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Abstract 

In the last few decades, the influence of machine learning has permeated many areas of science 

and technology, including the field of material science. This toolkit of statistical methods 

accelerated the discovery and production of new materials by accurately predicting the 

complicated physical processes and mechanisms that are not fully described by existing 

material theories. However, the availability of a growing number of increasingly complex 

machine learning models confronts us with the question of "which machine learning algorithm 

to employ.". In this review, we provide a comprehensive review of common machine learning 

algorithms used for materials design, as well as a guideline for selecting the most appropriate 

model considering the nature of the design problem. To this end, we classify the material design 

problems into four categories of: (i) the training data set being sufficiently large to capture the 

trend of design space (interpolation problem), (ii) a vast design space that cannot be explored 

thoroughly with the initial training data set alone (extrapolation problem), (iii) multi-fidelity 

datasets (small accurate dataset and large approximate dataset), and (iv) only a small dataset 

available. The most successful machine learning-based surrogate models and design 

approaches will be discussed for each case along with pertinent literature. This review focuses 

mostly on the use of ML algorithms for the inverse design of complicated composite structures, 

a topic that has received a lot of attention recently with the rise of additive manufacturing. 

  



1  Introduction 

Machine learning (ML) refers to a class of computer-based algorithms in which a user-

defined predictive or decision-making machine (surrogate model) improves its own 

performance by leveraging the sample data, also known as training data. [1]. For the past few 

decades, ML has been gradually becoming a promising tool in various fields of engineering. 

Especially, artificial intelligence (AI)-based surrogate models trained by ML can provide a fast 

and accurate prediction of output for an unknown input configuration, thereby replacing labor-

intensive experiments or simulation calculations that demand high computational costs [2-14]. 

Also, ML-based models can draw meaningful inferences from the given complicated data 

patterns that humans cannot grasp. For instance, AlphaFold [15] and AlphaGo [16] 

demonstrated the capability of ML in carrying out remarkable missions that are not conceivable 

with conventional rule-based computer programs. 

With its development, ML also has significantly revolutionized the field of materials 

design and manufacturing by replacing various classification or regression-related tasks that 

had been performed by humans. For instance, ML models have performed laborious 

classification tasks of field experts, such as the detection of abnormalities in manufacturing 

equipment in real-time [17, 18] and the evaluation of product quality [19-21]. Also, there have 

been numerous studies on using ML-based regression models to capture the correlation 

between the design variables of material structures and the resultant performance parameters 

[22-27]. Furthermore, in recent years, ML has been widely applied to an inverse design of 

materials and their manufacturing process parameters, encompassing the entire range of a 

manufacturing process (material development (or selection) – structural design – process 

parameter optimization) [28-31]. The ML-based data-driven approaches are expected to 

improve the qualities of production design and production efficiency by suggesting optimal 



solutions for complicated inverse design problems even in the absence of prior knowledge 

about the materials and their manufacturing processes. 

The essence of ML-based inverse design is to significantly reduce the cost of 

generating new data by replacing simulations or experiments with an AI-based surrogate model. 

In a conventional optimization loop, newly suggested structure designs or process parameter 

sets are evaluated or labeled by conducting numerical simulations or experiments for every 

iteration until the optimization process converges to a solution. Therefore, for the optimization 

problems in which the acquisition of new data is expensive and time-consuming, the surrogate 

model trained on an accumulated dataset can be extremely beneficial for the optimization task, 

significantly reducing the costs. For instance, in composite design problems, the elastic 

properties of various fiber-reinforced composite structures can be computed in a fraction of a 

second by either analytical theories or simple simulations. With this data acquisition method, 

either gradient-based optimization or greedy search based on a genetic algorithm can be used 

for inverse design problems. However, the computation of their non-linear response beyond 

the elastic regime requires time-consuming simulations or experiments [32]. As another 

example, the mechanical properties of 3D-printed composites with highly complex geometrical 

configurations cannot be evaluated simply by analytical models or quick simulations [24, 33]. 

Thus, for the past few years, the ML-based surrogate model has been extensively utilized to 

predict and optimize the performance of a new set of composite design problems. For example, 

starting from the prediction of mechanical properties of comparatively simple-structured fiber-

reinforced composites [34, 35], the prediction and design in complex grid composite materials 

have been studied using ML surrogate models [24, 36]. 

Despite intensive research and successes in the past years, there still remain challenges 

in constructing and utilizing AI surrogate models for solving inverse design problems, as 



summarized in Table I. First, because of weak generalization performance in an unseen domain, 

AI models tend to show inaccurate predictions for extrapolation tasks. To find the optimum in 

a vast design space, exploration of design space outside the initial training dataset is necessary; 

however, the ML-based prediction model has difficulty in accurately estimating the objective 

function value of the design that is far from the training dataset [37-43]. Second, although many 

existing ML-based design studies utilized the data from computer simulations to train ML 

models due to the ease of accumulating larger datasets, there exists a systematic difference 

between simulations and experimental results in most cases. Hence, the inverse design based 

on the trained ML model with the simulation datasets would find the optimum within the 

manifold of simulation results, which may not represent the realistic optimum. Failure to close 

the simulation-experiment gap would result in an inaccurate or implausible design, 

significantly hindering the real-life applicability of the ML-based design algorithms. Finally, 

the training of deep neural network (DNN) surrogate models generally requires massive 

amounts of labeled data, which is not always the case in some material design problems [44, 

45]. For the cases where simple simulation (or theory)-based prediction is unavailable and 

high-throughput experiments are difficult to set up, one can only use a small dataset collected 

through manually conducted material experiments or highly time-consuming simulations, 

which prohibits the application of deep learning. Therefore, no matter how excellent the 

emerging DNN architectures are, the predictive performance of the DNN models without 

sufficient training data may not meet the standards required for an inverse design task. More 

efficient and practical applications of data-driven optimization can be carried out if one can 

recognize and overcome the aforementioned challenges. 

 

Table 1. Three challenges in AI-based inverse design problem 



Challenges Methods Ref. # 

Weak generalization performance in an unseen domain 
Active transfer learning [72 – 76] 

Design of DNN architecture [77] 

Difference between simulations and experimental results Transfer learning [80 - 82] 

Accessible to only small datasets Bayesian optimization [76], [87] 

 

This review summarizes different ML-based inverse design frameworks that can be 

adopted to effectively tackle the materials design problems suffering from the above-mentioned 

challenges. We classify the inverse design problems into four categories with respect to the 

size of the dataset and design space, and suggest appropriate design strategies for each case as 

shown in Figure 1. The first section considers an ideal case in which the design space is 

relatively small and the dataset is large enough to capture the overall input-output relationship 

throughout the design space, such that common interpolation-based inverse design schemes 

can be adopted without concerning the aforementioned challenges (Case 1). The second section 

considers the design problems that have a vast design space (such as combinatorics or complex 

shape optimization problems with a high degree of freedom), such that one has to devise a way 

to mitigate the DNN’s weak generalization performance outside the training set (Case 2). Here, 

an active learning-based gradual ML-model update method or careful design of DNN 

architecture is suggested to resolve the challenge. The third section highlights the ML-based 

methods to close the systematic difference gap between simulations and experiments (or 

between a large low-cost low-fidelity dataset and a small high-cost high-fidelity dataset) (Case 

3). A transfer learning or multi-fidelity regression methods are suggested for such case, as the 

algorithms are capable of incorporating multiple datasets having similar properties. The fourth 



section considers the material design problems that have relatively small design space and a 

small dataset available for the training of a surrogate model, usually due to the objective 

function being too expensive to evaluate (Case 4). Such design problems can be approached 

by Bayesian optimization, a sequential design strategy that tries to reach the optimal solution 

with a minimal number of data acquisition. Finally, the review is closed by describing the 

ongoing challenges that are yet to be solved, as well as the prospects and future in the field of 

ML-based materials research. 

 

Figure 1. Material design challenges categorized into 4 cases. Case 1: The optimum being 

near by the initial training region (interpolation), Case 2: The optimum being far from the 

initial training region (extrapolation), Case 3: Two datasets with different fidelities, and Case 

4: A limited amount of dataset. 

  



2  Inverse design using interpolation of AI model (case 1) 

ML constructs AI surrogate models that can approximate the output (material 

performance) as a function of input design variables (structure or process parameters). In 

particular, deep learning (DL) has enabled a superior prediction compared to conventional ML 

by using an artificial neural network-based surrogate model that leverages a big data set to 

learn the complex input-output relationship [24]. The DL-based black-box predictor has 

allowed researchers to have limited domain knowledge or experience to infer the correlation 

between the input and the output of a given problem. Many existing studies applied DL to solve 

various inverse design problems by training a model first and then exploring the optimum in 

the design space using the trained model [46-50]. 

In this section, we investigate the case of an inverse design problem in which the 

optimal design configuration does not deviate significantly from the scope of the initial training 

set. Here we refer to such case as an interpolation problem. To effectively tackle the 

interpolation problem, we provide some representative ML-based strategies that are suitable 

for the case where the amount and reliability of available data are sufficient to describe the 

input-output relation over the entire design space. For such case, the initially trained ML model 

generally have an excellent predictive performance over the entire design space, and thus, the 

optimum design can be found without having to update the ML model during the optimization. 

Inverse modeling network, forward modeling network combined with a conventional 

optimization scheme, and a recently emerged generative adversarial network (GAN) will be 

reviewed in this section.  

 

2.1  Inverse modeling network 



An inverse modeling network refers to a neural network trained to predict a design 

variable as an output while the material performance is given as an input. After training the 

network, a researcher can use the trained model to determine the optimal values for the design 

variables by simply entering the desired performance as an input. The method is highly efficient 

in terms of time as the trained neural network can recommend the optimal designs within a 

very short time. However, when multiple sets of design variables have identical performance, 

the training of the neural network for inverse design is difficult as conventional deep neural 

network models can not effectively capture the one-to-many mapping [51, 52].  

Several subsequent studies tried to improve the inverse model approach to overcome 

the limitation. Kabir et al. (2008) trained an inverse design neural network that predicts the 

values of geometrical parameters by putting the electrical parameters as input and then used 

the trained surrogate model for designing microwave guide filters. At first, the study divided 

the given training data set into different groups in a way that each group does not contain the 

samples having the same performance but different designs. Then, they constructed multiple 

inverse modeling networks for each group of training sets, which were later integrated into one 

form of a comprehensive prediction model. As a result, the proposed method showed higher 

prediction accuracy than the conventional DNN models that are trained with all training 

samples at once (Figure 2) [51]. 

 



Figure 2. Comparison of the prediction of the inverse modeling network trained by the direct 

method and the proposed division method for microwave guide filter design [51] 

 

However, although the division method could be readily implemented for the inverse 

design problems that have a small and simple data structure, division of the training data was 

far more challenging when it come to a complex design space. Hence, as an alternative solution, 

Liu et al. (2018) proposed a tandem network architecture, whose structure has an inverse 

modeling network attached in front of a forward modeling network as described in figure 3. To 

model the correlation between design and response (performance), the forward modeling 

network located at the back of the architecture (right side of the figure) is trained first. After 

fixing the weights trained in the previous step, the remaining inverse modeling network is 

trained to reduce the error between the predicted response and the desired response. Finally, 

the trained tandem network was able to generate a design candidate on the intermediate layer 

M by putting the desired response as an input. Even if there were multiple design solutions for 

one identical response in the training dataset, the forward modeling network depicting many-

to-one mapping was trained accurately. Furthermore, since the inverse modeling of the second 

training stage did not aim to predict the real design of the train data, the network could be 

trained effectively despite the data inconsistency. In this study, the proposed tandem-shaped 

network was applied for the designing of a nanophotonic structure that has the desired 

performance [52]. 



 

Figure 3. Proposed tandem-shaped neural network for inverse design problem of the 

nanophotonic structure [52] 

 

Other researches associated with the inverse modeling network include a multivalued 

neural network for the prediction of multiple output value sets for the same input value, or a 

network with a unique activation function for smooth learning of the inverse modeling network 

[53, 54]. The method using the inverse modeling network has the advantage of being able to 

recommend candidates for the optimal design very quickly once the neural network is trained 

in simple inverse design problems. However, the dimension of the input variables that 

correspond to the material performance is usually lower than the dimension of the output 

variables that correspond to the materials design parameters, thereby limiting the dimension of 

the recommended optimal values. Such a problem may not be an issue in the case of simple 

problems in which the dimension of design variables is relatively small, but the strategy may 

not be applicable for more complex design problems with higher input and output dimensions. 

 

2.2  Forward modeling network + optimization 



A forward modeling network, as opposed to an inverse modeling network, is an AI 

model that predicts the material performance for a given set of design parameters [52]. The 

forward model has no difficulty in training even if multiple sets of design variables have 

identical performance values or if the dimension of design variables (input) is much larger than 

the dimension of performances (output). A well-trained AI model can produce reliable 

prediction results in a fraction of a second, replacing the time-consuming simulations or 

experiments that are conducted for the evaluation of objective functions. 

In a sequential optimization strategy where the optimization process gradually 

approaches the global optimum by repeatedly augmenting new data to the model, the 

acquisition of a new dataset may take a considerable amount of time if numerous iterations of 

data augmentation are taken. This is especially true when we use computer simulations and 

experiments that cost significant time to predict the material performance for a given design 

variable set. Therefore, many studies have been conducted to efficiently find the optimum by 

combining the AI surrogate model while following the workflow of the existing data-driven 

optimization algorithm. For instance, Kim et al. (2020) combined the forward modeling 

network with the conventional genetic algorithm to optimize the structures of an adhesive pillar. 

In this study, a DNN-based surrogate model is trained with its input being 501 design variables 

that characterize the 2D shape of an adhesive pillar and its output being the interfacial stress 

distribution at the boundary between the pillar and a substrate. The stress distribution was 

compressed into 30 valid features through principal component analysis (PCA) for efficient 

training of the neural network. The trained neural network was able to predict the output 

accurately and quickly for 1,000 proposed adhesive pillar designs. Based on the predictive 

power of the network, the genetic algorithm was performed, and the optimal pillar shapes that 

can minimize the interfacial stress singularity were found as shown in figure 4 [46]. There are 

many other studies that performed optimization by combining the forward modeling network 



with optimization algorithms such as the genetic algorithm [55] and particle swarm 

optimization [56].  

 

 

Figure 4. Inverse design of the shape of the adhesive pillar combining the forward modeling 

network and the genetic algorithm [46] 

A different approach called generative inverse design network finds the optimal 

designs having the desired performance by using back-propagation in neural networks. 

Generally, back-propagation is a process of optimizing the hyperparameters of hidden layers 

to minimize the loss function, the value of which quantitatively defines the error between the 

network’s predicted result and the ground truth value [57]. After the training stage, we can find 

the optimal design by fixing all neural network parameters except for the input features so that 

the input values are tuned to minimize a loss function through back-propagation.  

For example, Peurifoy et al. (2018) solved the inverse design problem using the back-

propagation-based approach to find the optimal thickness combination of nano-particle causing 



desired light scattering spectrum [58]. First, to construct the AI regression model, the neural 

network was trained by the data collected from light scattering simulation, which generates the 

light scattering spectrum for a set of parametrized thickness values of multi-layered 

nanoparticles. Then, by fixing all weights except for the input features, the optimized particle 

designs having the desired scattering spectrum were obtained through back-propagation 

(Figure 5).  

 

Figure 5. Inverse design of nanoparticles using the forward modeling network and the back-

propagation-based optimization method [58] 

 

2.3  Generative Adversarial Network (GAN) 

The capability of DL to perform classification tasks further improved the inverse 



design framework by classifying whether a new design is realistic or not. GAN (Generative 

Adversarial Network) is a representative neural network architecture that adversarially trains a 

generator that creates data and a discriminator that judges whether the created data is similar 

to the original data set or not, in order to generate new but still reasonable data close to real 

training data [59]. The GAN has been adopted for research mainly related to image processing 

[60-62] and it is now rapidly expanding to various applications such as the medical industry 

[63, 64], natural language processing [65], and voice recognition [66].  

GAN has also been employed to solve inverse design problems as it can find a new 

design candidate with excellent predictive performance, a design that is still similar to the 

designs within the original training set. Additionally, modified forms of GANs such as 

conditional GAN (CGAN) [67] and Wasserstein GAN (WGAN) [68] further expanded the 

scope of inverse design by making the training of the model easier and expanding the types of 

tasks that the DL can perform. 

For example, Kim et al. (2020) applied WGAN to build a network called ZeoGAN and 

solved the inverse design problem of porous material to obtain the desired level of methane 

heat of absorption. In WGAN, the discriminator is changed to a critic to quantitatively measure 

the Earth-mover distance (EMD), which indicates the similarity between the real data and the 

generated data. The generator is trained to minimize the EMD between the generated data and 

the original data. In this research, the generator that can create a structure and energy 

distribution similar to that of porous material from noise input was trained, and the optimal 

candidates were obtained by modifying the generator’s loss function to obtain the desired 

methane heat of absorption (Figure 6). Since the generator can be trained for other target 

properties, and the identical framework can be applied to other gases, the expandability of the 

optimization framework proposed in this research is superb [69]. 



 

Figure 6. Inverse design of porous material using ZeoGAN [69] 

 

As another example, Yilmaz & German (2020) conducted an Airfoil inverse design 

study using CGAN. Unlike GAN, CGAN puts a conditional vector during training to limit or 

to add conditions to the image generated by the generator. In this study, the neural networks 

were trained to generate only the design of the airfoil shape with the desired stall angle by 

adding the design range and angle of attack of the aircraft wing as a conditional vector. As a 

result, various airfoil designs that satisfy the required stall angle condition were successfully 

obtained (Figure 7) [70]. 

 

Figure 7. CGAN network to obtain desired airfoil shape design [70] 

3   Inverse design requiring extrapolation (case 2) 



Recently, the development of manufacturing techniques, such as additive 

manufacturing, enables the production of materials with very complex topologies, expanding 

the design space of material structures astronomically. In such humongous design spaces, a 

randomly generated initial training dataset of average size is usually not informative enough to 

capture the input-output relationship over the entire design space. Therefore, an extrapolation 

task has to be performed to explore the design space to find the optimal designs having 

characteristics significantly different from the initial training set. Although the forward 

modeling network has high accuracy in predicting the performance of the designs similar to 

the training data set, the network loses its predictive power when it comes to the unseen design 

domain far beyond the initial data set [37-43]. Therefore, for the inverse design problem having 

a vast design space, the extrapolation issue of the neural network should be handled.  

The second section introduces AI model-based inverse design methodologies 

considering a vast design space and extrapolation tasks. The methods can be applied to inverse 

design problems in which the data has sufficient fidelity, yet the amount is not enough to 

describe the whole design space. Active learning strategy and novel network architecture will 

be reviewed in this section to effectively explore the unseen design domain.  

 

3.1  Active transfer learning-based approach 

Active learning refers to an ML strategy where the computation model selects the 

training data by itself and uses it for the training. In addition, active transfer learning is a 

training method that updates and improves the pre-trained neural network with the dataset 

selected by the computer itself [71, 72]. Iterative use of active transfer learning can train the 

neural network so that the model can more accurately predict the performance of the dataset 

far from the initial training set. Therefore, the deep learning-based optimization framework 



based on active transfer learning combined with appropriate new candidate designs provides a 

clue to the extrapolation challenge in various engineering problems. 

For example, Kim et al. (2021) proposed a deep neural network-based forward design 

framework to explore the unseen design space efficiently. The forward modeling network 

trained by the initial training dataset showed weak predictive power for the designs that are 

significantly different from the initial dataset. The proposed method in this study gradually 

reinforced the deep neural network (DNN) model through active learning by repeatedly 

training the model with the new candidate designs suggested by greedy sampling and a genetic 

algorithm. Such a sequential training method allowed the model to propagate toward the 

optimal designs having excellent mechanical stiffness and strength in the vast design space 

(Figure 8). The study shows that a new composite design with optimal stiffness and strength 

can be found in a very efficient way, the size of the augmented dataset being only 0.5% of that 

of the original dataset. The study also highlighted that the surrogate model must at least have a 

‘reasonable’ extrapolation performance, if the model is to be used for the greedy sampling and 

genetic algorithm. For example, the DNN model used in this study was trained with the data 

having low material properties (lower 90%) in terms of stiffness and strength, and the model 

resultantly showed inevitable prediction errors when it was dealing with the designs having top 

10% material properties, as the model was carrying out an extrapolation task. However, 

although the model was not able to accurately predict the values of stiffness and strength for 

the designs, the model was capable of determining the relative ranking of the designs by their 

performance. As a result, the surrogate could be combined with the greedy sampling algorithm 

and genetic algorithm, together forming the active transfer-learning framework. However, the 

same approach could not be adopted for the optimization of composite for toughness, which 

corresponds to the total area under the stress-strain curve, as the DNN model failed to show 

the minimal predictive power to carry out the ranking of the predicted designs. Insufficient 



predictive power can be improved based on domain knowledge from solid mechanics [72]. 

 

 

Figure 8. Stiffness and strength optimization of grid composites using active transfer learning 

and genetic algorithm [72] 

 

The active transfer learning-based framework has been successfully applied to the 



optimization of composites and structures for other target properties. Demeke et al. (2022) 

adopted the active transfer learning-based optimization framework for the inverse designing of 

a thermoelectric power generator to achieve high power and efficiency (Figure 9) [73]. Lee et 

al. (2022) found a superb lattice structure with high stiffness and strength by applying the 

framework to the optimization problem of the density and mechanical properties of the lattice 

structure constituting the crisscross pattern of beam elements (Figure 10). As above, the 

adaptive framework has provided a solution to the optimization problem with a myriad of 

possible shapes [74]. 

 

 

Figure 9. Thermoelectric power generator optimization using active transfer learning and 

genetic algorithm [73] 



 

Figure 10. 3D-printed lattice structure optimization using the genetic algorithm aided by 

active transfer learning [74] 

 

On the other hand, optimization using back-propagation combined with active transfer 

learning also enables an exploration method toward the wider design. Chen and Gu (2020) 



introduced a generative inverse design network (GIDN) framework recommending optimal 

designs based on back-propagation and active learning. The GIDN framework proceeds in 

three stages: predictor training, recommendation of optimum based on back-propagation, and 

active transfer learning. In the predictor training stage, the AI surrogate model that predicts the 

output performance of an unknown input design is trained with the initial training samples. 

Next, the desired values are put into the output layer, the weight of the hidden layer is fixed, 

and the optimal design candidates are recommended using back-propagation. Finally, the study 

proceeds with active transfer learning, which evaluates the actual performance of the 

recommended candidates so that the new data set can be used for the updating of the predictor. 

By iteratively performing the process above, the predictor is gradually updated to have high 

predictive power for higher-performance designs that are far from the initial training data. This 

study optimized the geometrical configuration of a grid composite structure, a 2D array of stiff 

and soft materials ordered in a random manner, to design a higher-toughness composite using 

the aforementioned inverse materials design method (Figure 11) [75].  

 

 



 

Figure 11. Toughness optimization of grid composites using active learning and back-

propagation-based optimization [75] 

 

Furthermore, Jung et al. (2022) proposed a process parameter optimization method for 

the injection molding process using constrained GIDN (CGIDN). The conventional GIDN has 

a limitation in that the recommended input design from the desired output is unbounded. The 



CGIDN proposed in the study recommends the process parameter set within a desired range by 

applying a constraint to the input layer via the sigmoid function. As a result, they were able to 

find the optimal injection molding process parameter set that simultaneously minimizes 

deflection after injection and the cycle time required for the production [76]. 

 

3.2  Extrapolation via improved DNN architecture 

As an alternative approach, the extrapolation performance of a DL model can also be 

significantly improved by devising a better architecture of neural networks. Recently, Park et 

al. (2022) proposed a modified version of the conventional U-Net architecture that can more 

accurately conduct the extrapolation task of predicting the stress and strain field in the binary 

grid composites. As one can deduce the effective mechanical properties of the composite from 

its stress and strain fields, the proposed DL architecture, having an excellent predictive 

performance on configurations that are very different from the training set, can be beneficial in 

searching for the optimal design configurations [77]. 

Previously, there was a study that applied the conventional U-Net architecture to 

predict the local stress field for an unknown configuration of the grid composite. U-Net was 

able to successfully predict the stress/strain field corresponding to the composite constituents 

by compressing the composite shape spatial information, and supplementing and expanding 

the compressed information. Yet, U-Net predicts the material local fields without considering 

various spatial kernel effects and it drops a lot of information from an algorithmic point of view. 

Hence, it was difficult to guarantee the generalizability of the model for a vast design space, 

indicating that U-Net still has limitations in making the predictions for a grid composite 

structure that is very different from the training datasets, in terms of the relative volume fraction 

(VF) of the two constituent materials [78]. 



Park et al. (2022) approached the problem by redesigning the DNN architecture to 

better predict the strain field in the unseen VF domain. This study used a multi-kernel 

methodology to efficiently extract the composite configuration-strain field relationship in 

various scales, and proposed a DNN architecture that continuously reuses the extracted 

information. The proposed network architecture successfully predicted the strain field of the 

grid composite structure that has a VF that is significantly different from the designs in the 

training set. In addition, this modified model showed the equivalent predictive performance 

even with a data set 1/3 times smaller than that used for the existing model. This research 

clearly showed that one can redesign the DNN architecture to efficiently tackle the purpose of 

the optimization problem. Here, the modified network exhibited an excellent extrapolation 

performance near the optimal design even without the sequential active learning process 

introduced in the previous section. We foresee more research works toward new DNN 

architecture design in the material/structure optimization field to enable faster and more 

efficient search for the optimal materials design outside the initial training set.  

 

Figure 12. Multi-filter CNN architecture predicting stress field of the grid composite and its 



extrapolation ability [77] 

  



4  Inverse design with two different data sets (case 3) 

This section deals with the data-driven design method in the presence of two datasets 

with different fidelities. In particular, we focus on the training scheme for DNN when a big 

low-fidelity dataset (easily evaluated) and a small high-fidelity dataset (expensive to evaluate) 

coexist. We introduce the concept of transfer learning and how the transfer learning can be used 

to construct a DNN-based surrogate model that can make the prediction at the fidelity level of 

the small accurate dataset. Once the DNN model is constructed, one can adapt the optimization 

frameworks introduced in section 3. Some examples of solving the inverse design problem 

using a surrogate model built by transfer learning will also be introduced.  

 

4.1  AI surrogate model using transfer learning 

Transfer learning is a strategy to construct a neural network to learn input-output 

correlations of the desired dataset (typically, a small dataset with high fidelity) by using the 

dataset to perform fine-tuning of a pre-trained network, which is initially trained with a 

preliminary dataset (typically, a big dataset with low fidelity). The fine-tuning process of the 

transfer learning refers to either selecting only a few hidden layers from the pre-trained neural 

network for the training, or slightly modifying the overall weights in a reduced learning rate 

and epoch. Hence, if a pre-trained model exists for a similar task (that pertains to the 

preliminary dataset), it is easier to develop a surrogate model of our interest, as the fine-tuning 

of the pre-trained model generally requires a dataset of relatively small size. Owing to this 

advantage, the transfer learning drew big attention particularly in the research fields that have 

multiple sources of data, one domain where data can be easily collected and another domain 

where data acquisition is difficult. [79] 



For example, Xu et al. (2021) applied the transfer learning technique in building an AI 

surrogate model that predicts the material properties of grid composites from the microstructure 

of composites. At first, the study developed a pre-trained CNN model that predicts the 

statistical parameters for a given grid configuration, which pertains to a problem whose input-

output data can be computed relatively easily. After that, the pre-trained CNN was fine-tuned 

by the small number of FEM datasets so that the final model can predict the effective elastic 

modulus of the composite. By using transfer learning, it was possible to reduce the amount of 

FEM data for CNN training by half (Figure 13) [80].  

 

Figure 13. Transfer learning workflow for micro structure-property prediction using CNN 

[80] 

 

As another example, Jung et al. (2022) used the transfer learning technique to predict 



the non-linear mechanical responses of fiber-reinforced composites. The mean field 

homogenization technique can quickly compute the non-linear mechanical response beyond 

yield for the composites containing ellipsoidal reinforcement based on a few theoretical 

assumptions. However, if the shape of the reinforcement is not ellipsoidal or the volume 

fraction of the reinforcement material is higher than 20%, the prediction accuracy drops 

significantly. In contrast, although it demands higher computational cost and time, the finite 

element method (FEM) based calculations with fine mesh provide data of higher accuracy 

compared to that computed with the homogenization theory. This study pre-trained the DNN 

using the big homogenization-based data, and then fine-tuned the DNN with the high-accuracy 

FEM dataset. As a result, the constructed DNN could accurately predict the elastoplastic 

response of unknown composite geometries. The transfer-learned AI model showed higher 

prediction accuracy than a DNN trained only using FEM data (Figure 14) [81].  

 

Figure 14. Prediction of elastoplastic behavior of fiber-reinforced composites using the 

transfer-learned DNN model [81] 

 

4.2  Inverse design using transfer-learned AI model 



The DNN-based surrogate model obtained by transfer learning can be combined with 

an appropriate optimization algorithm to solve the inverse design problem. For instance, Dong 

et al. (2021) combined a DNN-based surrogate model constructed by transfer learning with 

conventional data-driven optimization algorithms such as genetic algorithms and Bayesian 

optimization to inverse-design an optical material (composite metal oxides) having desired 

light absorption spectrum. To be specific, the purpose of the study is to find a mole ratio of a 

listed material composition that results in the desired absorption spectrum. The challenge lies 

in the training of an AI model as a relatively small number of data was available for the 

materials in the list. To overcome this hurdle, the researchers pre-trained the initial model with 

a large pool of available datasets, although their material compositions are different from the 

materials of their interest. After that, they fine-tuned the pre-trained model with a small number 

of data having the material compositions of their interest. As a result, they were able to 

construct a surrogate model that can predict the absorption spectrum based on the mole ratio 

of its material composition. Then, the genetic algorithm and Bayesian optimization were 

carried out with the transfer-learned surrogate model to discover the optimal design (Figure 15) 

[82]. 

 



 

Figure 15. a) overall flow of optimization using AI surrogate model constructed by transfer 

learning, b) result of optimization of mole ratio of composite metal oxides [82]  



5   Inverse design with inaccurate and small data sets (case 4) 

In this section, we introduce data-driven inverse design methodologies applicable 

under the presence of a small dataset, obtained through time-consuming experiments or heavy 

simulations. Under a scarcity of training data, it is difficult to build a DL-based surrogate model, 

as they generally require a massive amount of training data for the modeling of a complex 

input-output relationship. The DL-based algorithms introduced in the previous sections 

generally had two process components; the construction of an AI-based surrogate model 

followed by the actual optimization process based on appropriate optimization algorithms. In 

this section, we review a data-driven method that simultaneously explores the design space and 

searches for the optimal design.  

 

5.1  Gaussian process regression combined with Bayesian optimization 

Bayesian optimization (BO) is a widely used data-driven optimization method that has 

the advantage of finding the optimum when only a small amount of data is available, due to the 

cost of data acquisition being too expensive, and the size of the design space being relatively 

small. Unlike gradient-based optimization, BO repeatedly recommends a new candidate design 

based on the ‘acquisition function’, which simultaneously considers the characteristic of 

exploitation (i.e. searches the region close to the optimum) and the exploration (i.e. searches 

for the region with large uncertainty in the regression model). Therefore, BO requires a 

regression model that can quantitatively estimate the expected value and the confidence 

interval of the expectation simultaneously [83]. 

Gaussian process regression (GPR) is a representative regression methodology that 

can estimate the predicted value and its reliability at the same time [84]. GPR assumes that the 



data points follow a multivariate Gaussian distribution, and defines a covariance function 

between the data points to calculate the mean which corresponds to the prediction value at an 

input data point, and the standard deviation which indicates the reliability of the prediction. 

The BO algorithm then computes the ‘acquisition function’ of various design candidates based 

on the mean and the variance estimated by GPR, and the design that has the highest acquisition 

function value is recommended as the design to be evaluated next. The expected improvement 

function, one of the most well-known acquisition functions, is calculated as a weighted 

summation of the exploitation part, which is related to finding a value close to the optimum, 

and the exploration part, which is related to the uncertainty of the model. The expected 

improvement function with an appropriate balance between exploration and exploitation 

should be used in order to effectively approach to the global optimum [85, 86]. 

Recently, Park et al. (2022) adopted BO to optimize the toughness of staggered platelet 

composite structure, which is one of the representative biomimetic composite structures 

mimicking a nacre. This composite material has a structure in which a stiff material is placed 

in a brick form on a soft polymer matrix. Because the prediction accuracy of toughness from 

either analytical models or computer simulations is not satisfactory, authors collected the 

toughness data by using a 3D printer to build an actual composite and conduct uniaxial tensile 

tests. With this accurate, yet expensive-to-evaluate, data collection method, they designed the 

maximum-toughness structure via Bayesian optimization with a relatively small number of 

experiments. The results from the study are visualized in Figure 16 [87].  



 

Figure 16. Staggered platelet composite structure optimization using the Bayesian 

optimization framework [87] 

 

BO can be also extended to solve problems involving multiple objective functions. 

Multi-objective Bayesian optimization (MBO) aims to find Pareto optimal solutions for 

multiple objective functions in a trade-off relationship (such as toughness and strength for 

structural materials, production speed and defective rate for a manufacturing process) [88, 

89]. Recently, several studies in materials design and manufacturing adopted MBO to solve 

inverse design problems with multiple objectives. For example, Jung et al. (2022) applied 

MBO to optimize the injection molding process parameters and were able to determine the 

Pareto-optimal process conditions that minimize both the cycle time to produce a single 

product and the deflection that occurs after production (Figure 17) [76]. 



 

Figure 17. Process parameter optimization of injection molding using Multi-objective 

Bayesian optimization [76] 

  



6  Conclusion 

The advancement of machine learning enables fast and accurate classification and 

regression for the dataset in the field of materials design and manufacturing. Furthermore, 

conventional inverse design approaches that rely heavily on people's knowledge and 

experience can be revolutionized by making the best use of the accumulated dataset through 

data-driven design methods. A variety of fast and efficient AI model-based algorithms have 

been proposed over the last few decades and facilitated complex material optimizations even 

without domain knowledge. However, each of the proposed ML-based methods has its own 

unique strengths and weaknesses, leaving us with a fundamental question of ‘which machine 

learning algorithm to choose’.  

This review categorizes several ML-based optimization methodologies according to 

their characteristics of trainable data and the size of the design space. First, in a case where 

sufficiently large training data is available to capture the input-output trend over the entire 

design space, inverse modeling networks, conventional optimization methods combined with 

forward modeling networks, and GAN are suggested as suitable methods. Second, when the 

initial training set and the optimum are far apart in the vast design space, methodologies 

resolving the extrapolation challenge are introduced; gradual update of a machine learning 

model via the active transfer learning method, and devising an improved neural network 

architecture. Third, under the presence of two datasets with different fidelities, the domain 

transfer of an AI model using transfer learning was introduced. Finally, under the scarcity of 

data due to the objective function being too expensive to evaluate, we suggest a Bayesian 

optimization framework that makes efficient use of the data to determine the global optimum.  

However, although many innovative AI model-based inverse design methods have 

emerged, there still remain challenges to be solved in order to more effectively utilize AI 



models in manufacturing and materials design fields. First, it takes a lot of time to secure the 

initial training data used to build the AI surrogate model. In particular, to build the AI surrogate 

model for a problem with a large design space, at least a few thousand initial training data are 

required, and even after the data acquisition, the extrapolation challenge should also be 

considered in many cases. Physics-informed neural network (PINN) based methodology has 

been extensively explored recently to compensate for the lack of data and extrapolation 

challenge in solving the design problem [90, 91]. In addition, the quality of the data available 

in the manufacturing industry is still relatively low; most experimental data obtained in the 

field are unlabeled or noisy. In this review, the inverse design methodology based on supervised 

learning using labeled data has been mainly dealt with, but the semi-supervised training-based 

methodology that can utilize unlabeled data to create the surrogate model should be further 

investigated as a new route for data-driven inverse design methods [92, 93]. 

In conclusion, ML-based inverse design frameworks have become an innovative route 

for solving complex inverse design problems that were not handled before. However, it is 

crucial to choose the right algorithms according to the characteristics of the dataset and design 

space, and this review provides a concise guideline in the field of materials design and 

manufacturing. In the future, a design methodology that can exploit small, unlabeled, and noisy 

data sets should be further investigated to extend the impact of data-driven design methods in 

more practical engineering applications. At the same time, in addition to the development of 

algorithms, efforts to establish a database composed of standardized high-quality datasets 

should be paralleled. 
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