𝑇

𝑐𝑜𝑠𝑡
(𝑠𝑙𝑜𝑝𝑒)

2.1 Gradient decomposition and chain rule
We start with an univariate regression. Given an input set of points (X,Y) and initial
estimated parameters for the slope and intercept also represented by a set of points
(x,y). We want to find the regression parameters that minimises the OT distance
between the supports (X,Y) and (x,y). We obtain the transportation plan from the
backAndForth solver [source back and forth]. It is composed of 2 dimensions (.𝑒₁, 𝑒₂)
We use a chain rule to back-propagate the OT distance gradient through both
dimensions. Then we apply the chain rule for each dimension separately.

The direction is the familiar way of understanding the gradient of a 1 argument𝑒₂
value function, that is along the y-axis. Considering a transportation plan in the 𝑒₂
direction (ie using a non-isotropic transport cost where displacements along are𝑒₁
prohibitively elevated) amounts to a conventional OLS regression.

Then, the direction is all about displacements along the x-axis. This requires a𝑒₁
slightly different handling as will be shown starting with the following example.

Figure 1: OT plan from the estimated solution to the data to fit

2.1.1 Linear regression with parameters slope and intercept
We start with 2 sets of points: the starting support points defined by the pairs (x,y) generated
as per the parameters The destination support points defined by the pairs (X,Y)𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
, 𝑏

𝑒𝑠𝑡
.

which is the given data and for which we search the true regression parameters .𝑠𝑙𝑜𝑝𝑒, 𝑏
The true relationship is defined as:
𝑌 = 𝑠𝑙𝑜𝑝𝑒

𝑡𝑟𝑢𝑒
 × 𝑋 + 𝑏

𝑡𝑟𝑢𝑒

Current estimates of the parameters give us
𝑦 = 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡

The transportation plan is defined in 2 dimensions, along the x-axis () and along the y-axis𝑒
1

(). When looking at displacements along the x-axis, we index the y-axis according to .𝑒
2

𝑌
𝑗

Thus defining the x-axis coordinate as the first member of the pair as per pair’s(., 𝑦
𝑗
)

𝑒𝑠𝑡

relationship definition. And similarly when looking at displacements along the y-axis. From
here on we drop the subscript for simplicity._

𝑡𝑟𝑢𝑒

Positive displacements along y-axis Negative displacements along y-axis

Figure 2: OT transportation plan positive and negative displacements

2.1.1.1 Parameter inference with regression
Visual inspection of the displacements suggests that their amplitude can be
regressed to find the gradient to the slope and to the intercept. We observe that for
the displacements along y-axis (direction), the terms Δslope and Δb can be𝑒

2

obtained by linear regression by solving:
Δ𝑦 = Δ𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + Δ𝑏

𝑒𝑠𝑡

Where at each is given by the transportation plan.Δ𝑦
𝑗

𝑥
𝑗

Along the x-axis (direction) we have:𝑒
1

Δ𝑥 = Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒 × 𝑦 + Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝐵

Here, and are given by the transportation plan and the previous estimate or Y,Δ𝑥 𝑦
respectively. Again, using a conventional regression we obtain the parameters
Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒, Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝐵

Now, using the inverse slope (obtained at previous step) , the newly1/𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

calculated optima slope is then:
𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒

𝑛𝑒𝑤 𝑒𝑠𝑡
 = (1/𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
+ Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒)

𝑠𝑙𝑜𝑝𝑒
𝑛𝑒𝑤 𝑒𝑠𝑡

 = 1/𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒
𝑛𝑒𝑤 𝑒𝑠𝑡

Δ𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑙𝑜𝑝𝑒
𝑛𝑒𝑤 𝑒𝑠𝑡

− 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

 = 1/(1/𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

+ Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒) − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

And the newly calculated optimal b is then
Δ𝑏 = − (1/𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
+ Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑆𝑙𝑜𝑝𝑒) * Δ𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝐵

2.1.1.2 Parameter inference details

Slope parameter

Given the transportation plan in the direction is ∆Y, from y to Y𝑒₂
𝑌 − 𝑦 = 𝑠𝑙𝑜𝑝𝑒 × 𝑋 + 𝑏 − (𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡
)

𝑌 − 𝑦 = (𝑠𝑙𝑜𝑝𝑒 − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

) × 𝑋 + (𝑏 − 𝑏
𝑒𝑠𝑡

)

If we ignore the b parameter this amounts to that we estimate aΔ𝑠𝑙𝑜𝑝𝑒 = Δ𝑌 / 𝑋
𝑎𝑟𝑔𝑚𝑖𝑛(∆𝑠𝑙𝑜𝑝𝑒) : 𝜮 (Δ𝑠𝑙𝑜𝑝𝑒 × 𝑋 − ∆𝑌)²

Given the transportation plan in the direction , is ∆X, from x to X. We now have𝑒₁
𝑌 = 𝑠𝑙𝑜𝑝𝑒 × 𝑋 + 𝑏 = 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡

With the direction : y is unchanged. This part of the transportation plan describes𝑒₁
only changes along the x-axis.
𝑠𝑙𝑜𝑝𝑒 = (𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡
− 𝑏)/𝑋

𝑠𝑙𝑜𝑝𝑒 − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

 = (𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

 × 𝑥 + 𝑏
𝑒𝑠𝑡

− 𝑏)/𝑋 − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

∆𝑠𝑙𝑜𝑝𝑒 = (𝑦 − 𝑏)/𝑋 − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

Which we estimate as:
𝑎𝑟𝑔𝑚𝑖𝑛(∆𝑠𝑙𝑜𝑝𝑒) : 𝜮 (Δ𝑠𝑙𝑜𝑝𝑒 − (𝑦 − 𝑏)/𝑋 + 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
)²

Intercept parameter
For simplicity, we assume that the slope is constant or frozen
For the direction :𝑒₂
𝑌 − 𝑦 = 𝑠𝑙𝑜𝑝𝑒 × 𝑋 + 𝑏 − (𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡
) = ∆𝑏

Ignoring the slope parameter, we need to solve:
𝑎𝑟𝑔𝑚𝑖𝑛(∆𝑏) : 𝜮 (Δ𝑏 − (𝑌 − 𝑦))²

For the direction :𝑒₁
Given the x-axis displacements and no change on the y-axisΔ𝑋 = 𝑋 − 𝑥
𝑌 = 𝑠𝑙𝑜𝑝𝑒 × 𝑋 + 𝑏 = 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 + 𝑏

𝑒𝑠𝑡
 = 𝑦

𝑏 − 𝑏
𝑒𝑠𝑡

= 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

 × 𝑥 − 𝑠𝑙𝑜𝑝𝑒 × 𝑋

Here we use our current estimate of slope and the previous estimate
𝑏 − 𝑏

𝑒𝑠𝑡
= 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥 − 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡 𝑛𝑒𝑤
 × 𝑋

Δ𝑏 = 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡

 × 𝑥 − 𝑠𝑙𝑜𝑝𝑒
𝑒𝑠𝑡 𝑛𝑒𝑤

 × 𝑋

Which is estimated as
𝑎𝑟𝑔𝑚𝑖𝑛(∆𝑏) : 𝜮 (∆𝑏 − (𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡
 × 𝑥

𝑗
− 𝑠𝑙𝑜𝑝𝑒

𝑒𝑠𝑡 𝑛𝑒𝑤
 × 𝑋

𝑗
))²

Figure 3: left: initial y. middle: Y. right: solution for y overlaid on Y.

2.1.2 Continuously derivable function with one argument
We define a 1 time continuously derivable function parameterized by θ and
accepting one argument x:

and its derivative wrt θ𝑦 = 𝑓(θ, 𝑥)

δ𝑦/δθ = δ𝑓(θ, 𝑥)/δθ

We start with input observations (X,Y) which we assume are governed by the
relationship

with some unknown ϑ𝑌 = 𝑓(ϑ, 𝑋)

Given the transportation plan in the direction is𝑒₂ ∆𝑌 = 𝑌 − 𝑦
Δ𝑌 = δ𝑓(θ, 𝑥)/δθ × Δθ

Hence we need to solve:
𝑎𝑟𝑔𝑚𝑖𝑛(∆θ) : 𝜮 (Δ𝑌 − δ𝑓(θ, 𝑥)/δθ × Δθ)²

Given the transportation plan in the direction , is ∆X, from x to X𝑒₁
𝑌 = 𝑓(ϑ, 𝑋) = 𝑓(θ, 𝑥) = 𝑦

Using the Taylor rule for 𝑓(ϑ, 𝑋) = 𝑓(θ, 𝑋) + δ𝑓(θ, 𝑋)/δθ × Δθ
We rewrite
𝑌 = 𝑓(θ, 𝑋) + δ𝑓(θ, 𝑋)/δθ × Δθ = 𝑓(θ, 𝑥)

Here we need to solve:
, where𝑎𝑟𝑔𝑚𝑖𝑛(∆θ) : 𝜮 (𝑓(θ, 𝑋) + δ𝑓(θ, 𝑥)/δθ × Δθ − 𝑦)² 𝑓(θ, 𝑥) = 𝑦

1.4.2.1 Multiple argument functions
The generalisation of this chain rule for OT distance transport plan back-propagation
to continuously derivable functions with several arguments (or in multiple
dimensions) is straightforward if all argument variables share the same innovation in
time delays.

Turning to a function of multiple arguments with non-synchronous time delays:
where each argument has its own time delay innovation𝑦 = 𝑓(θ, 𝑥1, 𝑥2, ..., 𝑥

𝑁
) 𝑥

𝑗

variable . For this case we use the Sinkhorn barycenter approach [4] where weℇ
𝑗

calculate the gradient in turn for each of the input argument and apply the resulting
gradient step until we converge to the optimal parameter, as close as possible to ϑ.

Section 3

3.1 Synthetic data generator
In the case of OLS the input data is assumed to be synchronous. The time lag is
assumed to be fixed. We now consider a data generation process with explicit
random time lag:
yt = beta * X(t+etat) + eta

Where Xt is a vector: [xt, 1], beta is a constant vector: [slope, intercept]
Eta is normal with variance s_e. The time lag noise etat is normal with variance s_et

Equipped with this data generator, we proceed to estimate beta with different
methods and compare results.

3.2 Implementation details
For the first experiment, use python jax [3] automatic differentiation software for the
OT cost gradients. The chain rule allows to backpropagate the gradient to regression
model parameters, then gradient descent converges to the desired minima. We
compensate for the bias in the OT distance calculation as in [4]. We run 100
simulations and report estimated slope parameters using the OLS and the Transport
regression.

(The complete jupyter notebook for data generation and regression experiments
presented here is available at:
[https://colab.research.google.com/drive/1MH_vGrtf-cuPKtxBQbokLsDRRrXr5ero])

In a second experiment, we use the back and forth OT solver together with the OT
gradient chain rule presented in section 1.4 [6]. This solver calculates sparse plans
and scales to thousands of points in the source and destination support point sets.
We run 50 simulations and report the slope parameters using OLS and this second
method for the gradient.
(The complete jupyter notebook for data generation and regression experiments
presented here is available at:
[https://colab.research.google.com/drive/1GhiKSw8g7rqstvEfQ0eOjIMMQG4sI
xjM])

In both experiments we allow only positive time lags (i.e. positive time lag noise etat).

Section 4

4.1 Results
As shown in Figure 1, automatic differentiation method, brings significant
improvement on OLS alone for the regression task with a time varying lag (where the
lag standard deviation is similar to several regular time steps between samples). We
observe that the improvement for most samples except in the few cases where the
slope estimate overshoots the true value. In most of the 100 experiments, both
estimators undershoot the true value but LS-OT is robustly more accurate.

Figure 4: ls shows OLS estimated Beta, LS-OT fit using automatic differentiation, and the true slope (generator parameter)

The results of the second method are shown in Figure 2, using OT transportation
plan based gradient. Here, the second method brings significant improvement on

https://colab.research.google.com/drive/1MH_vGrtf-cuPKtxBQbokLsDRRrXr5ero

OLS alone for the regression task with a time varying lag (where the lag standard
deviation is similar to one regular time step between samples).

Figure 5: OLS estimated Beta, LS-OT fit using OT transportation plan and chain rule as gradient, and the true slope (data
generator parameter)

We observe that the LS-OT method is a favourable option when non-synchronous
data is at hand and the preferred model when expert knowledge on the time lag
variance is available.

4.2 Discussion
We presented the LS-OT solver for regressions where the dependent variable gets
information from the independent variable with a variable delay, modelized by a
gaussian variable. This is relevant in many practical settings where multivariate
analysis includes several time series of connected but disjoint phenomena in biology,
mechanics, finance and economics, etc. We presented a solver that scales to
thousands of points in the source and destination supports, while the automatic
gradient based method exhibits numerical stability issues already with 100 points in
the support. This method can easily be extended to partial least square,
autoregressive models that exhibit variable time lags and vector variants thereof.
Finally, we observe that in addition to informing regression parameters, the
transportation plan gives cues about timing relationships among the variables, which
is an avenue for further research.

4.3 Further research
The automatic differentiation method is severely limited by the OT accuracy and
numerical stability. It can be applied for very short times eries with 10-20 samples
because of the limited accuracy of the gradient descent OT solver.

The second method with OT transportation plan based gradient is much more
scalable with thousands of samples and robust numerical stability and accuracy as
shown in the second experiment. It is a practical implementation suitable for real life
regression problems. It combines OLS parameter inference and dynamic time
warping [10].
A graphical observation of the transport plan with synthetic data reveals that the
dependent variable is always delayed (on the x-axis) with our synthetic data.
Statistical mean and standard deviation of the components of the optimal
transportation plan gives an estimate of the delay generator parameters. This
indicates that the LS-OT method gives cues about time based precedence or
causality among the variables. The ability of LS-OT to account for timing suggests
novel analysis of lead-lag relationships. We leave these aspects for future research.

In addition, we may apply the singular value decomposition (SVD) on the
transportation plan to get the main (largest) eigenvalues and corresponding
eigenvectors as a rough characterisation of the time lag. A single mode (of fast
decaying eigenvalues) SVD would suggest that it is better to revert to OLS with the
appropriate fixed time lag while multiple significant eigenvalues means that the time
lag is arguably not fixed and diverse.

References
[1] Wikipedia article for Optimal Transport. Retrieved in February 2023
https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)#Abstract_formulat
ion_of_the_problem

[2] Wikipedia article for Ordinary Least Squares. Retrieved in February 2023
https://en.wikipedia.org/wiki/Ordinary_least_squares

[3] Github repo for jax (February 2023) https://github.com/google/jax

[4] Hicham Janati, Marco Cuturi, Alexandre Gramfort, “Debiased Sinkhorn
barycenters”, retrieved Feb 2023 https://arxiv.org/abs/2006.02575

[5] Matt Jacobs and Flavien Léger, A fast approach to optimal transport: the
back-and-forth method, Numer. Math. 146 (2020), no. 3, 513–544,
doi:10.1007/s00211-020-01154-8.
[6] Implementation of Back-and-forth method in optimal transport
https://github.com/Math-Jacobs/bfm
[7] JAX https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
[8] Autograd automatic differentiation for numpy
https://github.com/HIPS/autograd
[9] Marco Cuturi, “Sinkhorn Distances: Lightspeed Computation of Optimal
Transport”, NIPS 2013
[10] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition”. ICASSP 1978

https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)#Abstract_formulation_of_the_problem
https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)#Abstract_formulation_of_the_problem
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://github.com/google/jax
https://arxiv.org/search/stat?searchtype=author&query=Janati%2C+H
https://arxiv.org/search/stat?searchtype=author&query=Cuturi%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Gramfort%2C+A
https://arxiv.org/abs/2006.02575
https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs00211-020-01154-8
https://github.com/Math-Jacobs/bfm
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://github.com/HIPS/autograd

