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Abstract

In a smart grid, consistent and accurate load forecasting is critical to successful
operation and energy management. With the growing availability of smart-
meter data, machine learning models have the ability to train one model glob-
ally across entire datasets, rather than training a separate model individually
for each time series. A global training set-up enables the learning of patterns of
electricity consumption in households and brings potential computational ad-
vantages. We present an experiment that evaluates a Long-Short-Term Memory
(LSTM) Global Forecasting Model (GFM) in comparison to benchmark meth-
ods: Feed-Forward Artificial Neural Network, Seasonal Autoregressive Inte-
grated Moving Average and standard load profile models. The selected methods
and the evaluation framework are derived from an extensive literature review.
We use the Irish smart-meter dataset, collected by the Commission for Energy
Regulation. Assessment includes the scalability and computational performance
of the algorithms. Comparisons show that the average error in terms of sev-
eral metrics is at least 3% smaller than the benchmark performance, indicating
that the LSTM-GFM model obtains predictions with a superior accuracy. A
complementary 'weak learner’ model, used to generate features from a seasonal
decomposition, further decreases the error. The study shows that Light GBM
models are faster and more suitable for quick model iterations and LSTM-based
models are more appropriate for accuracy-focused load forecasting applications.

Keywords: Smart meter, load forecasting, global model, long- and short-term
memory, machine learning.

1. Introduction

Researchers and industry practitioners have been working towards accurate
forecasting of electricity load for decades. The forecasting field has been evolv-
ing, with better metrics and more advanced models proposed. The assessment
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and direct comparison of such methods is often complicated by the varying setup
of experiment across papers. To address this problem, forecasting competitions
have been set up among academics and industry practitioners. These give an
indication of a rising dominance of globally trained machine learning models.
Firstly, in 2018, a method that combined a recurring neural network (RNN)
and exponential smoothing (ES) won the M4 competition [1]. The competi-
tion data set included 100,000 time series from various fields. In 2020, the M5
competition was set up to accurately predict 42,840 time series that represent
hierarchical retail sales at Walmart. The results confirmed the added value of
training models globally. The top participants used cross-learning from mul-
tiple series simultaneously. These findings are to be confirmed in applications
concerning smart meter time series data.

The deployment of smart meters increases the potential for the application of
data-driven models to forecast consumption in individual households. Bandara
et al. [2] show that global RNN models are well suited to forecasting groups of
related time series with multiple seasonal cycles. Montero-Manso and Hyndman
present a theoretical framework that states that any local approach applied to
a dataset of numerous series can be reproduced by a global model of suffi-
cient complexity, regardless of the relatedness of the underlying series. Smart
meter data comprises of many series with complex properties. High stochas-
ticity, multiple seasonalities, and nonstationary statistical properties, present
in time-series, make it a tedious task to forecast. Therefore, we here evaluate
the performance of global RNN models in application to smart-meter data from
individual households.

To determine a benchmark for global RNN models, a bibliometric study is
conducted and a review of state-of-the-art electric load forecasting is performed.
Consequently, an evaluation framework is proposed that allows the best repro-
ducibility and most correlates with existing research. Section 2 describes the
method used for building the model, as well as the necessary pre-processing and
feature engineering. We address the design of the experiment in Section 3. The
evaluation of the model in terms of accuracy and computation performance is
presented in Section 4. And the conclusions follow in Section 5.

1.1. Bibliometric analysis and state-of-the-art

Bibliometric analysis is a systematic process that can be used to quanti-
tatively analyze forecast models and results reported in the literature. The
rationale behind this step is to gain insight into the state-of-the-art in elec-
tric load forecasting. In addition, the analysis helps identify an experimental
framework most suitable for benchmarking the results against existing and fu-
ture research. The procedure reveals important information about aspects of
model development, such as temporal granularity, forecasting horizon, use of
exogenous variables, and evaluation metrics.

The bibliometric analysis was carried out on June 14, 2021. A query was
made in the SCOPUS database of scientific literature for studies that include
the keywords ’electric load forecasting’ and ’smart meter’ of the last decade. Of
the 82 papers returned, 35 papers were considered out of scope, resulting in a



final set of 47 papers. The main criterion of this filtering is the requirement
for papers to have a clear focus on forecasting performance. Many of the re-
viewed articles were mainly aimed at other topics such as, for example, pricing,
telecommunications, and security, and there was little or no information on the
actual forecasting procedure.

Figure 1 presents an account of machine learning and statistical models im-
plemented in this set of studies. For machine learning models, regular mul-
tilayer perceptron (MLP), support vector regression (SVR), long-short-term
memory (LSTM) networks. For statistical models, the most popular methods
are ARIMA models and linear regression. Finally, a special reference is made
to the persistence naive method, a popular benchmark, which has been utilized
frequently in this set.
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Figure 1: Models applied in the reviewed studies. Machine learning (blue), statistical (yellow),
and naive persistence (gray).

With respect to temporal granularity and forecast horizon, a high variation
is observed between the studied. The common intervals used include half and
one hour, with 38% and 40% of the studies, respectively. Other resolutions
encountered are 1 minute [4], 15 minutes [5, 6], and 1 day [7]. Regarding the
forecast horizon, the values range from 30 minutes [8] to 200 hours ahead [9].
Some variation is also encountered in the usage of evaluation metrics. However,
the most popular metrics include mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE), which are used
by 83% of the studies. For exogenous parameters, two main categories have been
identified. The first includes weather information, usually obtained by reanalysis
of data sets, and is used in 38%. The second category includes various forms of
calendar information such as weekdays/weekends and holidays identifiers. The
calendar features are used in 14% of the studies.

Regarding the use of data sets, only 56% of the publications use an open-
access data set for evaluation. Private datasets exhibit disadvantages, such



as the lack of the ability to replicate the results, compare the performance of
the model with the literature, or build on the development of the previously
proposed model. The most used open-access data set was the Irish data set of
the Commission for Energy Regulation (CER) [10]. According to [11], the CER
dataset is also the largest in the number of series. Therefore, the CER dataset
is considered to be most suitable for the comparison of different forecasting
models, across studies, and in experimentation.

A literature survey is conducted on a selection of 15 publications that make
predictions for the CER dataset. Studies and their main characteristics are
presented in Figure 2, where each vertical axis represents a specific attribute.
Although this study focuses on individual households’ consumption, most (9 out
of 15) of the studies perform forecasts at a higher level of aggregation. The most
common specifications, as shown in Figure 2, guide the choices for the experi-
mental design in Section 3. The evaluation is done for models using the original
consumption records, as well as exogenous weather and calendar features. The
final evaluation is done to make predictions within a 24 hours ahead horizon.
Table 1 presents a review of the accuracy of the forecast at the individual build-
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Figure 2: Studies utilizing the open-access CER dataset and its main characteristics. A
different color has been assigned to each publication.

ing level for a horizon of 24 hours. The selection of accuracy metrics used in
forecast evaluation varies between studies. There is one common metric, the
root mean square error (RMSE). However, Valgaev et al. [12] evaluate RMSE
for normalized data, rescaled by a maximum value of each series, which leads to
the loss of an original scale. Furthermore, the comparison is not strictly valid
due to discrepancies in the selected test set. RMSE scores are scale-dependent.
This means that the results are not comparable between different data sets.
Khatri et al. [13] conduct the study over the time-series meter data of 3,637
residential users. Valgaev et al. [12] consider a subset from a control group
and narrows down to a group of 444 buildings with few missing values and no
outlier series. The control group is selected since the other buildings in the
dataset are subject to interventions, e.g., demand response schemes, part of
the behavior trials. Voigt et al. [14] use a representative set of 38 households



to evaluate the forecast. Therefore, the results reported in Table 1, should be
considered indicative but are not completely suitable to serve as a benchmark
between publications. The results reported in the literature show that the mod-
els running LSTM cells are the most promising. Furthermore, the research by
Valgaev et al. [12] highlights the importance of building a standardized load
profile (SLP) benchmark. The further experiment broadens the state-of-the-art
work with the construction and testing of a global LSTM model using the CER
Irish dataset for a 24-hour ahead horizon.

Network MAE MSE RMSE RMSE (scaled)
[13] LSTM 0.3 0.24  0.49
GRU 0.44  0.28 0.53
SimpleRNN  0.34  0.32  0.57
14] ANN 0.7
12] SLP 0.086
MISO-MLP 0.104
MIMO-MLP 0.095
NAR 0.097
NARX 0.188

Table 1: CER dataset accuracy results for the 24-hour forecast reported in the literature. The
models under evaluation include Long-Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), a simple Recurrent Neural Network (SimpleRNN), Artifical Neural Network (ANN),
Standardized Load Profile (SLP), Multi-Input Single-Output Multi-Layer Perceptron (MISO-
MLP), Multi-Input Multi-Output Multi-Layer Perceptron (MIMO-MLP), Nonlinear Autore-
gressive model (NAR) and Nonlinear Autoregressive Model with exogenous inputs (NARX).

2. Methodology

In this section, the methodology used to generate the forecast is outlined. We
choose the 24-hour horizon, as commonly found in literature, and it is well suited
for energy management tasks such as battery scheduling. First, we formally
define the problem and then describe the core concepts within the forecasting
workflow. This section discusses the approach to feature engineering, scaling,
data preparation, and model architecture.

2.1. Problem statement

The problem scope is defined as a multi-step direct univariate out-of-sample
forecasting. For a time series in a database X; € {Xo, X1, ...X,,}, the forecast
model on an h horizon is formulated as follows:

Xig=mn (Xig—nso- s Xit—h—pn; On) + €itn (1)

Having a generalized set of parameters 8 for all series X; defines a global
model approach. The term e; ; 5, is the error term. In addition to historical past
observations X ¢—p,...,X;¢+—nh—p,, the model mj also incorporates variables



that model seasonality S € {S1,52...5t—n_p, } and exogenous variables T €
{T1,Ts...Ty_p_p, }- Finally, the model for each horizon has the form

™ (X)) = mp, (X, S.T: éh) (2)

2.2. Preprocessing

Neural networks show a weak ability to learn from raw data. Time series
often contain major drifts and non-stationarities. An adequate preprocessing
step is required. The adapted workflow is illustrated in Figure 3. To a large
extent, we adapt the steps performed in [15]. In this manner, the CER smart
meter data is cleaned, additional features are generated, and transformations
in normalization and variance stabilization are applied. A supplementary sea-
sonal decomposition step is tested. Data cleaning includes removing samples
with duplicate timestamps and interpolating the missing values linearly. Fi-
nally, the data are mapped according to a moving-window scheme and solved
as a supervised learning problem. The input of the model contains labels with
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Figure 3: Processes and the data flow

historical electrical consumption, as well as predictor features, such as season-
ality, weather data, and lagged values. The next Section 2.4 goes into detail on
modeling seasonality features. Lagged values include the measurement of con-
sumption at the same hour on a previous day and a previous week. Historical
weather data series are obtained from the ERA5-Land hourly dataset [16]. The
original location of the households in the smart meter data cannot be disclosed,
for the data being anonymized. Therefore, weather features are taken average
over three major cities in Ireland (Dublin, Cork, and Limerick).

In load forecasting publications dealing with the CER data set, an exact
methodology on normalization is often unspecified, making it difficult for an
experiment to be replicable. When training a global model, a common scale
is imperative to avoid varying scales between series. Initially, two methods for
scaling are evaluated: Min-Max normalization and division by mean. Models
using Min-Max Normalization show lower accuracy. We chose a method that
involves mean normalization for our final evaluation. However, even after scaling
the time series in the dataset to a common level, the statistical properties of
the series, such as mean, variance and autocorrelation, still change over time.



This indicates that the time series still exhibit non-stationary behavior. The
transformation log(x + 1) is used to make a time series stationary because it
can handle non-positive values, unlike the natural logarithm transformation

2.8. Recurrent neural networks

Recurrent neural networks (RNNs) have become a widely used method to
solve problems that incorporate variable sequence length data. RNNs enable
sequential processing of the input. Every time the RNN reads a new input,
the internal hidden state is updated and fed back to the model when reading
the subsequent input. The fundamental idea for the design of RNN architec-
ture is so-called truncated backpropagation through time. The network steps
forward through time instances of the internal state and computes loss. Dur-
ing the backward pass, the network updates the gradients in reverse over time.
The truncated approach implies the use of batches when calculating the gra-
dients during backpropagation. Approximate gradients are calculated in short
sequences instead of the full learning sequence. This approach speeds up the
performance of the network without affecting its ability to learn long-range de-
pendencies, as shown in [17] for RNN language modeling applications.

During backpropagation, the calculation of gradients includes many mul-
tiplications by the transposed weight matrix and a tanh activation function.
Therefore, vanishing and exploding gradient problems are common in the train-
ing of recurrent neural networks, particularly in the "Vanilla’ RNN cells [18, 19].
To address the problem of vanishing gradients, a more complex RNN architec-
ture needs to be employed. LSTM topology of the RNN cells was introduced
by [20]. The final version of the architecture included a forget gate proposed by
[21]. The LSTM architecture is designed to have better gradient flow properties.
An LSTM cell keeps two states, the main hidden state h; and an internal cell
state ¢;. Current data inputs are stacked with a previous hidden state. The re-
sulting vector is used to compute four gates: input gate ¢, forget gate f, output
gate o, and cell input gate g.

7 o
f — g W( htfl ) (3)
o g Tt
g tanh
=fOc_1+i0g (4)
ht = 0 ® tanh (¢;) (5)

The LSTM cell uses the forget gate f to regulate how much of the previous cell
state should be erased in a current state computation. While the loss function
sets the objective to find the most likely next state in a sequence, RNNs are
capable of extracting both short- and long-term dependencies in time series. The
LSTM cell can process data sequentially and keep its hidden state throughout
time. LSTM networks are selected to build a global forecasting model (GFM).

A benefit of LSTM-GFM models is their ability to be applied to forecasting
out-of-sample series. In this case, no additional training is required. An example



of this can be found in [22], demonstrating superior results with a global RNN
model for households outside the training sample for the London smart-meter
dataset. In context of electric load forecasting, this can be beneficial to produce
forecast in newly-connected households — scarce in recorded time series data.

2.4. Modelling seasonality

Prior knowledge about the seasonality of the series can be incorporated into
the model. A common practice is to include features that encode seasonality.
These features denote periodicity on multiple-seasonal cycles: daily, weekly, and
yearly. Two strategies are employed to encode the seasonal patterns, namely
calendar features or a seasonal decomposition model. These strategies establish
multiple configurations of a global Recurrent Neural Network. The basic con-
figuration, LSTM-GFM, is inputted with calendar features. Seasonal decompo-
sition is tested in two variants. LSTM-GFM-XS employs seasonal components
as exogenous features. LSTM-GFM-DS is fitted to predict only the residual
component, while the seasonal and trend components are modeled separately.

The basic configuration model, LSTM-GFM, uses explanatory variables of
the calendar effect. A useful method applied to calendar variables is to encode
cyclical features using a first-order Fourier approximation, a combination of
sine and cosine variables [23]. The two variables model the relative position of
a timestamp within a seasonal cycle.

LSTM-GFM-DS and LSTM-GFM-XS methods employ a time series decom-
position, also known as deseasonalization. Decomposing a time series into sea-
sonality, trend, and residual components potentially reduces the complexity of a
time series, which improves the accuracy of the forecast. For the deseasonalized
(DS) configuration, the components are modeled independently and combined
afterward. Alternatively, seasonal components are used as exogenous inputs
(XS). [2] showed that the use of decomposition as an explanatory variable is
more beneficial in the prediction of real-world data sets with homogeneous se-
ries.

In this study, an unobserved univariate components model (UCM), devel-
oped by [24], is used. UCM performs a time series decomposition to extract
seasonal, trend, and irregular components.

Y= Mt + M T+ & (6)
~— ~— ~—
trend seasonal residual

UCM is implemented in a Python module for statistical modeling — statsmodels
[25]. The application of an additive seasonal decomposition using the CER
data is shown in Fig. 6. The particular implementation has the deterministic
seasonality and a level component, which is a regression model that includes an
intercept with a fixed slope. The deterministic seasonal term, -, is estimated
with trigonometric functions:

[s/2]
Yt = Z (Ozj COs /\jt + ,Bj sin /\jt) (7)

j=1
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Figure 4: Left: Multiple input multiple output architecture of LSTM network in unrolled
representation. Right: Moving window scheme. Time series are split into samples shifted by
¢ steps. Each sample is composed of sets of inputs and labels, predicted values

2.5. Input formatting

The input format maps a forecasting problem to a supervised learning frame-
work. The time series sequence is converted to pairs of input and output se-
quences. On the left, Figure 4 shows the architecture used for the forecast-
ing model with an LSTM layer. The architecture is referred to in literature
as stacked architecture. The model configuration includes an input layer, an
LSTM layer that is stacked with a dense layer, and an output layer. The dense
layer maps the LSTM output to the output sequence.

The models are set up to perform multiple input, multiple output forecasting.
The input and output sequences are formed using a moving-window scheme. A
diagram of the moving window scheme is presented on the right of Figure 4. The
model accepts a sample which contains a set of input features and labels limited
to a time window of a limited number of time steps. The sizes of both the
input and output windows are selected equal to the forecast horizon, 24 hours.
Training is performed on a sample window that rolls through the original data
with a step shift. When testing the models, we choose to evaluate the predictions
at every timestamp; therefore, the step shift is 1. However, in training, a step
size of 1 considerably increases the computation time. It may also lead to
overly correlated validation scores and subsequent model bias. Model training
configurations with a different step shift set to a half or full prediction horizon
(24, 48) are tested.

3. Experimental setup

8.1. Dataset

The data set used in this study is provided by CER. Data are collected as
part of the Smart Metering Electricity Customer Behavior Trials. The regu-
lator initiated the trials to assess the impact of smart meter infrastructure on
electricity consumption in Ireland.

This work considers only a subset of households, labeled the ” control group”.
An adjustment is made for daylight saving time: the extra hour measurements



are removed, while an extra hour is interpolated by averaging near values. A
final selection of 909 houses is made after discarding the series with > 50 missing
values. The summary statistics of the data set are given in Table 2. In Figure
5, we can observe a normalized day load profile for the CER data set. It shows
that on average there is no significant discrepancy between weekday and weekend
activities. These observations are also confirmed by the seasonal decomposition
plot in Figure 6. It is also evident that seasonal patterns can vary between
series, particularly in the weekly and yearly cycles.

The time series are divided into training, validation, and test sets. The test
set is selected at the end of the time series. The duration of a test set is 1440
time steps, equivalent to 30 calendar days. The validation data are selected
similarly, 30 days at the end of the remaining series.

—— workday
—— average

weekend g
07 /\ Country Ireland
fos / \ No. of time series 909
Eos Frequency 30 min
% oe Start Date 2009-07-15
\/ End Date 2011-01-02
o ) Max. Length 25728
00:00 s mm T =5 Min. Length 25468
missing values [%] | < 0.001%

Figure 5: Average daily
load profile Table 2: CER Data Description

3.2. Error Metrics and computational performance

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are
commonly used to calculate the error of the model. These measures are scale-
dependent, meaning that the results of such an evaluation are not comparable
between time series of different magnitudes.

An accuracy metric, the mean absolute scaled error (MASE), first proposed
by [26], scales the error with respect to a naive forecast.

MAE

MASE = 8
]\414E‘in—sample7 naive ( )

where MAE is the mean absolute error, a commonly used accuracy metric.
1 N1
MAE = N Z; |93[t] — walt]| (9)

MAE is scale-dependent, meaning that the magnitude of the error varies for
each dataset, depending on the scale of the measurement. The MASE metric
is scale-invariant and symmetric and shows predictable behavior at near-zero
values. The results also have a real-world interpretation. A MASE score less
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Figure 6: Additive seasonal-trend decomposition plot over a 16 week period.
Obtained by applying a UCM model to a sample of 20 time series within
CER dataset

than one indicates superior performance over the forecast produced by a naive
method.

The methods under evaluation are measured in terms of pre-processing,
training, and execution times. All experiments are run subsequently on the
same virtual machine (VM) on a server. The virtual machine runs on an In-
tel® Xeon®) Silver 4210R processor, with 2 sockets, 8 cores per socket, and
125GB of memory.

3.8. Benchmark models

Benchmark models are selected to match the state-of-the-art (SARIMAX,
ANN, Light GBM), as well as reference methods, commonly used to assess the
feasibility of additional modeling. Performance is evaluated in terms of the same
metrics as described in Section 3.2.

One of the basic benchmark methods is a seasonal naive model, also known
as a persistence model. The naive method makes the prediction using the values
of the last observed period. In the context of this study, persistence outputs the
observed values for the last 24 hours.

The next benchmark is standard load profiles (SLP), a fixed-rule method
currently used for household forecasting. Residential SLPs (”24 hour urban do-
mestic”) are taken from [27], a retail market administrator in Ireland. Standard
load profiles are a statistical method that requires low computational effort.
Standard profiles are scaled by the total annual consumption. This number is
extracted from aggregating total demand over a year-long period in a training
subset.

A feed-forward neural network method is implemented. The two-stage ar-
tificial neural network (ANN) model proposed by [28], is purposely designed
for short-term load forecasting. The ANN is of a supervised type 'multi-layer
perceptron’. It is trained locally in a series-specific fashion.

We test a seasonal autoregressive integrated moving average model with
exogenous parameters (SARIMAX) to provide the benchmark results. It is

11



also trained series-by-series. ARIMA models are a well-established statisti-
cal method that has been extensively used in various forecasting applications.
Adding exogenous parameters and seasonal decomposition to the original ARIMA
algorithm produces more accurate results, since the time series’ behavior is
highly dependent on external factors such as temperature and calendar features.

The paper uses LightGBM as a benchmark model by training it globally
on the entire dataset (LightGBM-GFM) and individually on each time series.
Light GBM has several advantages for time series forecasting, including its ability
to handle large datasets with high dimensionality, its fast training speed, and its
ability to handle non-linear and non-monotonic relationships between features
and the target variable [29]. The LightGBM model is a prevalent technique
scoring highly and winning in forecasting competitions [30] [31]. Non-model
parameters, set in the design of the architecture, are referred to as hyperparam-
eters. The explored range of hyperparameters is provided in the Table 3.

3.4. Implementation details

Every LSTM model is built using version 2.4.0 of Tensorflow, an open-source
deep-learning platform. To handle large amounts of data, the data input pipeline
is set up using a ’tensorflow.data’ API. The Adam learning algorithm is used
to iteratively update the network weights based on the gradients of the loss
function with respect to the weights. All necessary scripts are programmed in
Python.

To limit the overfitting of the model, we use an early stopping technique.
The training of the model stops when the maximum number of training epochs is
reached or a validation error grows. The number of epochs with no improvement
in error is a patience parameter. An epoch is a training iteration that takes the
learning algorithm to work through the entire data set.

The hyperparameter configuration includes the following parameters: num-
ber of layers, number of cells, learning rate, batch size, and number of epochs.
The tuning method and the ranges of values are defined, following the general
recommendations outlined in [32]. A Bayesian hyperparameter tuning technique
is applied to find an optimal combination of hyperparameters that produces the
model with the best performance on the validation set. In contrast to a grid
search, which goes over all possible combinations, the Bayesian method mod-
els the distribution of the objective function with a Gaussian prior; therefore,
reducing the number of total evaluations. Each hyperparameter configuration
runs for 1 epoch. The loss function used to fit the model to the training data
optimizes the mean squared error (MSE) metric. The initial ranges for the
hyperparameters used for RNN are shown in Table 4. The number of epochs
and patience used in the final configuration are set to fixed values, 20 and 5
respectively, in the interest of limiting the computation time.

4. Results and Discussion

LSTM-GFM models show superiority over the available benchmarks in terms
of all error metrics in the evaluation (Table 5). Best LSTM model makes pre-
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Table 3: Light GBM hyperparameters

Hyperparameter Type Range Step
num_iterations categorical [100] -
learning_rate float [0.01, 0.3] -
num_leaves integer [20, 3000] 20
max_depth categorical  [-1, 5, 10, 15, 20, 25] -
min_data_in_leaf integer [20, 100] 10
lambda_11 integer [0, 100] 5
lambda_12 integer [0, 100] 5

Table 4: LSTM hyperparameters

layers step shift  cell size learning rate batch size

1-2 12,24 32 —128 0.0005 —0.002 1024 — 4096

dictions with an absolute mean error 3% lower than the closest benchmark.
The average root mean squared error is also 3% lower. The ANN model shows
competitive accuracy, being runner-up in terms of RMSE and MASE. The dis-
tributions of forecast error are demonstrated in the violin plots in Figure 7. It
should be noted that the SARIMAX methods show the largest variance in terms
of MAE and RMSE. Methods that employ gradient boosting, Light GBM-GFM
and LightGBM, show the highest spread in terms of MASE. Additionally, the
violin plot for MASE shows some discrepancy in the shape of an error distri-
bution. The RNN- and GBM-based configurations show flatter distributions of
MASE, while ANN scores more consistently around the mean.

The experiments highlight the importance of a consistent benchmarking pro-
cess. A comparison with benchmark models indicates a relatively poor perfor-
mance of a SARIMAX and LightGBM-based methods. Notably, the MASE
metric exceeds 1 for the mentioned benchmark methods. The values above 1
indicate that the model outputs predictions with a larger error than a naive
method fit to the training data. Consequently, MASE over 1 indicates that the
naive method applied to the test data performs worse than the same method
applied to the training data.

Evidently, a naive forecast shows better accuracy than the standard load
profile. Therefore, the availability of recent data increases the accuracy of the
forecast without additional modeling. At the individual household level, an
addition of high-granularity smart-meter data customizes the forecast to each
building’s specification. This highlights the added value of smart meter data,
as well as the importance of benchmarking using a naive persistence model.

Furthermore, it can be seen that a global LSTM model benefits significantly
from a previous seasonal decomposition step. A baseline global LSTM model
shows an inferior ability to learn seasonality directly from the series. This con-
firms the findings reported in [2], where a baseline GFM outperforms the GFM-
DS variant, but obtains worse results than the seasonal exogenous approach
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Name MAE RMSE MASE

LSTM-GFM 0.335 0.578 0.864
Global LSTM-GFM-XS 0.331 0.571 0.856
LSTM-GFM-DS  0.337 0.574 0.872
LightGBM-GFM  0.342 0.611 1.148
SARIMAX 0.442 0.653 1.313
Local ANN 0.380 0.595 0.865
Light GBM 0.340 0.613 1.147
naive 0.419 0.732 1.229
SLP 0.435 0.731 1.323

Table 5: The accuracy of the forecast of CER data as obtained in the experiment.

(XS), when tested for a dataset of 300 Australian households. Removing the
seasonal component prior to training, thus making the model uninformed of
seasonality, has a negative effect on the model’s performance. Instead, seasonal
components have been added as additional features to the training. It may lead
to the implication that seasonality properties within the Irish CER dataset are
less homogeneous. The seasonal component varies by series, therefore, learning
seasonality explicitly and exclusively for each series achieves better results.

When conducting the literature review, we assemble the accuracy results
reported in existing publications on short-term forecasting in individual house-
holds, shown in Table 1. A direct comparison has implications associated with
the accuracy metric used and the discrepancies between experimental setups.
However, if we attempt this analysis, it can be seen that the results produced
show a higher accuracy than those reported in [14] and [12]. The latter uses a
different accuracy metric; however, a comparison can be drawn since the same
standard load profile is used as a benchmark. The LSTM model presented in
[13] gives better accuracy in terms of RMSE and is comparable in terms of MAE.
This can be attributed to building a separate model for each time interval, which
we expect to be sub-optimal in terms of computation time.

Table 6 gives an overview of computational costs in terms of processing time.
The computation time is scaled per time series. The division is drawn between
pre-processing the data, fitting a model and an optimal set of hyperparameters,
and finally, making the prediction. The training time also includes the time
spent on the hyperparameter search. The network architecture is an influential
factor for the speed of training. It is notable that modes trained with Light GBM
are significantly faster in training and execution. The varying performance in
time and accuracy between models indicates the existing trade-offs when choos-
ing between gradient boosted tree-based and LSTM-based models. Light GBM
training takes less time, making it possible for forecast practitioners to conduct
more tests with different model configurations. This enables a more compre-
hensive approach at feature engineering and feature selection. Therefore, LSTM
models are worthwhile and bring the superior accuracy in the applications with
an established and pre-defined input feature set. This highlights the importance
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Figure 7: Violin plots of the relative performance of different forecasting methods. Each
method is represented in a different color. Thickness of the plot indicates the frequency of
errors at a given value

Duration per series [seconds]

Name pre-processing training execution
LSTM-GFM 1.15 79.29 1.00
Global LSTM-GFM-XS 8.52 84.00 1.00
LSTM-GFM-DS 8.52 72.97 1.52
Light GBM-GFM 1.15 22.93 0.04
Light GBM 1.15 39.14 0.01
Local SARIMAX 1.15 142.57 0.08
ANN 1.15 312.87 0.42

Table 6: Processing, training, and execution times of forecasting algorithms

of carefully selecting the appropriate modeling approach for the task at hand,
taking into consideration factors such as the size and complexity of the dataset,
the desired level of accuracy, and the available computing resources.

The results indicate that the models trained globally take a shorter training
time. This applies both to the GBM and RNN models. Training local models
takes longer out of necessity to fit a set of parameters and find an optimal
set of hyperparameters for each of multiple series. It is evident that a seasonal
decomposition step increases the preprocessing time of a GFM model. However,
the impact on training time is more moderate and is mainly attributed to an
increase in the number of features used in the input tensor.

5. Conclusions

We investigate the utilization of global RNN models in the context of short-
term (24 hours ahead) load forecasting on a household level. The proposed
LSTM global forecasting model (LSTM-GFM) methodology allows learning
cross-series information and can be efficient in terms of computational per-
formance. The global method has the capacity to leverage massive time series
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databases, now available with a wide rollout of digital meters. The ability of
such a configuration is evaluated in the experiment using the CER Smart Me-
tering dataset.

In conclusion, the LSTM-GFM models exhibit superior accuracy compared
to benchmark models in short-term forecasting for individual households, as
demonstrated by all error metrics evaluated. While the ANN model is com-
petitive, the SARIMAX and LightGBM-based methods show relatively poor
performance, with MASE values exceeding 1. The results emphasize the impor-
tance of consistent benchmarking using a naive persistence model, highlighting
the added value of recent and high-granularity smart-meter data for improving
forecast accuracy. Additionally, the experiments confirm the benefits of using
a previous seasonal decomposition step for global LSTM models to explicitly
learn seasonality properties for each series.

Finally, the choice of algorithm can significantly impact the processing time,
with LightGBM models being significantly faster than LSTM-based models.
However, there are trade-offs between speed and accuracy, and it is essential to
consider factors such as the size and complexity of the dataset, the desired level
of accuracy, and the available computing resources when selecting an appro-
priate approach. The results of this study suggest that Light GBM models are
more suitable for cases where quick model iterations are needed, while LSTM-
based models are more appropriate for situations where accuracy is of utmost
importance. Therefore, practitioners should carefully consider the trade-offs
and select the modeling approach that best fits their specific needs.
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