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Abstract5

In this paper, we have investigated void growth in ductile materials with actual porous microstructures. For that6

purpose, we have performed calculations of cubic unit-cells subjected to periodic boundary conditions and containing7

porosity distributions representative of three additively manufactured materials, namely, aluminium alloy AlSi10Mg,8

stainless steel 316L and Inconel 718. The initial void volume fraction in the calculations varies between 0.00564% and9

1.75%, the number of voids between 14 and 5715, and the pores size from 2.3 µm to 110 µm. Several realizations with10

different void sizes and positions have been generated for each of the porous microstructures considered. The simulations11

have been carried out with random spatial distributions of voids and with clusters of different sizes. The matrix material12

is modeled using isotropic linear elasticity and von Mises plasticity with an associated flow rule and isotropic hardening,13

being the flow stress dependent on strain and strain rate. The macroscopic stress state in the unit-cell is controlled by14

prescribing constant triaxiality (T ) and Lode parameter (L) throughout the loading. We have performed calculations15

with stress states resulting from a combination of three different triaxiality and Lode parameter values, i.e., T = 1, 2, 316

and L = −1, 0, 1. To the authors’ knowledge, this is the first and the most comprehensive study that performs 3D17

unit-cell calculations with actual representation of porous microstructures, and analyzes the effects of size and spatial18

distribution of voids on the macroscopic response of the porous aggregate and on the collective behavior of individual19

pores. The results obtained with the actual porous microstructures have been compared with unit-cell calculations20

having an equivalent single central pore, and with calculations in which the material behaviour is modeled with Gurson21

plasticity. It has been shown that both initial void volume fraction and distribution of void sizes affect the macroscopic22

response of the porous aggregate and the void volume fraction evolution. Moreover, the calculations with random spatial23

distribution of voids have brought out that different realizations of the same microstructure carry significant variations to24

the effective behaviour of the porous aggregate, and that the interaction between neighboring pores dictates the volume25

evolution of individual voids, especially at higher macroscopic triaxiality. The calculations with clusters have shown that26

pores clustering promotes coalescence localization due to increased interaction between the voids, which results in an27

increased growth rate of voids in clusters with large number of pores.28
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1. Introduction31

Ductile fracture in metals and alloys has been the subject of many studies over the past decades and it is known to32

(generally) occur by nucleation, growth (or closure) and coalescence of voids (Cox and Low, 1974; Benzerga and Leblond,33

2010a; Benzerga et al., 2016; Pineau et al., 2016). Nucleation of voids usually starts at large inclusions and second-phase34

particles, by particle cracking or by decohesion of the particle–matrix interface. Void growth largely depends on the35

stress state, such that at low triaxiality voids tend to compress and collapse to ultimately form micro-cracks, and at high36

triaxiality they grow rapidly by diffuse plastic deformation of the surrounding matrix. When void growth is substantial,37

void coalescence occurs. The most common void coalescence mode is by internal necking of the intervoid ligament,38

i.e., the collapse of the ligaments between adjacent voids along a localization band perpendicular to the main loading39

direction that involves the formation of regions of elastic unloading separated from regions of highly localized plastic40

flow (the ligaments). Void growth induced softening may also initiate failure without void coalescence per se (Tekoğlu41

et al., 2015; Reboul et al., 2020).42

43

The development of many existing ductile fracture models was motivated by the analysis of void growth in a plastic44

matrix. Notable are the pioneering studies of McClintock (1968), Rice and Tracey (1969), Hancock and Mackenzie (1976)45

and Gurson (1975, 1977), who described the growth of an isolated cylindrical or spherical void in an infinite rigid plastic46

solid. In particular, using micromechanical considerations, Gurson (1975, 1977) developed one of the most widely used47

criteria for porous solids containing spherical (or cylindrical) voids. The derivation of the Gurson (1975, 1977) model was48

based on a limit-analysis of a hollow sphere (or cylinder) of finite radius surrounded by the matrix material described49

with von Mises (1928) criterion and subjected to homogeneous boundary strain rate. Due to its intrinsic limitations to50

spherical or cylindrical voids and plastically isotropic materials, several extensions of the Gurson (1975, 1977) model51

have been proposed in various directions during the last decades to account for void nucleation (Chu and Needleman,52

1980), void coalescence (Tvergaard and Needleman, 1984), void shape effects (Thomason, 1985; Gologanu et al., 1997;53

Jackiewicz, 2011), void size effects (Wen et al., 2005; Monchiet and Bonnet, 2013), void orientation (Danas and Ponte-54

Castañeda, 2009; Danas and Aravas, 2012) and distinct features of the constitutive model of the matrix material such as55

strain hardening (Leblond et al., 1995), viscoplasticity (Duva, 1986; Gărăjeu et al., 2000), plastic anisotropy (Benzerga56

and Besson, 2001; Benzerga et al., 2004; Chen and Dong, 2009) or pressure sensitivity (Cheng and Guo, 2007; Guo et al.,57
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2008; Thoré et al., 2009). Few attempts have been also made to include the Lode angle in the Gurson (1975, 1977)58

model to analyze the role of the third stress invariant in the ductile fracture of the porous material (Xue, 2008; Nahshon59

and Hutchinson, 2008; Benallal et al., 2014; Leblond and Morin, 2014; Vadillo et al., 2016). All the studies cited in60

this paragraph are based on the micromechanical analysis of a single void embedded in a plastic material. However, the61

presence of a non-uniform distribution of voids breaks the symmetry within the surrounding matrix and suggests the62

possibility of a void interaction effect. In a real material, the effect of void distribution observed from X-ray tomography63

experiments either for random (Maire and Withers, 2014) or clustered voids (Hannard et al., 2017) has been recognized64

to have an important contribution to ductile fracture.65

66

Finite element unit-cell computations have been extensively used to provide fundamental understanding of the me-67

chanical response of porous aggregates. Since the pioneering works of Needleman (1972) and Tvergaard (1981), a large68

number of unit-cell analyses has been conducted taking into account different cell configurations and loading conditions69

(Faleskog et al., 2000; Pardoen and Hutchinson, 2003; Kim et al., 2004a; Danas and Ponte-Castañeda, 2012; Keralavarma70

and Benzerga, 2010; Dæhli et al., 2018; Hosseini et al., 2022; Tekoğlu and Koçhan, 2022). In the original unit-cell frame-71

work, a single void is explicitly modeled and embedded in a matrix material with prescribed periodic boundary conditions.72

Nevertheless, this configuration does not provide information about microstructural features such as void evolution and73

interaction in a porous aggregate with non-periodic distribution of voids. In order to overcome this limitation, different74

works have extended the original unit-cell approach by modeling unit-cells embedding multiple voids. For instance,75

Thomson et al. (1998, 2003) performed finite element simulations of 3D unit-cells where few (three, four or eight) spher-76

ical pores were aligned with different orientations with respect to the loading directions. The orientation of the void77

distribution was shown to be a very important factor for void evolution and fracture. McVeigh et al. (2007) modeled78

the nucleation, growth and coalescence of several interacting pores in 2D and 3D unit-cells. Void spacing and relative79

void position were found to play an important role in void-sheet localization for zero stress triaxiality (shear loading).80

Tvergaard (2016, 2017) compared the behavior of several non-periodic distributions of pores embedded in representative81

volume elements against the behavior of a single pore with equal void volume fraction, and showed that faster void82

growth occurs for certain non-periodic void arrangements as compared to the single void case. Khan and Bhasin (2017)83

carried out three-dimensional finite element studies modeling explicitly both primary and secondary voids (i.e., larger84

and smaller voids). The ductile behavior of the porous aggregate was observed to significantly depend on the respective85

position of primary and secondary voids. Trejo Navas et al. (2018) carried out 3D finite element simulations of a material86

with a small population of voids and showed that for the same applied far-field stress, the growth of a void highly depends87
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on its relative position in the cell. Shakoor et al. (2018) assessed the competition between particle fragmentation and88

particle debonding and analyzed their respective influence on void coalescence considering a 3D unit-cell with a realistic89

population of particles (33 particles) obtained from X-ray tomography data. Recently, Hure (2021) and Cadet et al.90

(2021, 2022) simulated void growth and coalescence of random distributions of voids (initially spherical and identical in91

size) embedded in a cubic 3D cell. Specifically, Hure (2021) determined numerically the yield surfaces of porous isotropic92

materials containing random spatial distributions of voids. The comparison of 3D unit-cells with different number of93

voids (up to 64), showed that the maximum stress in the simulations –which was used to compute the numerical yield94

surfaces– is less dependent on the porosity distribution as the number of voids increases. The numerical yield surfaces95

were found to be consistent with a multi-surface yield criterion accounting for both homogeneous and inhomogeneous96

material yielding. Moreover, the coalescence process was found to be substantially affected by the distribution of voids,97

such that the coalescence strain was smaller for the material with random spatial distribution of voids as compared to98

calculations performed with periodic porous microstructures. Cadet et al. (2021) investigated plastic strain localization99

in 3D cubic cells made of an elastic-perfectly plastic matrix with random spatial distribution of identical non-overlapping100

spherical voids (number of voids equal to 27). Various proportional loading conditions with controlled stress triaxiality101

and Lode parameter were applied (up to the final fracture of the cell), with the microstructures with random spatial102

distribution of voids showing earlier coalescence as compared to unit-cells with a single central void (and the same void103

volume fraction). The random distribution of voids led to a large variability of failure strains due to inhomogeneous104

plastic strain field induced by the porous microstructure. The work of Cadet et al. (2021) was extended shortly after by105

Cadet et al. (2022) to consider loading cases in which the principal axes of the applied stress are systematically varied106

with respect to the unit-cell axes. The minimum fracture strain of the porous aggregate was found to draw a U-shape107

curve function of the Lode parameter (L), with a minimum value near L = 0 (generalized shear stress).108

109

Finite element simulations including distributions of voids obtained from X-ray tomography analysis of porous ma-110

terials bring about opportunities to study ductile damage in more realistic situations. The idea is to elucidate the role111

of real void sizes or real intervoid distances on the mechanisms of ductile fracture. However, to the authors’ knowledge,112

an experimentally-based void configuration with a number of pores large enough to ensure a significant statistical rep-113

resentation of the porous microstructure was never fully mapped within a 3D representative volume element. This is114

precisely the gap we intend to fill in this paper. For that purpose, we have developed a microstructurally-informed finite115

element unit-cell model to determine the role of actual porosity on the macroscopic response of the porous aggregate.116

The cubic unit-cell is subjected to different loading conditions characterized by prescribed (constant) stress triaxiality117
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and Lode parameter. We have created porous microstructures with random spatial distributions of voids based on118

the X-ray tomography measurements reported by Marvi-Mashhadi et al. (2021) for 3 different additively manufactured119

materials, namely, aluminium alloy AlSi10Mg, stainless steel 316L and Inconel 718. The pores are taken to be initially120

spherical, consistent with the X-ray tomography measurements and the SEM micrographs reported by Nieto-Fuentes121

et al. (2022a). Several realizations have been generated for each of the porous microstructures considered and the results122

have been compared with unit-cells with a single central pore, and with calculations in which the material is modeled123

using Gurson plasticity. The main novelty of this research as compared to recently published papers is: (1) considering124

larger (and real) population of spherical voids to ensure that the numerical results are statistically significant and (2)125

including experimentally-measured distributions of void sizes. The calculations provide new insights into the effects of126

size and spatial distribution of voids on the macroscopic response of the porous material and allow for characterization127

of the collective behavior and interaction of individual pores.128

129

The paper is organized as follows. Section 2 shows the elasto-plastic constitutive framework used to define the130

mechanical behavior of the material. Section 3 describes the unit-cell finite element model and the main features of131

the porous microstructures investigated. The effect of stress triaxiality and Lode parameter on the effective behavior of132

the unit-cell, on the evolution of the void volume fraction and on the growth of individual voids is analyzed in Section133

4. A parametric study on the influence of initial void volume fraction and distribution of void sizes on the mechanical134

behavior of the porous aggregate is performed in Section 5, including comparisons with results obtained with unit-cells135

containing a single central pore, and with unit-cells modeled using Gurson plasticity. Section 6 shows calculations with136

clustering microstructures having the same initial void volume fraction and different number of clusters of different sizes.137

A summary of the main findings of the paper is given in Section 7.138

139

2. Constitutive framework140

The mechanical behavior of the material is assumed to follow isotropic linear elasticity and von Mises (1928) plasticity.141

The total rate of deformation tensor d is decomposed into elastic (de) and plastic (dp) components:142

d = de + dp (1)

The elastic deformation rate is related to the rate of the stress:143
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σ̇ = C : de (2)

where σ̇ is an objective derivative of the Cauchy stress tensor and C = 2GĨ + K1 ⊗ 1 is the tensor of isotropic144

elastic moduli, with G being the elastic shear modulus, K the bulk modulus, 1 the second-order unit tensor and Ĩ the145

fourth-order deviatoric unit tensor.146

147

The plastic deformation rate follows an associated flow rule:148

dp = λ̇
∂f

∂σ
(3)

where λ̇ is the plastic flow proportionality factor and f = σ̄− σY ≤ 0 is the yield condition, with σ̄ =
√

3
2s : s being the149

von Mises effective stress, where s = σ − σh : 1 and σh = 1
3σ : 1. Moreover, σY is the yield stress of the material which150

is assumed to be a function of the effective plastic strain (ϵ̄p) and the effective plastic strain rate ( ˙̄ϵp):151

σY (ϵ̄
p, ˙̄ϵp) = σ0(ϵ̄

p + ϵ0)
n

(
˙̄ϵp

ϵ̇0

)m

(4)

where ϵ̄p =
∫ t
0
˙̄ϵp(τ)dτ and ˙̄ϵp =

√
2
3 dp : dp. The parameter σ0 is the initial yield stress, and n and m are the strain152

hardening and strain rate sensitivity exponents, respectively. Moreover, ϵ0 and ϵ̇0 are the reference strain and strain153

rate.154

155

The baseline numerical values used in the finite element simulations of Sections 4, 5 and 6 for the initial density, the156

elastic constants and the parameters of the yield stress correspond to aluminum alloy 2090-T3 (Yoon et al., 2006; Cvitanić157

et al., 2008). Moreover, additional calculations with parameters corresponding to aluminum alloys 6111-T4 and 6013158

are included in Appendix A to illustrate the effect of material behavior on the evolution of the porous microstructure.159

While these three materials display plastic anisotropy (Barlat et al., 2005; Kim et al., 2010; Ha et al., 2018), all the finite160

element simulations in this paper are carried out using isotropic von Mises plasticity to facilitate the interpretation of161

results. The effect of plastic anisotropy on the evolution of the porous microstructure will be studied in a future work.162
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163

Symbol Property and units Aluminium alloy 2090-T3

ρ0 Initial density (kg/m3) 2700
G Elastic shear modulus (GPa) 26.92
K Bulk modulus (GPa) 58.33
σ0 Initial yield stress parameter (MPa), Eq. (4) 646
n Strain hardening exponent, Eq. (4) 0.227
m Strain rate sensitivity exponent, Eq. (4) 0.01
ϵ0 Reference strain, Eq. (4) 0.025
ϵ̇0 Reference strain rate (s−1), Eq. (4) 0.0001

Table 1: Numerical values of initial density, elastic constants and parameters of the yield stress corresponding to aluminum alloy 2090-T3
(Yoon et al., 2006; Cvitanić et al., 2008).

3. Finite element model164

The finite element model is a cubic unit-cell containing spatially distributed spherical voids of different sizes, which165

is considered to be a representative volume element of a porous material, see Fig. 1. The equations for the nodal166

displacements reported in Appendix A of Dakshinamurthy et al. (2021) have been used to impose periodic boundary167

conditions on the unit-cell, so that the displacement of opposed external nodes is coupled (i.e., the displacement of the168

nodes in the outer faces of the unit-cell is coupled). Material points are referred to using a 3D Cartesian coordinate169

system (x,y,z) with origin located at the bottom right corner of the cell, see Fig. 1. The loading directions are determined170

by the axes x, y and z (see below). Note that the contour plots in Figs. 3, 18, 23 and 27 are referred to this coordinate171

system. The initial configuration of the unit-cell is defined by the domain 0 ≤ x ≤ L0, 0 ≤ y ≤ L0, and 0 ≤ z ≤ L0,172

with L0 = 1 mm.173

174

The macroscopic stress tensor is taken as the volumetric averaging of the microscopic (local) Cauchy stress tensor175

(Vadillo et al., 2016; Hosseini et al., 2022):176

Σ =
1

V cell

∫
V cell

σdV cell (5)

where V cell is the total volume of the unit-cell.177

178
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Figure 1: Unit-cell finite element model: (a) semi-transparent view displaying the porous microstructure, (b) loading conditions with Σ1, Σ2

and Σ3 being the principal values of the macroscopic stress tensor and (c) cut-view showing the fine mesh around the voids.

The macroscopic strain tensor is defined as the volumetric averaging of the microscopic (local) logarithmic strain179

tensor (Dakshinamurthy et al., 2021; Hosseini et al., 2022):180

ε =
1

V matrix

∫
V matrix

ϵdV matrix (6)

where V matrix = V cell − V voids is the volume of the matrix material, with V voids being the volume of all the voids181

included in the unit-cell.182

183

The multi-point constraint subroutine developed by Dakshinamurthy et al. (2021) has been used to enforce constant184

and controlled values of the macroscopic stress triaxiality T = Σh

Σ
and the macroscopic Lode parameter L = 2Σ2−Σ1−Σ3

Σ1−Σ3
185

during the calculations, where Σh = Σ1+Σ2+Σ3
3 and Σ =

√
3
2Σ

′ : Σ′ are the macroscopic hydrostatic stress and the186

macroscopic effective stress, respectively, and Σ1, Σ2 and Σ3 (Σ1 ≥ Σ2 ≥ Σ3) are the principal values of the macroscopic187

stress tensor, with Σ′ = Σ − Σh1. The loading directions are aligned with the principal directions of the macroscopic188

stress tensor, so that the major loading direction corresponds to the principal stress direction associated to Σ1 (parallel189

to x), and the minor loading direction corresponds to the principal stress direction associated to Σ3 (parallel to z), see190

Fig. 1. Moreover, the macroscopic effective strain is ε =
√

2
3ε

′ : ε′, where ε′ = ε − εh1 and εh = ε1+ε2+ε3
3 , with ε1, ε2191
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and ε3 (ε1 ≥ ε2 ≥ ε3) being the principal values of the macroscopic strain tensor. Note that the tensors Σ and ε do not192

determine the stress and strain states in a material point, but they are rather used for the definition of the macroscopic193

stress and strain scalars required for the graphical representation and interpretation of results.194

195

The novelty of the numerical simulations is that we have incorporated into the unit-cell calculations the porous196

microstructure obtained from three additively manufactured metals –aluminium alloy AlSi10Mg (Al3XY), stainless steel197

316L (SS5XY) and Inconel 718 (INC1Z)– following the methodology developed by Marvi-Mashhadi et al. (2021) and198

later adopted by Vishnu et al. (2022a,b) and Nieto-Fuentes et al. (2022b) to study the effect of actual porosity on the199

formation of necks and shear bands at high loading rates (i.e., so far, the methodology has been used to address problems200

other than void growth in unit-cell calculations under controlled triaxiality and Lode parameter). Recall that the pores201

are taken to be spherical, consistent with the X-ray tomography measurements and the SEM micrographs reported202

by Nieto-Fuentes et al. (2022a) for AlSi10Mg specimens. Intersections between voids, and between voids and unit-cell203

boundaries are not allowed. We have created porous microstructures with random spatial distribution of voids and with204

void clusters.205

The main features of the porous microstructures investigated, which are obtained from the X-ray tomography mea-206

surements of Marvi-Mashhadi et al. (2021), are reported in Table 2: initial void volume fraction (f0), number of voids207

per mm3 (Nv), maximum voids diameter (dmax), minimum voids diameter (dmin), and mean (µ) and standard deviation208

(dev) of fitted Log-normal distribution.209

For each of the three porous microstructures considered, for the microstructures with random spatial distribution of210

voids, we have generated up to five realizations of void size and position distribution which meet the same Log-normal211

statistical function. The goal is to take into account the scatter in the finite element results caused by the random spatial212

distribution of pores, see Section 4 for details. These realizations will be referred to as R1, R2, ... , R5. The initial void213

volume fraction (f0), the number of voids (Nt), and the maximum void diameter (dmax) in the unit-cell calculations of the214

realizations created for each of the microtructures investigated are shown in Table 3. The difference in the void volume215

fraction between the experimental measurements and the computations –compare Tables 2 and 3– is partially caused by216

the random nature of the position of the voids and of the distribution of void sizes in the experimental specimen (see217

Marvi-Mashhadi et al. (2021)), which is carried over to the finite element model, leading to deviations from the number218

of pores measured in the tomograms (which are taken over a greater volume, see Marvi-Mashhadi et al. (2021)). Note219

also that the void volume fraction in the finite element models is less than the experimental data reported in Table220

2 because the intersections between voids, and between voids and specimen boundaries are not allowed (as mentioned221
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before), so that several pores are eventually removed from the finite element models.222

Moreover, separate attention has been paid to the effect of pore clustering on the evolution of the macroscopic223

response of the unit-cell and the void volume fraction. For the microstructures with clusters, the methodology developed224

by Graham-Brady (2010) has been adapted to generate finite element models based on the microstructures of Table 2225

with different number of void clusters, see Section 6 for details.226

227

Al3XY SS5XY INC1Z

f0 (%) 2.17 0.0025 0.1363
Nv (num./mm3) 5985 17 147

dmax (µm) 110.53 41.40 78.93
dmin (µm) 8.00 7.40 7.45
µ (µm) 15.98 11.21 16.58
dev (µm) 4.57 5.13 7.71

Table 2: Summary of the porous microstructures investigated in this work: initial void volume fraction (f0), number of voids per mm3 (Nv),
maximum diameter of voids (dmax), minimum diameter of voids (dmin), and mean (µ) and standard deviation (dev) values of fitted Log-normal
distribution. Experimental measurements of Marvi-Mashhadi et al. (2021).

Al3XY SS5XY INC1Z
R1 R2 R3 R1 R2 R3 R1 R2 R3 R4 R5

f0 (%) 1.75 1.62 1.60 0.00663 0.00626 0.00564 0.0735 0.0416 0.0418 0.0666 0.0679
Nt (num.) 5715 5642 5647 15 17 17 143 143 138 141 144
dmax (µm) 86.77 91.33 86.88 30.34 31.28 37.56 58.91 60.29 36.16 52.83 64.67
dmin (µm) 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4

Table 3: Initial void volume fraction (f0), number of voids (Nt), maximum void diameter (dmax) and minimum void diameter (dmin) in the
finite element models corresponding to the realizations generated for the microstructures with random spatial distribution of voids.

228

The finite element calculations have been performed using ABAQUS/Standard (2019). The unit-cell has been229

discretized with ten-node quadratic tetrahedral elements (C3D10 in ABAQUS notation). A very fine mesh near the230

pores is necessary to capture the geometry and the subsequent shape evolution of the voids during loading, see Fig. 1.231

The number of elements increases with the number of pores, so that ≈ 5000000, ≈ 200000 and ≈ 350000 elements are232

used to mesh the unit-cells corresponding to microstructures Al3XY, SS5XY and INC1Z, respectively. The calculations233

have been performed using a workstation AMD Milan 7453 @ 2.75 GHz with 56 cores. The computational cost of each234

simulation ranged between 2 and 12 days, depending on the microstructure considered, using simultaneously all the cores235

of the workstation.236
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237

The evolution of the void volume fraction (f) in the unit-cell during loading is calculated as:238

f =
V cell − V matrix

V cell
(7)

where the volume of the matrix material is computed as:239

V matrix =

nelem∑
n=1

EV OLn (8)

where EV OL is the elemental volume and nelem is the total number of elements in the model. We have also calculated240

the volume evolution of individual voids using the Quickhull algorithm (Barber et al., 1996) available in MATLAB® to241

compute the smallest convex set containing the nodal coordinates of the void surface at each time step.242

243

Sections 4, 5 and 6 include calculations for three different values of macroscopic triaxiality T = 1, 2 and 3, and244

macroscopic Lode parameter L = −1, 0 and 1. Note that for L = −1 we have that Σ1 > Σ2 = Σ3 (axisymmetric245

tension), for L = 0 the principal values of the macroscopic stress tensor are such that Σ1 > Σ2 =
Σ1 +Σ3

2
> Σ3246

(generalized shear), and for L = 1 we have that Σ1 = Σ2 > Σ3 (axisymmetric compression).247

4. Salient results248

The calculations correspond to porous microstructure INC1Z and realizations R1, R2, ... , R5. The effect of249

microstructural realization, stress triaxiality and Lode parameter on the macroscopic effective behavior of the unit-cell,250

on the evolution of the normalized void volume fraction and on the growth of individual voids is investigated in Sections251

4.1, 4.2 and 4.3, respectively.252

4.1. The effect of microstructural realization253

Fig. 2 compares calculations performed with realizations R1, R2, ... , R5 for stress triaxiality T = 3 and Lode254

parameter L = −1 (all the calculations in Section 4.1 are performed with T = 3 and L = −1). The evolution of the255

normalized macroscopic effective stress Σ̄/σ0 with the macroscopic effective strain ε̄ is shown in Fig. 2a. The differences256

between realizations increase with the effective strain, e.g., the maximum effective stress is 5% larger for R2 than for257
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R1. The influence of the realization on the Σ̄/σ0 − ε̄ curves comes from the differences in the void volume fraction258

between R1, R2, ... , R5, and also from the different spatial and size distribution of voids. Fig. 2b shows the evolution259

of the normalized void volume fraction f/f0 with the macroscopic effective strain ε̄. The f/f0 − ε̄ curves display a260

concave-upward shape, so that the porosity growth rate increases as the loading progresses (due to the large value of261

imposed triaxiality, e.g., see Hosseini et al. (2022)). Notice that the calculations which show greater porosity growth262

rate, R2, R3 and R5, are the same displaying faster strain softening in Fig. 2a. The key outcome of these results is that,263

despite all realizations correspond to the same porous microstructure, there are significant differences in the evolution264

of macroscopic stress and porosity, consistent with the scatter generally observed in mechanical characterization tests of265

additively manufactured materials (Kristoffersen et al., 2020).266

267

Unit-cells showing contour plots of effective plastic strain in the matrix material ϵ̄p for realizations R1 and R3 are268

included in Fig. 3. The results correspond to different values of macroscopic effective strain ε̄ = 0, 0.033, 0.066 and 0.1,269

which are indicated in Fig. 2 with yellow markers. The color coding of the isocontours is such that effective plastic strains270

ranging from 0 to 1 correlate with a color scale that goes from blue to red. Effective plastic strains above 1 remain red. The271

semi-transparent view of the specimen in pictures (a)-(h) shows the evolution of the porous microstructure, and the solid272

cut-views in pictures (d) and (h) illustrate the localization of plastic deformation and the pores coalescence localization.273

There are no qualitative differences between the contours corresponding to R1 and R3. Semi-transparent pictures (a) and274

(e) show the unit-cells before loading starts. The microstructures contain pores of different sizes randomly distributed in275

the sample. For ε̄ = 0.033, see pictures (b) and (f), the pores have already significantly grown, and the effective plastic276

strain near the voids has reached values greater than 1. Notice the contrast between macroscopic strain and local plastic277

deformation near the voids, the latter being much greater (the relationship between macroscopic strain and local plastic278

deformation will be further discussed below). The contours in (c) and (g) for ε̄ = 0.066 correspond approximately to the279

maximum macroscopic effective stress, see Fig. 2a, and the void volume fraction is roughly ten times more than at the280

beginning of loading, see Fig. 2b. Notice that the localization of plastic deformation at specific locations of the outer281

faces of the unit-cell comes from the growth of nearby voids. Semi-transparent pictures (d) and (h) are taken for ε̄ = 0.1,282

during the strain softening process. The porosity for realizations R1 and R3 is nearly 30 and 40 times greater than283

initially, respectively. The cut-view pictures show cross-sections of voids of different sizes and illustrate the interaction284

between nearby pores that have grown, leading to large values of plastic deformation in the intervoid ligament. While285

fracture is not accounted for in the finite element calculations, coalescence of voids is apparent (see pinkish arrows), as286

they are just separated by very elongated necked sections. Tekoğlu et al. (2015) determined coalescence localization to287
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occur when all the additional plastic deformation is confined within the ligaments between the voids, consistent with the288

early modeling of coalescence of Thomason (1990) and subsequent researchers (Benzerga and Leblond, 2010b; Tekoğlu289

et al., 2012). Fig. 4 shows different contours of effective plastic strain in the surface of the two pores indicated in the290

cut-view of image 3(d), from the onset of loading until ε̄ = 0.116, for intervals of macroscopic strain of 0.016. The pores291

remain virtually spherical until ε̄ = 0.05 (for this large value of triaxiality T = 3, the voids which do not interact with292

nearby pores tend to grow maintaining the spherical shape). At this stage of the loading process, the entire surface of293

the voids shows effective plastic strains greater than 1. Note that the plastic strain surrounding the pores increased from294

0.5 to more than 1 within a narrow interval of macroscopic strain (0.016 ≤ ε̄ ≤ 0.05) which is fifteen times less, i.e.,295

the local plastic strain increases fifteen times faster than the macroscopic strain. For macroscopic strains greater than296

0.066, the growth of the pores make them to interact and flatten, leading to the formation of a thin intervoid ligament297

subjected to large plastic strain which shows coalescence localization (coalescence would be completed by considering a298

fracture criterion in the simulations).299

(a) (b)

Figure 2: Results corresponding to porous microstructure INC1Z and realizations R1, R2, ... , R5 for stress triaxiality T = 3 and Lode
parameter L = −1. (a) Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic effective strain ε̄. (b) Normalized void volume
fraction f/f0 versus macroscopic effective strain ε̄. The yellow markers correspond to realizations R1 and R3, for different values of the
macroscopic effective strain ε̄ = 0, 0.033, 0.066 and 0.1 shown in the contour plots of Fig. 3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Figure 4: Results corresponding to porous microstructure INC1Z and realization R1 for stress triaxiality T = 3 and Lode parameter L = −1.
Contours of effective plastic strain ϵ̄p in two neighboring pores indicated in Fig. 3(d) for different values of macroscopic effective strain: (a)
ε̄ = 0, (b) ε̄ = 0.016, (c) ε̄ = 0.033, (d) ε̄ = 0.05, (e) ε̄ = 0.066, (f) ε̄ = 0.083, (g) ε̄ = 0.1 and (h) ε̄ = 0.116. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

300

The interaction between neighboring pores make that these grow at different rates depending on their spatial location301

in the unit-cell. Fig. 5 shows the normalized volume of individual pores V void/V void
0 versus the macroscopic effective302

strain ε̄ for realization R1 (note that V void and V void
0 are the current and initial volume of the voids, respectively).303

Fig. 5a includes the results for the five largest pores of the microstructure, which have diameters varying from 58.9 µm304

to 40.9 µm. There is no direct relationship between the size of the voids and their growth rate, as the pore growing305

faster is void 3 (d = 45.1 µm), followed by voids 1 and 5 (d = 58.9 µm and 40.9 µm, respectively). Note that for the306

pores displaying slower growth rate, voids 2 and 4, the V void/V void
0 − ε̄ curves do not show a concave-upward shape,307

but the increase of the volume of the void is roughly linear with the macroscopic strain. Fig. 5b shows results for five308

intermediate size voids and, similarly to Fig. 5a, the rate of growth of the pores does not find an explicit relationship309
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with their initial diameter. For instance, Figs. 6 and 7 include 3D reconstructions of the two pores with initial diameter310

33.1 µm (voids 3 and 4 in Fig. 5b) showing that while having the same initial size, the growth of void 4 is much faster311

(the voids geometry has been reconstructed plotting the surface defined by the convex hull that forms the surface of312

the voids). In fact, void 4 is no longer spherical for large macroscopic strain, as it approaches coalescence (with another313

nearby pore of the microstructure, as in Fig. 4). Moreover, Fig. 5c shows the evolution of the volume of the five smallest314

pores of the microstructure, which all have initial diameter of 7.4 µm. Note that voids 2 and 4 grow much faster than315

voids 1, 3 and 5 for values of the macroscopic strain greater than 0.05, as the latter display a (quasi)linear growth during316

the whole loading process. Based on the results of Fig. 5, ∼ 0.05 seems to be a critical value of the macroscopic strain317

which determines the beginning of the accelerated growth rate of the voids for T = 3 and L = −1 (this critical value318

depends on the loading path, as discussed in Section 4.2).319
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(a) (b)

(c)

Figure 5: Results corresponding to porous microstructure INC1Z and realization R3 for stress triaxiality T = 3 and Lode parameter L = −1.
Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄. (a) Largest pores of the microstructure with diameters varying
from 58.9 µm to 40.9 µm, (b) intermediate pores of the microstructure with diameters varying from 35.8 µm to 30.8 µm and (c) smallest pores
of the microstructure with diameter 7.4 µm. The yellow markers indicate different values of the macroscopic effective strain corresponding to
the 3D reconstructions of voids 3 and 4 included in Figs. 6 and 7. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)



18

(a
)

(b
)

(c
)

(d
)

F
ig
u
re

6
:
R
es
u
lt
s
co
rr
es
p
o
n
d
in
g
to

p
o
ro
u
s
m
ic
ro
st
ru
ct
u
re

IN
C
1
Z

a
n
d
re
a
li
za
ti
o
n
R
1
fo
r
st
re
ss

tr
ia
x
ia
li
ty

T
=

3
a
n
d
L
o
d
e
p
a
ra
m
et
er

L
=

−
1
.
3
D

re
co
n
st
ru
ct
io
n

o
f
th
e
su
rf
a
ce

o
f
v
o
id

3
in
cl
u
d
ed

in
F
ig
.
5
b
w
it
h
in
it
ia
l
d
ia
m
et
er

d
=

3
3
.1

µ
m

fo
r
d
iff
er
en

t
va
lu
es

o
f
th
e
m
a
cr
o
sc
o
p
ic

eff
ec
ti
v
e
st
ra
in
:
(a
)
ε̄
=

0
,
(b
)
ε̄
=

0
.0
3
3
,
(c
)

ε̄
=

0
.0
6
6
a
n
d
(d
)
ε̄
=

0
.1
.
T
h
e
o
ri
g
in

o
f
th
e
C
a
rt
es
ia
n
co
o
rd
in
a
te

sy
st
em

(x
′ ,
y
′ ,
z
′ )

is
lo
ca
te
d
a
t
th
e
ce
n
te
r
o
f
m
a
ss

o
f
th
e
v
o
id
,
w
it
h
x
′ ,
y
′
a
n
d
z
′
b
ei
n
g
p
a
ra
ll
el

to
th
e
lo
a
d
in
g
a
x
es

x
,
y
a
n
d
z
.

(a
)

(b
)

(c
)

(d
)

F
ig
u
re

7
:
R
es
u
lt
s
co
rr
es
p
o
n
d
in
g
to

p
o
ro
u
s
m
ic
ro
st
ru
ct
u
re

IN
C
1
Z

a
n
d
re
a
li
za
ti
o
n
R
1
fo
r
st
re
ss

tr
ia
x
ia
li
ty

T
=

3
a
n
d
L
o
d
e
p
a
ra
m
et
er

L
=

−
1
.
3
D

re
co
n
st
ru
ct
io
n

o
f
th
e
su
rf
a
ce

o
f
v
o
id

4
in
cl
u
d
ed

in
F
ig
.
5
b
w
it
h
in
it
ia
l
d
ia
m
et
er

d
=

3
3
.1

µ
m

fo
r
d
iff
er
en

t
va
lu
es

o
f
th
e
m
a
cr
o
sc
o
p
ic

eff
ec
ti
v
e
st
ra
in
:
(a
)
ε̄
=

0
,
(b
)
ε̄
=

0
.0
3
3
,
(c
)

ε̄
=

0
.0
6
6
a
n
d
(d
)
ε̄
=

0
.1
.
T
h
e
o
ri
g
in

o
f
th
e
C
a
rt
es
ia
n
co
o
rd
in
a
te

sy
st
em

(x
′ ,
y
′ ,
z
′ )

is
lo
ca
te
d
a
t
th
e
ce
n
te
r
o
f
m
a
ss

o
f
th
e
v
o
id
,
w
it
h
x
′ ,
y
′
a
n
d
z
′
b
ei
n
g
p
a
ra
ll
el

to
th
e
lo
a
d
in
g
a
x
es

x
,
y
a
n
d
z
.



19

4.2. The effect of stress triaxiality320

Fig. 8 compares results for the evolution of the normalized macroscopic effective stress Σ̄/σ0 versus the macroscopic321

effective strain ε̄, for calculations performed with L = −1 and three different values of stress triaxiality, T = 1, 2 and322

3. Realization R4 has been chosen arbitrarily, as we have checked that the same qualitative results are obtained for323

any other realization (all the results shown in Section 4.2 correspond to R4 and L = −1). The macroscopic stress is an324

increasing function of the macroscopic strain for the lowest triaxiality considered T = 1, for the range of macroscopic325

strains investigated. In contrast, the Σ̄/σ0 − ε̄ curves for T = 2 and 3 show a maximum for intermediate values of326

strain because increasing triaxiality favors porosity growth, thus promoting the early loss of load carrying capacity of327

the unit-cell (the same observations have been reported in different works, e.g., see Kim et al. (2004b, 2007)).328

Figure 8: Results corresponding to porous microstructure INC1Z and realization R4 for Lode parameter L = −1 and three different values of
the stress triaxiality, T = 1, 2 and 3. Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic effective strain ε̄.

329

Fig. 9 depicts the evolution of the volume of the five largest pores of the microstructure for calculations performed330

with two different values of the stress triaxiality, T = 1 and T = 3. The pores have initial diameters varying from331

52.8 µm to 34.3 µm. The results corresponding to T = 3, see Fig. 9a, show that the evolution of the volume of the332

voids varies substantially from pore to pore, specially for macroscopic strains above 0.05 (in agreement with the results333

presented in Fig. 5 for realization R1). The pores growing faster and slower are voids 4 and 2, respectively. On the334

other hand, the calculations with T = 1, see Fig. 9b, show that the pores grow significantly less (the scale of the y-axis335

is eight times smaller), and that the differences between the V void/V void
0 − ε̄ curves are considerably smaller. In fact,336

perceptible differences in the volume of the voids appear only for macroscopic strains greater than 0.4 (later than in the337
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case of T = 3 for which the accelerated growth rate starts at ∼ 0.05), void 4 being the pore that grows the slowest (while338

in the case of T = 3 void 4 was the fastest growing pore). It seems that decreasing triaxiality homogenizes the growth339

of the voids of the microstructure. We have checked that the same conclusion is obtained considering other sets of pores340

of this realization (the sets including five pores of intermediate size and the five smallest pores), and also considering341

various sets of pores of other realizations (R3 and R5).342

(a) (b)

Figure 9: Results corresponding to porous microstructure INC1Z and realization R4 for Lode parameter L = −1 and different values of the
stress trixiality: (a) T = 3 and (c) T = 1. Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄ for the largest pores of the
microstructure with diameters varying from 52.8 µm to 34.3 µm. The yellow markers indicate the macroscopic effective strains corresponding
to the 3D reconstructions of the pores included in Figs. 10 and 11. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The reconstruction of the voids of Fig. 9a for the stress trixiality T = 3 and a macroscopic strain of 0.1 is shown343

in Fig. 10. The difference in size of the voids is apparent, and the shape also slightly varies from pore to pore, as the344

voids are no longer spherical due to the interaction with neighboring pores (the same conclusion obtained in Section345

4.1). Recall that for this large value of triaxiality T = 3, the voids which do not interact with nearby pores tend to grow346

maintaining the spherical shape. The voids of Fig. 9b in the case of T = 1 and for a macroscopic strain of 0.533 are347

shown in Fig. 11. The pores are elongated along the major loading direction due to the lower imposed triaxiality, all348

showing similar shape and size. The comparison between Figs. 10 and 11 makes apparent that the volume of the pores349

is substantially smaller for the calculations with T = 1, despite the macroscopic strain is more than 5 times greater.350
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4.3. The effect of Lode parameter351

Fig. 12 shows calculations performed with three different values of the Lode parameter, L = −1, 0 and 1. The stress352

triaxiality is T = 3 and the microstructural realization is R4 (all the results included in Section 4.3 correspond to R4353

and T = 3). Fig. 12a includes the evolution of the normalized macroscopic effective stress Σ̄/σ0 with the macroscopic354

effective strain ε̄. Varying the Lode parameter from −1, to 0 and 1 shifts the Σ̄/σ0 − ε̄ curves upwards, delaying the355

drop of the stress and slowing down the strain softening process. The evolution of the normalized void volume fraction356

is shown in Fig. 12b. The fastest porosity growth corresponds to L = −1, and the slowest to 1, i. e., the order of the357

f/f0 − ε̄ curves is the opposite of the macroscopic effective stress (compare Figs. 12a and 12b), which illustrates that358

increasing porosity leads to earlier and more rapid strain localization process. We have checked that the same effect of359

the Lode parameter on the porosity growth is obtained for other realizations and triaxiality values investigated in this360

paper.361

(a) (b)

Figure 12: Results corresponding to porous microstructure INC1Z and realization R4 for stress triaxiality T = 3 and three different values of
the Lode parameter L = −1, 0 and 1. (a) Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic effective strain ε̄. (b) Normalized
void volume fraction f/f0 versus macroscopic effective strain ε̄.

362

Fig. 13 shows the evolution of the five largest pores of the microstructure, which have initial diameter varying from363

52.8 µm to 34.3 µm (see also Section 4.2). The results corresponding to L = 0 are included in Fig. 13a, while Fig.364

13b presents the data obtained with L = 1. Note that the order of the V void/V void
0 − ε̄ curves is different for both365

Lode parameters, showing that the stress state affects the relative growth of the pores and their collective behavior366

during loading. In addition, varying the Lode parameter from 0 to 1 leads to more uniform growth of the voids, as the367

V void/V void
0 − ε̄ curves are closer to each other (similar trends have been obtained for other realizations and triaxiality368
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values). The same qualitative results are obtained comparing the five smallest pores of the microstructure, which all369

have the same initial size d = 7.4 µm, see Fig. 14. For L = 0 the pore growing the fastest is void 5, Fig. 14a, showing370

a significant volume increase for values of the macroscopic effective strain greater than 0.05. In contrast, for Lode371

parameter 1, Fig. 14b, void 5 grows slower than voids 2 and 3, and the difference in the rate of growth between the372

fastest and the slowest growing pores is less than in the case of L = 0 (i.e., for L = 1 the slowest/fastest growing void373

grows faster/slower than in the case of L = 0).374

(a) (b)

Figure 13: Results corresponding to porous microstructure INC1Z and realization R4 for stress triaxiality T = 3 and different values of the
Lode parameter: (a) L = 0 and (b) L = 1. Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄ for the largest pores of
the microstructure with diameters varying from 52.8 µm to 34.3 µm.

The increased uniformity in the pores size while varying the Lode parameter from 0 to 1 is further illustrated in Figs.375

15 and 16 which show 3D reconstructions of the voids included in Figs. 14a and 14b, respectively. The pictures are376

taken for a macroscopic effective strain of 0.093 (see the yellow markers in Figs. 14a and 14b). For the case of L = 0,377

the size of voids 2 and 5 stands out with respect to the others, see Fig. 15, while for the Lode parameter 1 the size of378

the pores is noticeably more similar, see Fig. 16, since voids 2 and 5 have grown less, and the size of voids 1 and 4 is379

comparatively greater.380
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(a) (b)

Figure 14: Results corresponding to porous microstructure INC1Z and realization R4 for stress triaxiality T = 3 and different values of the Lode
parameter: (a) L = 0 and (b) L = 1. Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄ for the smallest pores of the
microstructure with diameter 7.4 µm. The yellow markers indicate the macroscopic effective strains corresponding to the 3D reconstructions
of the pores included in Figs. 15 and 16. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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5. Parametric analysis381

The calculations correspond to macroscopic stress triaxiality T = 3 and Lode parameter L = −1. Section 5.1 compares382

results obtained for microstructures Al3XY and SS5XY (the microstructures which were not considered in Section 4),383

which display large differences in void volume fraction and pores size distribution, see Tables 2 and 3. Moreover, the384

effect of void volume fraction is investigated in Section 5.2 taking the distribution of void sizes of microstructure INC1Z385

as a reference and performing calculations with different values of initial porosity. On the other hand, Section 5.3386

presents calculations with the initial void volume fraction of microstructure INC1Z but different distributions of void387

sizes obtained by varying the mean and the standard deviation of the Log-normal function used to fit the experimental388

data, see Table 2.389

5.1. The effect of porous microstructure390

Fig. 17 compares results for porous microstructures Al3XY-R1 and SS5XY-R1. Recall from Section 3 that the initial391

void volume fraction of Al3XY-R1 is ≈ 300 times greater, and that the pores of SS5XY-R1 are smaller (see Tables 2 and392

3). Calculations performed modeling the mechanical behavior of the unit-cell using Gurson (1977) porous plasticity are393

also included (with the same initial void volume fraction of the calculations with actual pores).394

Fig. 17a shows the evolution of the macroscopic effective stress Σ̄/σ0 with the macroscopic effective strain ε̄. The395

initial yield stress and the maximum effective stress are lower for microstructure Al3XY-R1, and the strain softening396

process starts at smaller value of strain. In contrast, the void volume fraction grows faster for SS5XY-R1, see Fig.397

17b, suggesting that decreasing the initial porosity boosts the normalized rate of growth of the void volume fraction398

(as further confirmed in Section 5.2). Notice that the same qualitative results are obtained for the calculations with399

actual porosity and homogenized porosity (Gurson model). However, for the microstructure Al3XY-R1, the Gurson400

model predicts slower strain softening and roughly the same void volume fraction evolution. On the other hand, for the401

microstructure SS5XY-R1, the Gurson model displays faster strain softening and much greater porosity growth. These402

results make apparent that initial void volume fraction and spatial and size distribution of voids play an important role403

on the effective mechanical properties of the porous aggregate and on the evolution of the porous microstructure.404

405

Fig. 18 shows contours of effective plastic strain in the matrix material for the calculations with actual voids included406

in Fig. 17. The pictures of Al3XY-R1 correspond to ε̄ = 0 and 0.033, while in the case of SS5XY-R1 the contours for407

ε̄ = 0.066, 0.1 and 0.133 are also included since the drop of the stress starts at larger strain. The microstructure Al3XY-408

R1 contains a large amount of pores, which are relatively close to each other, so that the voids start to interact shortly409
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(a) (b)

Figure 17: Porous microstructures Al3XY-R1 and SS5XY-R1. Results for stress triaxiality T = 3 and Lode parameter L = −1. Comparison
between results obtained with actual voids and with Gurson (1977) porous plasticity. (a) Normalized macroscopic effective stress Σ̄/σ0 versus
macroscopic effective strain ε̄. (b) Normalized void volume fraction f/f0 versus macroscopic effective strain ε̄. The yellow markers correspond
to different values of the macroscopic effective strain ε̄ = 0.033, 0.066, 0.1 and 0.133 shown in the contour plots of Fig. 18. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

after the beginning of loading, with plastic strains localizing between the voids –coalescence localization of the voids–,410

despite the mild growth of the pores (for ε̄ = 0.033 the void volume fraction is only twice the initial, yet the effective411

stress is already decreasing, see Fig. 17a). On the other hand, notice that, while in the case of SS5XY-R1 the number412

of pores is less and they grow faster (for ε̄ = 0.033 the void volume fraction is 3.6 times the initial, see Fig. 17b), the413

localization of plastic deformation is generally circumscribed to a narrow region near the surface of the voids, suggesting414

lesser interaction between the pores, as some of the voids seem to be virtually isolated in the matrix material.415
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5.2. The effect of void volume fraction416

Fig. 19 includes finite element results for calculations performed with actual voids and with homogenized porosity417

(Gurson model), for unit-cells with two initial void volume fractions, f0 = 0.5% and 1%. The parent microstructure is418

INC1Z, i.e., in the calculations with actual pores the voids size distribution meets the maximum and minimum void size,419

and the mean and the standard deviation given in Table 2. The number of voids for the microstructure with f0 = 0.5%420

is 957, while in the case of f0 = 1% the number of pores is 1917 (roughly double). Results for a calculation with a single421

pore in the center of the unit-cell are also included.422

423

The evolution of the macroscopic effective stress is included in Fig. 19a. The calculations with multiple voids show424

that increasing the initial void volume fraction shifts the Σ̄/σ0 − ε̄ curve downwards, and speeds up the strain softening425

process, consistent with the conclusions obtained in Section 5.1 for the calculations performed with microstructures426

Al3XY-R1 and SS5XY-R1. The simulations with a single void and with Gurson (1977) plasticity yield similar results,427

but the strain softening is slower and more progressive. Moreover, Fig. 19b shows that there is a qualitative agreement428

for the void volume fraction evolution between actual porosity, single void, and homogenized porosity simulations. The429

growth of the normalized porosity is faster for the microstructure with lower initial void volume fraction f0 = 0.5%, which430

also confirms the conclusions obtained from the calculations presented in Section 5.1. However, there are quantitative431

differences between the results obtained with the three different approaches for the porosity growth, so that the unit-cells432

with a single void display lower rate of void volume fraction growth.433

434

Despite the microstructure with 1% of initial porosity contains more voids, they generally grow slower (normalized435

growth rate of the voids). Figs. 20a and 20b show the evolution of the normalized volume of the five largest voids of the436

microstructure for the calculations with multiple voids and f0 = 0.5% and f0 = 1%, respectively. The initial diameter437

of the voids varies from 69.9 µm to 62.4 µm. Note that the fastest/slowest growing pore for f0 = 0.5% grows faster438

than the fastest/slowest growing pore for f0 = 1%. The same qualitative results are obtained comparing the evolution439

of the normalized volume of the five smallest voids of the microstructure, which all have initial diameter of 7.4 µm,440

see Figs. 21a and 21b. The differences in the results between the unit-cells with 0.5% and 1% of initial porosity are441

apparent, as in the latter case, four out of the five pores considered have a normalized volume smaller/equal than 3442

for a macroscopic strain of 0.6, with the volume of void 2 increasing only by 20%. The same general trends have been443

obtained using SS5XY as parent microstructure, performing calculations with initial void volume fractions of 0.5% and444

1% (results are not shown for the sake of brevity), which seems to confirm that increasing the porosity generally slows445
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(a) (b)

Figure 19: Parent porous microstructure INC1Z. Results for two different initial void volume fractions f0 = 0.5% and f0 = 1%, for stress
triaxiality T = 3 and Lode parameter L = −1. Comparison between results obtained with actual voids, single void and Gurson (1977) porous
plasticity. (a) Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic effective strain ε̄. (b) Normalized void volume fraction f/f0
versus macroscopic effective strain ε̄.

down the normalized growth rate of the voids.446

5.3. The effect of voids size447

Fig. 22 includes calculations with multiple voids performed for three porous microstructures with different values of448

the mean voids size, µ = 10 µm, 30 µm and 50 µm. The parent microstructure is INC1Z, i.e., the void size distribution449

meets the initial void volume fraction and the standard deviation given in Table 2. The number of voids for the450

microstructures with µ = 10 µm, 30 µm and 50 µm is 1633, 61 and 14, respectively, and the diameter of the largest void451

is 28.8 µm, 71.89 µm and 84.00 µm. The results obtained with actual voids are compared with a calculation in which452

the mechanical behavior of the material is modeled with Gurson plasticity (homogenized porosity) and the same value453

of initial void volume fraction (f0 = 0.13%). Results for a calculation with a single pore in the center of the unit-cell are454

also included.455

456

Fig. 22a shows the evolution of the macroscopic effective stress with the macroscopic effective strain. The influence457

of the mean voids size on the Σ̄/σ0 − ε̄ curves becomes noticeable during the strain softening process, which is faster458

for the intermediate value µ = 30 µm (i.e., in these calculations there is no direct correlation between the mean voids459

size and the rate of strain softening). Note that the calculation using a single void predicts very similar results to the460

simulation with µ = 50 µm, while the calculation with Gurson plasticity yields lower effective stress and slower strain461

softening process than the unit-cells with multiple voids. Fig. 22b shows the evolution of the void volume fraction with462
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(a) (b)

Figure 20: Parent porous microstructure INC1Z. Results for stress triaxiality T = 3 and Lode parameter L = −1. Normalized void volume
V void/V void

0 versus macroscopic effective strain ε̄ for the largest pores of the microstructure with diameters varying from 69.9 µm to 62.4 µm.
Two different initial volume fractions: (a) f0 = 0.5% and (b) f0 = 1%.

(a) (b)

Figure 21: Parent porous microstructure INC1Z. Results for stress triaxiality T = 3 and Lode parameter L = −1. Normalized void volume
V void/V void

0 versus macroscopic effective strain ε̄ for the smallest pores of the microstructure with diameter 7.4 µm. Two different initial
volume fractions: (a) f0 = 0.5% and (b) f0 = 1%.
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the macroscopic effective strain. The effect of µ on the f/f0 − ε̄ curves computed with multiple voids is such that the463

porosity grows faster as the calculation shows lower effective stress and faster strain softening (compare Figs. 22a and464

22b). Notice that the differences in the void volume fraction evolution for the calculations with multiple voids increase465

with the macroscopic strain. Notice also that the f/f0 − ε̄ curve obtained with a single pore lies within the results466

obtained with the calculations with multiple voids, while Gurson plasticity predicts significantly faster porosity growth.467

The large differences in the number and size of the pores between the microstructures with mean voids size µ = 10 µm,468

30 µm and 50 µm are illustrated in the contours of effective plastic strain shown in Fig. 23 for different macroscopic469

effective strains ε̄ = 0, 0.033 and 0.066 (corresponding to the yellow markers in Fig. 22). As the mean void size increases,470

there are less but larger pores. The comparison of the cut-views in pictures (c) and (i) shows that for µ = 50 µm the471

plastic deformation mostly localizes surrounding large pores, while in the case of µ = 10 µm there are many localization472

bands connecting a multitude of small nearby voids.473

(a) (b)

Figure 22: Parent porous microstructure INC1Z. Results for three different values of the mean voids size µ = 10 µm, µ = 30 µm and µ = 50 µm,
for stress triaxiality T = 3 and Lode parameter L = −1. Comparison between results obtained with actual voids, single void and Gurson
(1977) porous plasticity. The initial void volume fraction is f0 = 0.13%. (a) Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic
effective strain ε̄. (b) Normalized void volume fraction f/f0 versus macroscopic effective strain ε̄. The yellow markers correspond to different
values of the macroscopic effective strain shown in the contour plots of Fig. 23. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 24 shows finite element simulations with actual voids for three different values of the standard deviation of474

the pores size distribution, SD = 3 µm, 10 µm and 15 µm. The parent microstructure is INC1Z, i.e., the void size475

distribution meets the initial void volume fraction and the mean void size given in Table 2. The number of voids for the476

microstructures with SD = 3 µm, SD = 10 µm and SD = 15 µm is 517, 143 and 87, respectively, and the diameter of477

the largest void is 25.60 µm, 105.43 µm and 110.03 µm. The results obtained with multiple voids are compared with a478
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Figure 23: Results corresponding to parent porous microstructure INC1Z for stress triaxiality T = 3 and Lode parameter L = −1. The initial
void volume fraction is f0 = 0.13%. Contours of effective plastic strain in the matrix material ϵ̄p for different values of macroscopic effective
strain ε̄ = 0, 0.05 and 0.1. (a)-(c) Mean voids size µ = 10 µm. (d)-(f) Mean voids size µ = 30 µm. (g)-(i) Mean voids size µ = 50 µm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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calculation which includes a single pore in the center of the unit-cell, and with a calculation in which the mechanical479

behavior of the material is modeled with Gurson plasticity.480

The evolution of the macroscopic effective stress is included in Fig. 24a. Increasing the standard deviation of the481

distribution of void sizes to SD = 15 µm leads to faster strain softening (the results for SD = 3 µm and 10 µm are482

very similar). For the calculation with a single central pore, the strain softening process is slowed down compared to the483

calculations with multiple pores, while in the case of the unit-cell modeled with Gurson plasticity, the strain softening484

starts earlier in the loading process. The evolution of the void volume fraction is shown in Fig. 24b. For the calculations485

with multiple voids, the faster porosity growth corresponds to SD = 15 µm (which explains the increased softening in486

Fig. 24a). Moreover, the void volume fraction grows slower at large strains for the simulation with a single pore than487

for the unit-cells with multiple pores, while in the case of modeling the material with Gurson plasticity, the porosity488

grows faster than for any calculation with explicitly resolved voids. These simulations reinforce the idea that an explicit489

description of the porous microstructure leads to important differences in the evolution of the void volume fraction with490

respect to calculations with homogenized porosity, and demonstrate that the differences in the f/f0 − ε̄ curves obtained491

from unit-cells with explicitly resolved pores increase with the macroscopic strain.492

(a) (b)

Figure 24: Parent porous microstructure INC1Z. Results for three different values of the standard deviation SD = 3 µm, SD = 10 µm and
SD = 15 µm, for stress triaxiality T = 3 and Lode parameter L = −1. Comparison between results obtained with actual voids, single void
and Gurson (1977) porous plasticity. The initial void volume fraction is f0 = 0.13%. (a) Normalized macroscopic effective stress Σ̄/σ0 versus
macroscopic effective strain ε̄. (b) Normalized void volume fraction f/f0 versus macroscopic effective strain ε̄. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Clustering analysis493

All the calculations in this section include multiple voids. Neither any comparison is performed with unit-cells with494

a single void, nor with simulations in which the mechanical behavior of the material is modeled with Gurson (1977)495

plasticity. Unlike in the calculations with actual voids included in Sections 4 and 5, in which the voids were randomly496

distributed in the unit-cell, in the simulations presented in this section the pores are packed into clusters. For that497

purpose, the center-satellite model developed by Graham-Brady (2010) to create microstructures with clusters of flaws498

in a 2D domain has been adapted to generate 3D microstructures with clusters of voids. The model assumes some499

fraction of all pores l act as center of clusters (parent voids) and the satellite pores (children voids) are contained within500

a sphere of radius Rc centered in the parent void. The number of parent voids in the microstructure follows a Poisson’s501

distribution with parameter lNvV
cell, where Nv is the number of voids per unit volume. The parent voids are distributed502

randomly in the unit-cell. For each parent void, the number of children voids is determined using a Poisson’s distribution503

with parameter 1−l
l .504

505

The finite element simulations are performed with unit-cells containing three different number of clusters Nc = 5,506

11 and 28, for macroscopic stress triaxiality T = 3 and Lode parameter L = −1. The parameters of the center-satellite507

model used to create the clustering microstructures are included in Table 4. The main features of the resulting porous508

microstructures are given in Table 5. Note that the parent microstructure is INC1Z, i.e., the voids size distribution509

meets the Log-normal distribution with mean and standard deviation given in Table 2. The initial void volume fraction510

for the three clustering microstructures is roughly the same.511

Nc = 5 Nc = 11 Nc = 28

l (%) 5 10 20
Rc (mm) 0.1 0.1 0.1

Nv (num./mm3) 147 147 147

Table 4: Parameters of the center-satellite model used to create the clustering microstructures investigated in this work: fraction of pores
acting as parent voids (l), radius of the sphere containing the children voids (Rc) and number of voids per unit volume (Nv).

512

Fig. 25 shows the evolution of the macroscopic effective stress and the void volume fraction with the macroscopic513

effective strain for the three clustering microstructures considered. The effective stress is little sensitive to changes in the514

number of clusters, yet, the Σ̄/σ0−ε̄ curve corresponding to Nc = 5 is shifted downwards compared to the microstructures515

with larger number of clusters, see Fig. 25a. This is most likely because decreasing the number of clusters speeds up516
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Nc = 5 Nc = 11 Nc = 28

f0 (%) 0.049 0.057 0.064
Nt (num.) 106 104 117
dmax (µm) 58.9 58.9 58.9
dmin (µm) 7.40 7.40 7.40

Table 5: Initial void volume fraction (f0), number of voids (Nt), maximum void diameter (dmax) and minimum void diameter (dmin) in the
finite element models corresponding to the clustering microstructures.

the growth of porosity, see Fig. 25b, which in turn leads to faster strain softening. We have also checked that the517

void volume fraction for Nc = 5 grows faster than for the five calculations included in Fig. 2b in which the pores were518

randomly distributed in the unit-cell (in contrast, the results for Nc = 11 and Nc = 28 lie within the f/f0 − ε̄ curves519

included in Fig. 2b). These results suggest that the relative position and interaction of voids in the microstructure affect520

the evolution of the void volume fraction. Namely, for a given voids size distribution, clustering of pores seems to favor521

porosity growth. This conclusion is further substantiated analyzing the evolution of the volume of the five largest pores522

of the three clustering microstructures, compare Figs. 26a, 26b and 26c. While different voids grow at different speeds,523

it is apparent that these graphs show a trend for the pores growing slower as the number of clusters increases (we have524

computed the average volume of the five pores for the three clustering microstructures and obtained the same qualitative525

results of Fig. 25b).526

(a) (b)

Figure 25: Parent porous microstructure INC1Z. Results for three different spatial distributions of voids with Nc = 5, Nc = 11 and Nc = 28
clusters, respectively. The stress triaxiality is T = 3 and the Lode parameter is L = −1. (a) Normalized macroscopic effective stress Σ̄/σ0 versus
macroscopic effective strain ε̄. (b) Normalized void volume fraction f/f0 versus macroscopic effective strain ε̄. The yellow markers correspond
to two different values of the macroscopic effective strain ε̄ = 0.033 and 0.066 shown in the contour plots of Fig. 27. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

527
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(a) (b)

(c)

Figure 26: Parent porous microstructure INC1Z. Results for stress triaxiality T = 3 and Lode parameter L = −1. Normalized void volume
V void/V void

0 versus macroscopic effective strain ε̄ for the largest pores of the microstructure with diameters varying from 58.9 µm to 34.7 µm.
Three different spatial distributions of voids with clusters: (a) Nc = 5, (b) Nc = 11 and (c) Nc = 28.
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Fig. 27 shows contours of effective plastic strain in the matrix material for different values of macroscopic effective528

strain ε̄ = 0, 0.033 and 0.066 (identified with yellow markers in Figs. 25a and 25b). The results correspond to the three529

clustering microstructures investigated. Decreasing the number of clusters tends to increase the number of pores within530

each cluster (Nt is roughly the same, see Table 5), so that the pores are closer to each other (Rc is the same, see Table 5),531

which favors their interaction and early coalescence localization. Benson (1995) also showed that decreasing the radius532

of the clusters promotes coalescence in plane strain finite element simulations of specimens with clusters containing four533

cylindrical voids of the same size. Note that compared to the contour plots shown in Fig. 3 for the same microstructure534

but with randomly distributed pores, the plastic strain for the clustering microstructures is highly localized near the535

voids, giving rise to large values of plastic deformation in the intervoid ligaments of coalesced pores, while the plastic536

strain outside the clusters surroundings is much smaller. The clusters lead to increased heterogeneity in the plastic strain537

field of the unit-cell, and the less the number of clusters, the more localized the plastic deformation, as illustrated in538

the cut-views 27(c)-(f)-(i). The general trend is that, as the number of clusters decreases/increases, there are less/more539

localization bands connecting pores of different clusters.540

Contours of effective plastic strain for the cluster indicated in 27(c) are included in Fig. 28 (the color coding is541

the same of Fig. 27). The cluster contains 27 voids which grow and rapidly interact with each other shortly after the542

loading starts, such that most of the pores are no longer spherical for ε̄ = 0.033, with the voids surrounding the largest543

pores displaying a mushroom shape with a flatten face corresponding to the formation of an intervoid ligament. The544

flattening of the voids generally starts earlier than in the case of the porous microstructures with randomly distributed545

voids (compare Figs. 4 and 28 and note that in the former the flattening starts at macroscopic strain of 0.066), since546

packing the voids into clusters decreases the distance between voids. For ε̄ = 0.066 the plastic strain in the surface of547

most pores is greater than 1, and the separation between voids is minimal, depicting the beginning of coalescence. The548

evolution of the cluster indicated in 27(f) for the microstructure Nc = 11 is included in Fig. 29. The cluster contains549

16 voids, with a large pore which grows and flattens the surrounding voids, so that only the furthest pores maintain550

the spherical shape. The process of voids interaction and coalescence localization is the same described for the cluster551

in Fig. 28. The evolution of the cluster indicated in 27(i) for the microstructure Nc = 28 is included in Fig. 30. The552

cluster contains 5 pores, quite a few less than in the clusters shown in Figs. 28 and 29. The interaction between pores553

is apparent, yet, the change in shape of the pores seems to be less severe than for the clusters with more voids in which554

the neighboring pores are closer to each other. These calculations show the effect of clustering in the evolution of the555

shape and size of the pores.556
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Figure 27: Results corresponding to parent porous microstructure INC1Z for stress triaxiality T = 3 and Lode parameter L = −1. Contours
of effective plastic strain in the matrix material ϵ̄p for different values of macroscopic effective strain ε̄ = 0, 0.033 and 0.066. (a)-(c) Number
of clusters Nc = 5. (d)-(f) Number of clusters Nc = 11. (g)-(i) Number of clusters Nc = 28. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Figure 28: Results corresponding to parent porous microstructure INC1Z for number of clusters Nc = 5, stress triaxiality T = 3 and Lode
parameter L = −1. Contours of effective plastic strain ϵ̄p for the cluster indicated in Fig. 27(c) for different values of macroscopic effective
strain: (a) ε̄ = 0, (b) ε̄ = 0.033 and ε̄ = 0.066. The cluster contains 27 voids. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Figure 29: Results corresponding to parent porous microstructure INC1Z for number of clusters Nc = 11, stress triaxiality T = 3 and Lode
parameter L = −1. Contours of effective plastic strain ϵ̄p for the cluster indicated in Fig. 27(f) for different values of macroscopic effective
strain: (a) ε̄ = 0, (b) ε̄ = 0.033 and ε̄ = 0.066. The cluster contains 16 voids. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Figure 30: Results corresponding to parent porous microstructure INC1Z for number of clusters Nc = 28, stress triaxiality T = 3 and Lode
parameter L = −1. Contours of effective plastic strain ϵ̄p for the cluster indicated in Fig. 27(i) for different values of macroscopic effective
strain: (a) ε̄ = 0, (b) ε̄ = 0.033 and ε̄ = 0.066. The cluster contains 5 voids. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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7. Concluding remarks557

In this paper, we have carried out finite element simulations of cubic unit-cells containing porous microstructures rep-558

resentative of three additively-manufactured metals –aluminium alloy AlSi10Mg (Al3XY), stainless steel 316L (SS5XY)559

and Inconel 718 (INC1Z)– and subjected to periodic boundary conditions for constant values of stress triaxiality T = 1,560

2 and 3, and Lode parameter L = −1, 0 and 1. The main novelties of this research compared to recently published561

papers are: (1) considering a larger population of spherical voids to ensure that the numerical results are statistically562

significant and (2) including experimentally-measured distributions of void sizes. The initial void volume fraction of the563

porous microstructures investigated varies between 0.00564% and 1.75%, the number of the voids between 14 and 5715,564

and the diameter of the pores from 2.3 µm to 110 µm. Several realizations with different void sizes and positions have565

been generated for each of the porous microstructures considered. The simulations have been carried out with random566

spatial distributions of voids and with clusters of different sizes, and the results have been compared to unit-cells with a567

single central pore, and to calculations in which the material is modeled using Gurson plasticity. The main conclusions568

drawn from the analysis of the macroscopic effective response of the unit-cell, from the evolution of the void volume569

fraction, and from the growth of individual voids, are:570

� Different realizations of the same porous microstructure lead to significant variations in the macroscopic effective571

stress and the void volume fraction evolution.572

� Initial void volume fraction and distribution of void sizes play an important role on the effective mechanical573

properties of the porous aggregate and on the evolution of the porous microstructure.574

� The interaction between neighboring pores make that voids of the same size grow at different speeds depending on575

their spatial location in the porous aggregate.576

� For a given spatial and size distribution of voids, decreasing macroscopic triaxiality homogenizes the growth rate577

of the pores.578

� For large macroscopic trixiality T = 3, the plastic deformation around the voids increases one order of magnitude579

faster than the macroscopic deformation of the porous aggregate.580

� The voids volume evolution depends on the Lode parameter so that varying L from 0 to 1 leads more uniform581

growth rate of the pores.582

� Varying the Lode parameter switches the collective behavior of the pores and the relative growth rate of individual583

voids.584
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� The growth of the pores makes them to interact and flatten, leading to the formation of a thin intervoid ligament585

subjected to large plastic strain which indicates coalescence localization.586

� Microstructures with a large number of voids and increased void volume fraction favor fast strain softening and587

early coalescence localization.588

� For a given voids size distribution, increasing the void volume fraction of multiple void microstructures slows down589

the normalized growth rate of pores.590

� The agreement of Gurson model predictions with the calculations with actual porous microstructures depends on591

the initial void volume fraction and also on the distribution of void sizes.592

� The differences between single pore and multiple pore calculations for the effective macroscopic stress and the void593

volume fraction increase with the macroscopic effective strain.594

� As compared to the microstructures with random spatial distribution of voids, the clusters lead to increased595

heterogeneity in the plastic strain field of the porous aggregate.596

� For a given voids size distribution and initial void volume fraction, decreasing the number of clusters promotes597

coalescence localization.598

� The increase in the number of pores in the clusters causes the voids to interact and change shape, increasing the599

growth rate of the void volume fraction.600

In summary, this work presents the most comprehensive study to date on the growth of voids in real porous mi-601

crostructures, providing new insights into the effect that size and spatial distribution of voids have on the macroscopic602

response of the porous aggregate and the collective behavior of individual pores.603
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Appendix A. The effect of material behavior618

The effect of the material behavior on the macroscopic effective response of the unit-cell, on the evolution of the619

normalized void volume fraction and on the growth of individual voids, is investigated for calculations performed with620

porous microstructure INC1Z and realization R1. The mechanical behavior of the material is modeled using the con-621

stitutive framework introduced in Section 2 and parameters corresponding to aluminum alloys 6111-T4 and 6013 (Kim622

et al., 2010; Ha et al., 2018), which show important differences in the initial yield stress and the strain hardening, see623

Table A.6 (in absence of experimental data, the strain rate sensitivity parameter for both materials is taken to be the624

same). The unit-cell simulations are performed with stress triaxiality T = 3 and Lode parameter L = −1.625

Symbol Property and units Aluminium alloy 6111-T4 Aluminium alloy 6013

ρ0 Initial density (kg/m3) 2700 2700
G Elastic shear modulus (GPa) 26.92 26.92
K Bulk modulus (GPa) 58.33 58.33
σ0 Initial yield stress parameter (MPa), Eq. (4) 503.7 556.06
n Strain hardening exponent, Eq. (4) 0.233 0.201
m Strain rate sensitivity exponent, Eq. (4) 0.01 0.01
ε0 Reference strain, Eq. (4) 0 0.0062
ε̇0 Reference strain rate (s−1), Eq. (4) 0.0001 0.0001

Table A.6: Numerical values of initial density, elastic constants and parameters of the yield stress corresponding to aluminum alloys 6111-T4
and 6013 (Kim et al., 2010; Ha et al., 2018).

626

Fig. A.31a includes the evolution of the macroscopic effective stress with the macroscopic effective strain ε̄ for627

aluminum alloys 6111-T4 and 6013. The Σ̄/σ0 − ε̄ curve corresponding to 6013 shows higher initial yield stress (see628
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Table A.6), yet, the strain softening process is faster and it starts at a lower value of the macroscopic effective strain629

(most likely because the strain hardening is smaller for aluminum alloy 6013, see Table A.6). The large difference in630

the strain softening of both materials is attributed to the faster increase of the void volume fraction for aluminum alloy631

6013, see Fig. A.31b. These results make apparent that for a given initial microstructure, the material behavior has an632

important impact on the evolution of the porosity during loading.633

(a) (b)

Figure A.31: Results corresponding to porous microstructure INC1Z and realization R1 for stress triaxiality T = 3 and Lode parameter
L = −1. (a) Normalized macroscopic effective stress Σ̄/σ0 versus macroscopic effective strain ε̄. (b) Normalized void volume fraction f/f0
versus macroscopic effective strain ε̄. Comparison of results obtained with material parameters corresponding to aluminum alloys 6111-T4 and
6013, see Table A.6.

634

Figs. A.32a and A.32b include the evolution of the volume of the five largest pores of the microstructure for aluminum635

alloys 6111-T4 and 6013, respectively. The results for both materials are qualitatively the same, i.e., the V void/V void
0 − ε̄636

curves for the five pores have the same shape, and their relative order does not depend on the material. However, there637

are quantitative differences, as the volume of the pores corresponding to aluminum alloy 6013 increases faster, consistent638

with the results shown in Fig. A.31b.639

The same trends and conclusions are obtained comparing the growth of the five smallest pores of the microstructure,640

see the results corresponding to aluminum alloys 6111-T4 and 6013 in Figs. A.33a and A.33b, respectively. The shape of641

the V void/V void
0 − ε̄ curves is very similar for the five voids considered, yet, the pores grow faster in the case of aluminum642

alloy 6013. These results suggest that the material parameters do not significantly alter the collective behavior of the643

voids during loading, yet, the mechanical response of the material seem to affect the rate of growth of the voids.644
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(a) (b)

Figure A.32: Results corresponding to porous microstructure INC1Z and realization R1 for stress triaxiality T = 3 and Lode parameter
L = −1. Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄ for the largest pores of the microstructure with diameters
varying from 58.9 µm to 40.9 µm. Two different material behaviors: (a) aluminum alloy 6111-T4 and (b) aluminum alloy 6013.

(a) (b)

Figure A.33: Results corresponding to porous microstructure INC1Z and realization R1 for stress triaxiality T = 3 and Lode parameter
L = −1. Normalized void volume V void/V void

0 versus macroscopic effective strain ε̄ for the smallest pores of the microstructure with diameter
7.4 µm. Two different material behaviors: (a) aluminum alloy 6111-T4 and (b) aluminum alloy 6013.
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Cvitanić, V., Vlak, F., Lozina, Ž., 2008. A finite element formulation based on non-associated plasticity for sheet metal676

forming. International Journal of Plasticity 24, 646–87.677

Dæhli, L.E.B., Morin, D., Børvik, T., Hopperstad, O.S., 2018. A Lode-dependent Gurson model motivated by unit cell678

analyses. Engineering Fracture Mechanics 190, 299–318.679

Dakshinamurthy, M., Kowalczyk-Gajewska, K., Vadillo, G., 2021. Influence of crystallographic orientation on the void680

growth at the grain boundaries in bi-crystals. International Journal of Solids and Structures 212, 61–79.681

Danas, K., Aravas, N., 2012. Numerical modeling of elasto-plastic porous materials with void shape effects at finite682

deformations. Composites Part B: Engineering 43, 2544–59.683
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