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Abstract – Space-Time Engineered-Modulation (STEM) structures are currently experiencing
massive interest in the metamaterials community, with the manipulation of the additional tem-
poral dimension leading to novel effects and applications. However, there is presently no general
numerical tool to simulate such structures. This paper closes this gap by providing a modified
FDTD scheme solution, which involves hybrid – auxiliary (non-physical) and physical – numer-
ical fields. It describes the corresponding modified Yee cell and derives the update equations.
Moreover, it validates the proposed methods with the illustrative examples of a STEM slab and
STEM crystal.

I. INTRODUCTION

We are interested here in Space-Time Engineered-Modulation (STEM) structures, namely space-time varying
structures formed by modulating a host medium with a traveling-wave perturbation. Modulated structures of that
kind have been abundantly studied in the past in the context of parametric amplification [1] and acousto-optics [2].
However, recent metamaterial developments have led to more sophisticated modulation-based structures – STEM
metamaterials – whose modulation can be engineered for novel physical effects and novel applications (e.g., [3–7]).

No general numerical technique is currently available for properly analyzing STEM metamaterials and struc-
tures. The best strategy towards filling up this gap seems to be generalizing the Finite-Difference Time-Domain
(FDTD) scheme, since FDTD, being in a time-domain approach, automatically predicts the space-time frequency
transitions that characterize STEMs. However, a naive application of the FDTD scheme, which would consist
in discretizing space-time interfaces in a staircase manner, turns out to be fundamentally flawed and yield wrong
scattering amplitudes! An correct FDTD scheme is presented in [8] for the particular case of a moving conducting
wall, but no solution is available even for such canonical problems as STEM penetrable interfaces, slabs, gradi-
ent sections or basic metamaterials. Frame hopping has been attempted as an alternative technique to sidestep
the issue [9], but this approach, being indirect, requires large computer memory and involves awkward numerical
transformations.

We propose here a general solution to this long-lasting lack of computational tool for STEMs. That solution
consists in a simple modification of the conventional FDTD scheme: it replaces the electric and magnetic fields by
auxiliary (non-physical) fields in the Yee grid while keeping the usual (physical) electric and magnetic flux density
fields unchanged, derives the corresponding (modified) update equations involving hybrid (physical and auxiliary)
fields, and finally transforms the auxiliary fields back into their physical counterparts. We derive here the scheme,
without loss of generality, for the 1D case, and demonstrate its validity with two illustrative examples.

II. TYPICAL STEM STRUCTURES

STEM structures, whether operating in the Bragg regime or in the metamaterial (homogenized) regime, may be
modeled by dielectric layers delimited by moving interfaces [10], as illustrated in Fig. 1(a)1. Note that, although
typically considered infinite in analytical studies, STEMs must be practically finite in size, and the related trunca-
tion, unless comoving with the STEM structure – a practically rare situation! – already necessitates a numerical
method per se.

1Although the figure shows sharp (step) interfaces, smooth (graded) interfaces can always be modeled by a sequence of thin layered media
of vanishingly small width.
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Fig. 1: STEM concepts used in the paper. (a) Example of a STEM structure. (b) Zoom on three Yee cells across
an interface, showing the auxiliary (non-physical) fields in Eq. (1).

III. MODIFIED FDTD SCHEME

In the conventional FDTD scheme and for a stationary structure, the electric and magnetic fields, which reduce
to Ex and Hy in the 1D problem considered here [see Fig. 1(b)], are sampled on the Yee cell [11]. As a result, the
fields in the Yee grid are automatically conserved at dielectric and magnetic interfaces2. In contrast, in the case
of a STEM structure, the quantities that are conserved at the interfaces are Ex + vBy and Hy + vDx [13]. This
suggests to use these quantities, which we denote here

E∗
x = Ex + vBy and H∗

y = Hy + vDx, (1)

instead of their stationary counterparts, in the Yee cell. This what is done in Fig. 1(b) across a moving interface
of the STEM in Fig. 1(a), which automatically ensures the continuity of E∗

x at the interface, since this quantity is
uniquely defined there.

We next derive the update equations for the hybrid (auxiliary and physical) fields. We first insert the auxiliary
fields (1) into the appropriate Maxwell-Faraday, Maxwell-Ampère and constitutive equations, which yields
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Dx = ϵ (E∗
x + vBy) , By = µ

(
H∗

y + vDx

)
, (3)

with the two systems of equations involving the auxiliary fields E∗
x and H∗

y and the physical fields Dx and By .
We can now discretize the equations (2) and (3). For the terms without the factor v, we apply the conventional

FDTD central difference in space and in time and the leapfrog method (electric and magnetic fields evaluated at
different times). For the terms involving the factor v, the discretization depends on the sign of the modulation
velocity. For positive (negative) velocities, we choose a backward (forward) difference in space to ensure stability.
The resulting scheme for positive velocities is
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where the fields at times t = n∆t and positions z = k∆z are denoted ψ|nk , and S = ∆t/∆z (Courant factor).

2When there is a discontinuity in both the permittivity and permeability, a simple average ensures the correct boundary condition [12].



IV. ILLUSTRATIONS

Figure 2 provides two illustrations of the proposed method and compares the numerical results with exact,
analytical results for the scattering coefficients versus frequency [14,15]3. These results are obtained by sending a
very short temporal pulse into the structure and Fourier transforming the resulting transmitted and reflected fields.
Figure 2(a) presents the case of a single moving slab while Fig. 2(b) presents the case of a crystal made of 5 unit
cells. In both cases, the numerical results agree well with the analytical results.
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Fig. 2: Comparison of numerical (dotted) and analytical (continuous line) results for scattering coefficients of a
STEM with ϵ1 = 1, ϵ2 = 2.5, L = λ0/2/n2 and v = 0.3c. For the numerical results, S = 0.2 and ∆z = λ0/150.
(a) Single slab. (b) Crystal with 5 bilayer unit cells.
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[10] C. Caloz, Z.-L. Deck-Léger, A. Bahrami, O. Céspedes, and Z. Li, “Generalized space-time engineered mod-

ulation (GSTEM) metamaterials: A global and extended perspective.” IEEE Antennas Propag. Mag., 2022.
[11] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic

media,” IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302–307, 1966.
[12] J. B. Schneider, Understanding the FDTD Method. www.eecs.wsu.edu/ schneidj/ufdtd, 2010.
[13] J. V. Bladel, Relativity and Engineering. Springer Science, 1984.

3We considered here the simplest possible type of truncated STEM, i.e., one with comoving boundaries, for the the sake of comparison with
available exact results, but the scheme naturally applies to any kind of moving or stationary boundaries.



[14] F. Biancalana, A. Amann, A. V. Uskov, and E. O’Reilly, “Dynamics of light propagation in spatiotemporal
dielectric structures,” Phys. Rev. E, vol. 75, no. 4, pp. 046 607:1–12, 2007.
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