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ABSTRACT 

 

This paper presents a method to estimate tunneling-induced ground movements by connecting 

the earth pressure balance tunnel boring machine (EPBM) operation data to the ground 

monitoring data. The proposed method requires no prior assumptions, such as the ground loss 

and the geologic parameters. This study was conducted using a data set from the State Route 99 

(SR99) tunnel project in Seattle, WA. The prediction models were developed using (i) ordinary 

least squares (OLS) as a parametric linear regression method and (ii) random forests (RF) as a 

nonparametric nonlinear machine learning method. Segmentation and feature importance 

analyses were carried out to investigate the influence of EPBM features on the induced ground 

movements in different ground-machine interaction mechanisms. This study shows that various 

tunneling-induced ground responses can be estimated solely based on the EPBM feature data and 

the tunnel spatial geometries. The segmentation and feature importance analyses reveal that each 

ground response segment has different governing parameters. Features related to the steering and 

pressure controls appear to influence the induced ground movements during the EPBM passing 

strongly. These features are not typically considered in conventional tunneling-induced ground 

movement prediction methods. 

 

INTRODUCTION 

 

Tunneling-induced ground movements are mainly governed by (i) the tunnel spatial geometries, 

(ii) the geologic conditions, and (iii) the tunneling processes, i.e., the tunnel boring machine 

(TBM) behaviors. Conventionally, the movements can be estimated using various methods, for 

instance, empirical (Mair and Taylor 1999; Peck 1969), analytical (Loganathan and Poulos 1998; 

Pinto and Whittle 2014), and numerical methods (Avgerinos et al. 2018; Kasper and Meschke 

2004; Komiya et al. 1999). Each method offers different approaches, but the key inputs are 

always dominated by the tunnel spatial geometries and the geologic conditions. Limited attention 

has been given to the effects of TBM behaviors. 
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Studies have been conducted to incorporate more information related to TBM behaviors 

in tunneling-induced ground movement models. Most of the studies utilized TBM operation data 

and machine learning algorithms. In early development, Shi (1998) developed a tunneling-

induced ground movement model using the artificial neural network (ANN) with TBM advance 

rates as one of the model input variables. Subsequently, more TBM features (operation variables) 

were included as input variables in the prediction models, e.g., Suwansawat and Einstein (2006) 

and Boubou et al. (2010) used 5 and 10 TBM features for their ANN models, respectively. More 

variation of machine learning algorithms has also been implemented, e.g., the Gaussian Process 

Regression (GPR), Support Vector Machine (SVM), Random Forests (RF), and deep neural 

networks. Several comparative studies show that RF often delivered the best and the most stable 

prediction performance (Chen et al. 2019; Ling et al. 2022; Tang and Na 2021; Zhang et al. 

2020).  

Despite these developments, most previous studies merely focused on predicting the 

cross-sectional maximum ground settlement. Less attention has been given to predicting the 

longitudinal ground responses during TBM passing and the effects of TBM control parameters. 

Furthermore, many studies still reported conflicting results on the feature importance analysis.  

This study aims to develop a method to estimate the longitudinal tunneling-induced ground 

movements by connecting the TBM operation data to the ground monitoring data. The proposed 

method estimates the longitudinal ground response during TBM passing solely based on the 

TBM features and the tunnel spatial geometries.  

This study was conducted using an earth pressure balance TBM (EPBM) data set and a 

multipoint borehole extensometer (MPBX) data set from the State Route 99 (SR99) tunnel 

project in Seattle, WA. The models were developed using two prediction methods: (i) a 

parametric linear regression method and (ii) a nonparametric nonlinear machine learning method. 

Feature importance analysis was performed to investigate the influence of TBM features on the 

induced ground movements. Segmentation analysis was also performed to investigate different 

ground-machine interaction mechanisms. 

 

DATA AND METHODS 

 

Tunneling Case. The SR99 is a highway tunnel with a length of 2830 m (1.756 mi) and a 

maximum depth of 65.5 m (215 ft) below the ground surface. The tunnel was constructed using a 

double shield EPBM with a 17.5 m (57.5 ft) diameter. The geologic conditions along the tunnel 

alignment were dominated by over-consolidated glacial and non-glacial pre-Vashon geologic 

units. The surficial geologic conditions were dominated by recent granular deposits, clay, silt, 

and fills (WSDOT 2010a; b).  

 

EPBM Data. The EPBM produced numerous sensor measurements every 5 seconds during the 

tunneling operation. In this study, the observation points were represented in spatial series as 

chainage locations per ring advance. Depending on the data characteristics, an observation point 
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can be the final observation value of one ring advance (e.g., features related to volume and 

length measurements) or the average value over one ring advance (e.g., features related to 

pressure, forces, speed measurements).  

To allow better interpretability of the models, this study only considered continuous 

measurements data from the primary EPBM functional systems, i.e., features related to (i) 

excavation, (ii) advancing, (iii) steering, (iv) ground conditioning, (v) earth pressure balancing, 

(vi) muck extraction, and (vii) tail grouting. Records from the same sensor types and 

measurements were aggregated to further condense the number of features. The data was cleaned 

by removing the observations of non-advancing phases, erroneous records, missing values, and 

features with constant variables. This data preparation resulted in a total of 28 EPBM features 

and 1253 observation points. 

 

Ground Movement Data. The tunneling-induced ground movements along the tunnel alignment 

were measured using various monitoring instruments (Ning et al. 2019). To limit the scope, this 

study only considered underground movement data from MPBX at 5 ft (approx. 1.5 meters, 

MPBX code 01) and 10 ft (approx. 3 meters, MPBX code 02) distances above the tunnel crown. 

This selection resulted in a total of 159 MPBX locations. Note that the measured underground 

movements are the relative movement of a particular point to the ground surface movement. To 

limit the data size, this preliminary study uses the daily median records. 

 

Data Integration. The EPBM data frame consisted of the operation features at each chainage 

head position and the corresponding time record. The MPBX data frame consisted of the 

recorded ground movements of each monitoring point chainage position and the corresponding 

distance to the center of tunnel alignment, distance to the tunnel crown, and the time record. 

Both data frames were connected by the time record column. This means one row of EPBM data 

at a particular chainage head position can correspond to ground movement records from several 

MPBX locations. Subsequently, distances from the EPBM head to each MPBX location can be 

obtained. The connection between an MPBX location and the EPBM position at a time is 

illustrated in Figure 1.  

 

Model Setup. The data-driven model was developed to estimate the ground response, 𝑦, at a 

particular location 𝑙, and at time 𝑡 as a function of the tunnel spatial geometries (𝑇𝑆𝐺) at time 𝑡, 

and the 28 EPBM features (𝐸𝑃𝐵𝑀𝑜𝑝𝑠) at time 𝑡, 

𝑦𝑙(𝑡) = 𝑓 (𝑇𝑆𝐺(𝑡), 𝐸𝑃𝐵𝑀𝑜𝑝𝑠(𝑡)). 

The tunnel spatial geometries consisted of (i) distance to the EPBM head, (ii) distance to the 

center of tunnel alignment, (iii) distance to the tunnel crown, and (iv) the tunnel depth. Including 

the 28 EPBM features, this gave a total of 32 input features for the models. 

 Explicit information on the geologic conditions was not used since this information has 

been implicitly contained in the interactions among the EPBM features (Apoji et al. 2022; Sousa 

and Einstein 2012). In this study, the tunneling effects were considered negligible at -50 m 
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before and 100 m after EPBM passing. Observations on the longitudinal ground movements 

during EPBM passing have been reported by Wan et al. (2017a; b). 

The merged data set was split randomly in a 70:30 ratio to divide the training and testing 

data sets. This random splitting scheme may not be feasible for actual tunneling where the data 

are generated in a sequence. However, this scheme was selected to provide a preliminary study 

with ideal randomized training data. The prediction results were evaluated using the mean 

absolute errors (MAE). The data-driven model pipeline is illustrated in Figure 2. 

 

 
Figure 1. The connection between an MPBX location and the EPBM position at a time. 

 
Figure 2. Data-driven model pipeline. 

 

Prediction Methods. The ground movement model was developed using two data-driven 

prediction methods: (i) the ordinary least squares (OLS) and (ii) the random forests (RF). OLS 

was selected as a benchmark method to represent a parametric linear regression method. OLS 

constructs the model by minimizing the residual sum squares (RSS),  

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − (𝛽̂0 + 𝛽̂1𝑥𝑖1 + 𝛽̂2𝑥𝑖2 + ⋯ + 𝛽̂𝑝𝑥𝑖𝑝))
2

𝑛

𝑖=1

, 

where 𝑖 is an observation point, 𝑦 is the response, 𝑥1 to 𝑥𝑝 are the predictors, and 𝛽̂0 to 𝛽̂𝑝 are the 

estimated regression coefficients. 
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RF was selected to represent a nonparametric and nonlinear machine learning prediction 

method. RF is an ensemble supervised learning algorithm that produces its prediction by 

aggregating a large number of decision trees as the base learners (Breiman 2001). RF was 

selected since this method has straightforward hyperparameter tuning and performs excellently 

in tabular data (Grinsztajn et al. 2022). The method is also robust to noises and less prone to 

overfit (Liu et al. 2012). Furthermore, as a nonparametric method, RF does not require the data 

to meet certain assumptions or parameters (Malley et al. 2012). Briefly, RF algorithm is 

performed by  

(i) generating 𝐵 bootstrapped training data sets;  

(ii) constructing decision trees,  𝑓∗𝑏(𝑥), using each of the 𝑏𝑡ℎ bootstrapped data sets;  

(iii) aggregating all the constructed decision tree results to obtain the final result, 

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑓∗𝑏(𝑥)

𝐵

𝑏=1

. 

A single decision tree is constructed using binary recursive partitioning into distinct 

subsets so that one parent node leaves two child nodes (Therneau and Atkinson 1997). The 

selected predictors, 𝑥𝑗, and the cutpoint, 𝑠, can be determined by minimizing the residual sum of 

squares (RSS), 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑅1
)

2

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

+ ∑ (𝑦𝑖 − 𝑦̂𝑅2
)

2

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

. 

where 𝑦̂ is the estimated responses of the pair of half-planes 𝑅1 and 𝑅2 (James et al. 2013). This 

study was performed in R programming language using the fast implementation of RF in C++ 

(Wright and Ziegler 2017). 

 

 

Hyperparameter Tuning. Hyperparameter evaluation was performed on the training data set to 

investigate the effects of RF hyperparameters on the prediction performance and to select the 

best hyperparameters for the analysis. The evaluation was performed in 5-times repeated 10-

folds cross-validation (CV) analysis, using various ranges of RF hyperparameters, i.e., (i) the 

possible number of features that are randomly selected to split at each branch node (mtry), (ii) 

the minimum node size of the end leaf, and (iii) the number of grown trees (ntrees). The 

validation performance was evaluated using the out-of-bag (OOB) data sets. 

 

Feature Importance Analysis. The permutation-based feature importance analysis was 

employed to obtain RF feature importance scores. Briefly, the permutation feature importance 

measures the difference in prediction errors between the original data set and the data set with a 

particular feature being permuted (Gregorutti et al. 2017; Nicodemus et al. 2010). Higher scores 

mean higher prediction errors when a particular feature is permuted, indicating its importance in 

the prediction model. The permutation-based importance was selected since it is less susceptible 

to bias than the standard RF impurity-based importance (Altmann et al. 2010; Strobl et al. 2007). 



 – 6 –   

 

 

Segmentation Analysis. Segmentation analysis was performed to investigate different ground 

response mechanisms relative to EPBM positions. The analysis was performed by segmenting 

RF model with a moving boundary line throughout the ground responses. A segment was defined 

as a distance where the model produced negligible prediction errors. However, a threshold MAE 

of 0 mm produces a very sensitive analysis, i.e., too many segments. Therefore, this study used a 

threshold MAE of 0.2 mm to allow better interpretability. The next segment was created 

similarly by starting the new moving boundary from the end boundary of the previous segment. 

The algorithm of the segmentation analysis is presented in Table 1. 

 

Table 1. Segmentation analysis 

No. Algorithm 

 Input: training and testing data sets from randomly splitted instrument IDs 

 Output: SegmentBoundary, SegmentMAE 

1 Initialize  

StartBoundary = -50 m 

 EndBoundary = 100 m 

 ErrorThreshold = 0.2 mm 

3 While (StartBoundary < EndBoundary) 

4 Initialize SegmentMAE 

5 For (b in StartBoundary to EndBoundary) 

6 Slice data from StartBoundary to b 

7 Get training and testing data sets within the slice  

8 Train model 

9 Initialize InstrumentMAE 

10 For (each instrument in the testing data set) 

11 Get prediction 

12 Get and store InstrumentMAE 

13 Get and store SegmentMAE as InstrumentMAE at boundary b 

14 Get and store SegmentBoundary as the last b where MAE < ErrorThreshold 

15 Update StartBoundary as SegmentBoundary at the current iteration 

 

RESULTS AND DISCUSSION 

 

Effects of Hyperparameters. Figure 3 presents the effects of RF hyperparameters on the OOB 

predictions. The left panel presents the effect of the ntrees parameter on the MAE in various 

mtry parameters, with a constant minimum node size parameter of 1. The figure shows that a low 

number of ntrees (e.g., ntrees < 200) produced lower prediction performance. Increasing the 

ntrees improved the prediction performance significantly until it reached the threshold value and 

stabilized. This result agrees with previous studies, either using the EPBM data set (Apoji et al. 

2022) or other data sets (Probst et al. 2019). In this study, ntrees of 500 were selected for the 

model to ensure high prediction performance and reasonable computation costs. 
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The right panel presents the effect of the mtry parameter on the MAE in various 

minimum node size parameters, with a constant ntrees parameter of 500. This figure shows that 

higher numbers of mtry produced lower MAE, which means higher prediction performance. The 

best prediction performance was produced when the mtry was equal to the number of predictors 

(i.e., p = 32). This is an interesting finding since the best prediction performance for an RF 

regression is typically produced by mtry = p/3 (e.g., Apoji et al. 2022; Probst et al. 2019). The 

minimum node sizes produced fewer effects on the prediction performance. The best prediction 

performance was produced at the minimum node sizes of 1 and 3. The large mtry and small 

minimum node size values indicate that more complex trees were required for the predictions. 

This hyperparameter configuration reveals the complexity of the relationship between EPBM 

and the ground responses. In this study, mtry of p = 32 and the minimum node size of 1 were 

selected for the models.   

 
Figure 3. Effects of RF hyperparameters on the OOB predictions (training data set). 

 

Ground Movement Predictions. Figure 4 presents several selected tunneling-induced ground 

movement predictions from the testing data set. The x-axes show the distance from the 

measurement points (MPBX locations) to the EPBM head (in meters). The y-axes show the 

induced ground movements (in mm). The measured ground responses are shown in black. The 

OLS and RF predictions are shown in red and blue, respectively. The figure presents different 

types of induced ground responses, i.e., settlement (panels in the left column), heaving (the 

middle column), and relatively stable responses (the right column). The selected responses show 

the variability of tunneling-induced ground movements. Note that the simplified model, such as 

the Gaussian settlement profile-based models, may not be able to capture this variability. 

These figures show that the RF model could predict tunneling-induced ground 

movements solely based on the EPBM data. The predicted ground responses are in reasonably 

good agreement with the measured responses. In contrast, the OLS model could not reconstruct 

the measured responses, with substantial discrepancies in both pattern and magnitude of the 

ground movements. This result indicates the presence of nonlinear interactions between the 

EPBM and the ground responses. This nonlinearity could not be captured by OLS, which is a 
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parametric model that strictly constrains the fitting to be linear. This result suggests the value of 

nonparametric machine learning methods to model data sets with complex interactions. 

 
Figure 4. Selected tunneling-induced ground movement predictions with different types of 

responses from the testing data set: settlement (panels in the left column), heaving (the 

middle column), and relatively stable responses (the right column).  
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Figure 5 presents the absolute error (y-axis, in mm) of every monitoring point relative to 

the EPBM head distance (x-axis, in meters) from all predictions in the testing data set. The 

absolute errors of the OLS and RF models are shown in red and blue, respectively. The Locally 

Estimated Scatterplot Smoothing (LOESS) lines are shown to represent the scattering data points 

visually. Note that LOESS is essentially a generalization form of moving average and 

polynomial regression (Garimella 2017). The figure shows that the overall RF model 

performance was better than the overall OLS model. The RF models produced relatively small 

errors at points ahead of the EPBM (before passing). 

In contrast, the OLS model produced substantial errors in this segment. It even failed to 

capture zero ground movements at 50-meter distances ahead of the EPBM. Note that all the 

training data were set to zero at this point. Both models exhibited increases in errors during 

EPBM passing. Subsequently, the errors stabilized after the passing. This indicates different 

mechanisms of EPBM and ground interactions before, during, and after EPBM passing. 

 

 
Figure 5. Absolute error of every monitoring point relative to the EPBM head distance 

from all predictions in the testing data set. 

 

Ground Response Segmentation. Figure 6 presents ground response segments based on the 

segmentation analysis. Each segment is shown as a distance between two dashed boundary lines 

(red), where the model produces negligible errors (MAE < 0.2 mm). In this case, the first 

segment is produced from -50 to 3 m to the EPBM head. This segment may represent the ground 

response ahead of the EPBM. The second, third, and fourth segments are produced from 3 to 7 

m, 7 to 13 m, and 13 to 21 m to the EPBM head, respectively. These segments may represent the 

ground response during the EPBM passing. The fifth segment is produced from 21 to 31 m, 

representing the post-tunneling ground response over the newly constructed tunnel lining. The 
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sixth and seventh segments are from 31 to 95 m and 95 to 100 m to the EPBM head, 

respectively. These segments may represent post-tunneling ground responses in the longer term. 

The smaller segment size during EPBM passing may indicate a more complex ground response 

mechanism during this period. 

 

 
Figure 6. Ground response segments based on the segmentation analysis. Each segment 

produces MAE < 0.2 mm and is shown as a distance between the two red dashed boundary 

lines.  

 

Feature Importance for Overall Response. Figure 7 presents the feature importance rank of 

the overall ground response RF model (a segment from -50 m to 100 meters distance to the 

EPBM head). The rank shows that spatial geometries (i.e., the distance from the point of interest 

to the center of tunnel alignment, the tunnel depth, as well as the distance from the point of 

interest to the EPBM head and crown) were the key parameters in estimating the ground 

responses. The conventional tunneling-induced ground movement prediction methods have also 

considered the geometrical information in the models. 

Interestingly, features related to steering control (i.e., pitch, yaw, and deviation) and 

chamber pressure were in high-importance ranks. Note that these features are not commonly 

included as specific parameters in conventional prediction methods. This suggests that TBM 

control parameters substantially govern the induced ground movement and should be considered 

more carefully in tunneling-induced prediction models. 
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Figure 7. RF feature importance rank of the overall ground response model 

 

Feature Importance for Segmental Responses. Figure 8 presents simplified ground response 

segments (top panel) and feature importance ranks of each segment (bottom panels). The 

simplified ground response segments were approximated based on the segmentation analysis 

result. The feature importance ranks only show the top 8 features, to focus on the most critical 

features in the predictions. The figure shows that each ground response segment produced 

different feature ranks, indicating different TBM-ground interaction mechanisms. The simplified 

ground response segments are described below. 

• Segment 1 represents the ground response ahead of the EPBM. This segment appears to 

be dominated by geometrical parameters. This suggests that the ground response mainly 

depends on the distance to the EPBM. 

• Segment 2 represents the ground response over the EPBM front shield. This segment 

indicates a strong influence of the screw-related features. Note that these features can be 

related to how the operators control the chamber pressure. This suggests the critical role 

of pressure control on the ground response. 

• Segment 3 represents the ground response over the EPBM articulation and rear shield. 

This segment shows domination from features related to the steering control (i.e., 

deviation and thrust stroke difference). 

• Segment 4 represents the post-tunneling ground response over the newly constructed 

tunnel lining. This segment appears to be dominated by the geometrical parameters and 

the muck volume (which may be related to the ground loss). 

• Segment 5 represents the longer-term post-tunneling ground behavior. This segment is 

strongly dominated by features related to the ground conditioning system, i.e., the 

polymer volume. Note that polymer volume is typically injected to minimize the 
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stickiness of clayey soils (Todaro et al. 2021). This indicates that the ground response 

mainly depends on the soil type, e.g., more long-term settlement is expected on clayey 

soils. 

 

 
Figure 8. RF feature importance rank of each ground response segment. 

 

CONCLUSIONS 

 

The feasibility of a data-driven method that connects EPBM data to the ground monitoring data 

has been demonstrated. The developed model can predict various types of tunneling-induced 

ground movements solely based on the EPBM features and the tunnel spatial geometries without 

any prior assumption on the ground loss and the geologic parameters. The nonparametric and 

nonlinear machine learning prediction model produces better estimations than the parametric 

linear regression model. This indicates the complexity and nonlinearity of TBM-ground 

interactions. 

The segmentation analysis shows tunneling-induced ground movements can be divided 

into several ground response segments relative to the EPBM positions, indicating different TBM-

ground interaction mechanisms at each ground response segment. Furthermore, the feature 

importance analysis reveals that each segment may have different controlling parameters. 

Features related to the steering and pressure controls appear to influence the induced ground 
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movements during EPBM passing strongly. These features are not typically considered in 

conventional tunneling-induced ground movement estimation methods. 

A development of this method may include incorporating records from multi-instruments 

with a finer resolution of both TBM and ground monitoring data. A more robust feature 

importance analysis and the effects of the threshold value should also be examined. The dynamic 

sequential prediction model should be developed to enable the implementation of this data-

driven method in actual tunnel construction. 
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