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Abstract 

Predicting molecular interactions is a crucial step for chemical process modelling. It requires the full 

knowledge of the analyzed system, however, this is often impossible in complex real-world cases. Machine 

learning (ML) techniques overcome this bottleneck and enhance systems predictability using data. Hybrid 

modelling (HM) is an established technique combining first-principle information and ML techniques. This 

work introduces a mathematical framework to predict activity coefficients employing HM approach. The 

obtained models are physically consistent and can handle systems with unknown components or external 

sources of deviation. The framework is validated on experimental and in-silico cases employing different 

training approaches. In all the tested cases, the HM showed remarkable prediction capabilities with 

coefficients of determination R2 above 0.98 for the predicted variables. This work proposes and develops a 

novel way to approach the HM of molecular interactions by embedding physical laws within the model 
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structure. We encountered three main benefits in applying thermodynamically consistent HMs for activity 

coefficients: the reduction of tenable parameters, the increased prediction capabilities, and the physical-

consistent behavior of the model. 

Keywords: activity coefficients, hybrid model, physical consistency, vapor-liquid equilibria, Gibbs-Duhem 

equation 

1. Introduction 

The use of computational tools for process optimization and intensification represents state-of-the-practice 

in the processing system engineering field, but they require using predicting models. Nowadays, the 

available models are generally able to simulate the behavior of complex processes representing a cheap 

and fast alternative to real-life experiments. Typically, a process simulation model contains multiple layers 

of sub-models predicting the physical phenomena driving the system. Among these, the sub-model 

predicting the molecular interacting energies plays a crucial role, especially in all the scenarios where the 

system shows a significant deviation from the ideal behavior. In literature, it is well known how the 

abovementioned deviations affect several aspects of the physical-chemical system, such as phase stability, 

vapor-liquid equilibrium, and solubility. Running an optimization with such inaccurate model leads to wrong 

predictions about the system behavior, severely limiting optimization reliability. For all these reasons, 

modelling non-ideal behaviors represents one of the leading research fields in process system engineering. 

The deviations from the ideal behavior are characterized by the excess of Gibbs energy or, equivalently, 

activity coefficients (ACs). Several models have been developed in the last century to estimate the ACs in 

a physico-chemical system utilizing various assumptions. These models are usually constructed using first-

principles, assuming the binary molecular interaction to be the most probable in the system. Widely used 

and advanced models to predict ACs and excess Gibbs energy are UNIFAC [1,2], NRTL [3] and COSMO-

RS [4,5]. The wide application and usage of these models proved their robustness and flexibility. In addition, 

they have been applied to many systems over the past decades. However, they require a complete 

knowledge of the system. The entire molecular system must be known together with the parameters to 

describe their interactions using the first-principle models. If the system contains uncertainties over the 

chemical nature of the components, the problem is often solved by considering pseudo-components. 
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However, this task can be challenging and often, this assumption is restrictive and not accurately 

representing the physical phenomena driving the system. Moreover, this technique requires time-consuming 

experiments executed on highly specialized equipment [6,7]. To reduce the number of experiments 

necessary to estimate the ACs of a physic-chemical system, or even eliminate their need, several authors 

have investigated the application of machine learning (ML) techniques to evaluate the ACs in recent years. 

Recently, some studies were proposed about applying graph-neural networks (GNN) or SMILES-to-

property-transformer to estimate the binary ACs utilizing the molecular structure of the two chemical species, 

the temperature, and the concentration of the chemical species to assess the ACs [8–10]. Compared to 

state-of-the-art first-principle methodologies, this approach showed outstanding capabilities in estimating 

the ACs. Despite the reduced amount of required experiments, employing the proposed ML models still 

requires the full knowledge of the molecular structure to estimate the ACs. 

In several cases, the molecular interactions within the system are hard to estimate because of the high 

uncertainty related to the system. For example, in a telescopic reaction process, the main reaction path is 

known. Still, often side reactions can take place, and the molecular structure of the side products and their 

concentrations are often unknown. A second example where the first-principle ACs estimation shows high 

deviation from the real world is the presence of a complex mechanism of molecular release. It could be the 

case of a fragrance deposited over a fabric or within a capsule for the release control; here, the fabric fiber 

nature and the release control mechanism can significantly impact the molecular interaction and, therefore, 

their evaporation. In literature, few attempts have been made to tackle this problem and estimate ACs of 

poorly specified mixtures. Jirasek et al. published two studies involving group contribution methods (i.e., 

UNIFAC) to calculate the ACs for poorly specified systems [11,12]. Another significant contribution from 

Baumeister and Burger highlighted the possibility of utilizing a perturbation scheme to describe the deviation 

of ACs due to unknown components [13]. 

Recently, ML techniques have shown outstanding capabilities in predicting the behavior of systems 

containing unknown components and interactions unquantifiable using a first-principle model [14]. Such 

methods utilize experimental data and a statistical function structure (e.g., polynomial, rational functions, 

and artificial neural networks) to approximate the underlying function by characterizing the described 

quantity of interest while simultaneously creating an internal map of the relation between the input and the 
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described quantity. In recent years, ML approaches are gaining popularity in describing chemical systems. 

Despite the advanced modelling capabilities and the interest gained in chemical engineering, the ML 

techniques still demand high amounts of data satisfying the 3Vs rule. Namely, Volume (i.e., the amount of 

data should be wide enough for the problem to model), Variety (i.e., the datapoints should be sampled within 

the entire investigation space using more than one variable to observe the occurring phenomena) and 

Velocity (i.e., the data collection should be fast in order to update the model and refine its predictions) [15]. 

In addition, they are known for the low extrapolation capabilities behind the input range explored in the 

training phase [16]. Hybrid modelling is gaining popularity for chemical engineering applications to solve the 

abovementioned problems, as it combines first-principle and ML models. In such a technique, physical laws 

and information derived from data are combined, increasing the data contextualization within the system. 

Consequently, the known part of the system is described using a first-principle model, while the ML 

technique describes only the unknown part of the system [17]. By doing so, the required data variety and 

volume are drastically reduced. This modelling approach has been used in several fields, including reaction 

kinetics estimation [18,19], separations [20,21] and overall optimization [22]. Recently, a framework to 

support the implementation and application of such models for chemical systems has been published [23]. 

Despite the wide application of hybrid modelling in process systems engineering for chemical applications, 

to our best knowledge, the literature lacks papers and methodologies where hybrid modelling is applied to 

estimate the interactions between molecules for systems with uncertainty over the interactions between the 

molecules and their nature. A hybrid model of the excess properties is a non-trivial task since the models 

describing molecular interactions must respect a-priori laws such as the Gibbs-Duhem equation for excess 

properties [24]. If the model violates these rules, the obtained predictions do not have any physical sense 

and are impossible to achieve in the real world. The first-principle rule violation drastically decreases the 

reliability, generalization, and extrapolation capabilities of the model. The violation of physical law is 

dramatically hindering the application of machine learning techniques in predicting molecular interactions. 

Recently, Carranza-Abaid et al. applied neural networks programming to create ML models predicting 

activity coefficients while respecting the Gibbs-Duhem equations [25]. This effort represent a significant step 

toward the integration of first-principle knowledge within ML techniques, however it still requires a complete 
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knowledge of the system in analysis. This work investigates the application of machine learning and hybrid 

modelling techniques to predict molecular interactions for poor specified conditions. 

This paper introduces a novel framework to construct physics-aware hybrid models to predict the 

macroscopic effects of molecular interactions. The framework can work also poorly specified systems 

predicting their ACs. It is flexible to all the first-principle models available in the literature, and it can also be 

used stand-alone to have an entirely statistical description of the interactions occurring within the systems. 

In addition, the framework respects the main a-priori rules governing the excess properties (i.e., Gibbs-

Duhem equation and activity for pure components), still utilizing functional structures typical of the ML 

techniques. The physical characterization is done to 1) reduce the number of parameters that the optimizer 

should identify in the training phase and 2) avoid solutions not having any physical sense. 

2. Framework characterization 

This section proves and develops the main mathematical groundwork supporting the physical 

characterization of the hybrid model. The framework considers two application cases: 1) the deviation of the 

ACs from the first-principle model predictions is caused by one or more unknown chemicals contained in 

the mixture component (internal disturbance), and 2) the deviation of the ACs from the first-principle model 

predictions is caused by an external agent affecting the mixture (external disturbance) (Figure 1). A practical 

rule to differentiate between a system with internal or external disturbance is to investigate if the sum of the 

molar fractions of the known chemical components within the system equals 1. If this is the case, the system 

has only external disturbance. If this is not the case, the system can be considered to have internal 

disturbance. For example, one of the demonstration cases reported in this work involves a mixture of organic 

solvents and LiCl. The same mixture is used as a system with internal or external disturbance. LiCl is one 

of the chemical components in the mixture; if its concentration is known but its nature is unknown, the 

system can be considered with internal disturbance. In Figure 1a, the components K are the organic solvents 

while the component U is the LiCl. Therefore, the molar fraction of LiCl can be obtained from the 

concentration of the other components. It is essential to highlight here that, for the sake of demonstration, 

the chemical nature of LiCl is known and only one component; however, the same definition can be applied 

if the unknown components are more than one and their chemical nature is unknown. If the mixture deviates 
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its activity coefficients from the first-principle prediction and the concentration of LiCl is unknown and 

impossible to estimate from the concentration of the known components, the system has external 

disturbance. In Figure 1b, the components K are the organic solvents; in this case, the sum of their molar 

fraction equals one. Therefore, it is impossible to estimate the concentration of unknown components (i.e., 

LiCl) through the concentration of the known components.  

Baumeister and Burger analyzed the case of internal disturbance for systems with one known component. 

The hybridGamma framework also predicts when the internal disturbance affects the behavior of a mixture 

and not only a single component. Therefore, the case reported by Baumeister and Burger is a specific case 

that can be covered by the framework proposed in this work. Besides the internal disturbances, the 

hybridGamma framework can also operate with unquantifiable external disturbances. This is possible by 

creating a model considering only measurable variables as input (e.g., temperature and the concentration 

of the known and measurable chemical components). This way, a model of the disturbance is created 

without using the level of the external disturbance. 

The mathematical restrictions are applied and proven over a general statistical function in Section 2.1. 

Further, the mathematical restrictions are applied over the two disturbance cases in Section 2.2. Then, the 

characterization framework is applied to a polynomial statistical function. In Section 2.3, a 3rd-order 

polynomial statistical functional form is described and characterized for systems with internal and external 

disturbances. At the end of this paragraph, the steps involved within the library automatically characterizing 

the statistical model are introduced (Section 2.4). 
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Figure 1. Graphical representation of the cases reported in this paper. In this figure, x is the molar fraction 

of the chemical components in the liquid [mol/mol], 𝛾 is the activity coefficient [-], K is the known component, 

U is the unknown component, |exp is the experimentally measured property, |FP is the property predicted by 
the first-principle model. In the case of internal disturbance, the molar fractions of the known components 
in the mixture do not sum to 1. The presence of unknown components creates a deviation from the first-
principle predictions. In the case of external disturbance, the molar fractions of the known components in 
the mixture sum to 1. However, the experimental ACs still deviate from the first-principle predictions. 

2.1. Structure and proof of the general framework 

The proposed hybrid model considers the sum of the logarithms of the AC. Therefore, the hybrid AC models 

are represented as 

ln(𝛾𝑖)|𝐻𝑀 = ln(𝛾𝑖)|𝐹𝑃 + ln(𝛾𝑖)|𝑆𝑀 , (1) 

2 where 𝛾 are the activity coefficients. The subscripts 𝐻𝑀, 𝐹𝑃 and 𝑆𝑀 refer to the quantities calculated using 

a hybrid-model, a first-principle model, and a statistical model respectively.  

Because the hybrid model represents a physical system, it must satisfy the Gibbs-Duhem equations  

∑ 𝑥𝑛𝑑(𝑙𝑛(𝛾𝑖)|𝐻𝑀)

𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑛=1

= 0, 
(2) 

where 𝛾 are the activity coefficients, 𝑥𝑛 is the molar fraction of the n-th component within the mixture and 

the subscript 𝐻𝑀 refers to the quantity calculated with the hybrid model. 
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In addition, it must let the pure component AC be equal to one in case of internal disturbances. The 

application of the limit condition is not possible for systems with external disturbance because the deviation 

still applies to a pure component. It could also interact among the molecules of such a component, causing 

a deviation from the first-principle predictions. These conditions are mathematically formulated as 

lim
𝑥𝑖→1

𝛾𝑖|𝐻𝑀 = 1 ⇒ 𝑙𝑖𝑚
𝑥𝑖→1

𝑙𝑛(𝛾𝑖)|𝐻𝑀 = 0, (3) 

where 𝛾 are the activity coefficients and the subscript 𝐻𝑀 refers to the quantity calculated with the hybrid 

model. 

For the case of internal disturbance, equation (3) is appliable only for the fully known chemical molecules 

(i.e., both the nature of the molecule and the interactions with all the other known molecules within the 

system are known). 

From the characterization of equation (3) on a binary system, it is possible to write  

𝑥𝑖
𝑑(𝑙𝑛(𝛾𝑖))

𝑑𝑥𝑖
+ 𝑥𝑘

𝑑(𝑙𝑛(𝛾𝑘))

𝑑𝑥𝑖
= 0, (4)  

where 𝛾 are the activity coefficients, 𝑥 is the molar fraction of the i-th and k-th component within the liquid. 

The independency of (4) from the derivation variable 𝑥𝑖 is proven in the Supplementary Information of this 

paper in section 1s. As previously stated, the hybrid model combines a first-principle and a statistical model. 

It is assumed, in this work, that the first-principle model already satisfies the restrictions imposed by 

equations (3) and (4). For example, this is already the case if one of the local composition models (e.g., 

UNIFAC, NRTL, PC SAFT) is utilized as the first-principle part of the hybrid model. Section 2.1.1 proves the 

separability of the Gibbs-Duhem equation over the first-principle and statistical part of the hybrid model. The 

separability of the limit condition (3) over the first-principle and statistical part of the hybrid model is trivial 

and not reported in this paper. 

2.1.1. Gibbs-Duhem equation separability over the hybrid model structure 

Applying the Gibbs-Duhem equations over the hybrid model structure (1) results in  

𝑥𝑖 ∗
𝑑(𝑙𝑛(𝛾𝑖)|𝐹𝑃 + 𝑙𝑛(𝛾𝑖)|𝑆𝑀)

𝑑𝑥𝑖
+ 𝑥𝑘 ∗

𝑑(𝑙𝑛(𝛾𝑘)|𝐹𝑃 + 𝑙𝑛(𝛾𝑘)|𝑆𝑀)

𝑑𝑥𝑖
= 0, 

 

(5)  

using the sum property of the differentiation, it can be written as  
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𝑥𝑖 ∗
𝑑(𝑙𝑛(𝛾𝑖)|𝐹𝑃)

𝑑𝑥𝑖
+ 𝑥𝑘 ∗

𝑑(𝑙𝑛(𝛾𝑘)|𝐹𝑃)

𝑑𝑥𝑖
+ 𝑥𝑖 ∗

𝑑(𝑙𝑛(𝛾𝑖)|𝑆𝑀)

𝑑𝑥𝑖
+ 𝑥𝑘 ∗

𝑑(𝑙𝑛(𝛾𝑘)|𝑆𝑀)

𝑑𝑥𝑖
= 0. (6) 

The expression in (6) implies that the Gibbs-Duhem equation is separable over the selected hybrid model 

structure. In addition, considering the hypothesis of the validity of the Gibbs-Duhem restriction on the first-

principle model, the first two summation of the left-hand side in (6) are null. Therefore, it is possible to 

simplify (6) as 

 𝑥𝑖 ∗
𝑑(𝑙𝑛(𝛾𝑖)|𝑆𝑀)

𝑑𝑥𝑖
+ 𝑥𝑘 ∗

𝑑(𝑙𝑛(𝛾𝑘)|𝑆𝑀)

𝑑𝑥𝑖
= 0. (7) 

2.1.2. A corollary of the hybrid model characterization 

The characterization of the hybrid model to respect the Gibbs-Duhem equation (4) and the limit condition 

(3) implies that the statistical function must respect the conditions reported in Section 2.1. Therefore, the 

same restrictions can also be applied to a purely statistical model of the ACs. In other words, the framework 

proposed in this paper and executed for a hybrid model applies to an entirely statistical modelling approach 

of the ACs without any modification. 

2.2. Characterization of the framework for internal and external disturbance 

2.2.1. The case of the internal disturbance 

Let us consider a solution containing two classes of components. The first group of components is fully 

characterized in concentration and chemical nature. The interactions among the molecules within this group 

are fully described utilizing only first-principle models. The second group of components is not 

characterizable in concentration, chemical nature, or both. Therefore, it is impossible to describe this part 

of the mixture, represent the interaction among the molecules within this group using a first-principle model, 

or both. Let us say M is the total number of components within the mixture, K is the number of components 

fully characterized, and U is the number of components impossible to characterize. Let us say 𝑥1, 𝑥2, … , 𝑥𝑘 

the measurables molar fractions of the K components fully characterized. For the remaining part of the 

mixture, it is impossible to measure the molar fractions of the unknown components individually; however, 

it is possible to estimate the sum of the molar fractions of the unknown components. Therefore, if there is 

no interest in individually considering the unknown U components, it is possible to derive the equation (8). 
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Here, even though the molar fractions of the unknown U components are still unmeasurable, it is still 

possible to estimate their sum 

𝑥𝑈 =∑𝑥𝑗̅

𝑈

𝑗=1

= 1 −∑𝑥𝑗

𝐾

𝑗=1

, (8) 

where 𝑥𝑈 is the sum of the liquid molar fraction of the unknown components within the mixture 𝑥𝑗̅, and 𝑥𝑗 is 

the liquid molar fraction of the known components within the mixture. A system respecting the above-

illustrated rules is defined as a system with internal disturbance. In such a system, it is possible to utilize 

first-principle models to describe the interactions between the molecules only for the K known components. 

On the contrary, describing the interactions involving any unknown component is impossible by employing 

the first-principle equation. In addition, the interactions between the known components are not encoded in 

the statistical model because they are already included in the first-principle model. Therefore, the statistical 

part of a hybrid model describing a system with internal disturbance only considers the concentration of the 

unknown part, as expressed in (8), and its interaction with the known concentrations and temperature. 

A system with an internal disturbance requires a modification over the molar fraction definition in the first-

principle model. The modification is needed to let the first-principle part of the hybrid model (1) respect the 

Gibbs-Duhem equation and the limit condition for the pure components. For this reason, the first-principle 

part of the hybrid model (1) should be calculated utilizing a normalized molar fraction over the known 

components as described by 

𝑥𝑗
∗ =

𝑥𝑗

∑ 𝑥𝑖
𝐾
𝑖=1

 for 𝑗 in 𝐾. (9) 

Therefore, considering the abovementioned model simplification strategies and equation (9), the hybrid 

model (1) for the system is 

ln(𝛾𝑖)|𝐻𝑀 = ln(𝛾𝑖)|𝐹𝑃 + ln(𝛾𝑖)|𝑆𝑀 = ln(𝛾𝑖(𝑥1
∗, 𝑥2

∗, … 𝑥𝑘
∗ , 𝑇)) |𝐹𝑃 + ln(𝛾𝑖(𝑥𝐼 , 𝑥1𝑥𝐼 , 𝑥2𝑥𝐼 , … , 𝑥𝑘𝑥𝐼 , 𝑥𝐼𝑇)) |𝑆𝑀. (10) 

Since the mixture of unknown components U still behaves as a chemical component, it is possible to draw 

the limit condition for the known components. The unknown part of the mixture generally does not behave 

as a pure component at the limit condition unless it is composed of only one chemical. Consequently, it is 

possible to derive the following equation for the known components: 
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lim
𝑥𝑖→1

ln (𝛾𝑖)|𝐻𝑀 = 0  for 𝑖 in 𝐾. (11) 

One could argue that the case with internal disturbance can be solved by utilizing the pseudo-component 

hypothesis, applying a first-principal model, and identifying unknown parameters over experimental data. 

However, this approach has two limitations: 1) it is implicitly assuming that the first-principle model utilized 

for the known mixture also works for the unknown part, 2) it is implicitly assuming that the unknown 

component is pure since the limit condition is also respected for the pseudo-component because of the 

structure of the first-principle model. Therefore, using the pseudo-component hypothesis could drastically 

reduce the extrapolation capabilities of the obtained model and force the prediction to be valid only within 

the range of the experimental data. 

2.2.2. The case of the external disturbance 

In a solution having an external disturbance, the components within the mixture are fully characterized, and 

the sum of their concentrations is 1. The solution contains K components, and it is possible to know the 

concentration and chemical nature of all the K components. Let us say 𝑥1, 𝑥2, … , 𝑥𝐾 the molar fraction of the 

K fully known components. Despite the system being fully characterized from a chemical point of view, the 

solution still shows a deviation in the ACs since an external agent is acting on it. For example, this could be 

the case of a perfume interacting with a fabric fiber. In this case, the deviation is not caused by a component 

within the mixture, but by an external agent acting on the mixture. Therefore, the case with an external 

disturbance considers a deviation of the ACs caused not by species contained in the solution but by external 

factors (e.g., interaction of the liquid with a surface or a particle dispersion within the liquid). Because of 

external disturbance, all the chemical interactions deviate from the ones predicted by first-principles. Thus, 

the statistical model describing the deviation of the ACs considers only the concentration of known 

components. Therefore, the hybrid model is constructed as  

ln(𝛾𝑖)|𝐻𝑀 = ln(𝛾𝑖)|𝐹𝑃 + ln(𝛾𝑖)|𝑆𝑀 = ln (𝛾𝑖(𝑥1, 𝑥2, … 𝑥𝐾 , 𝑇))|𝐹𝑃 + ln(𝛾𝑖(𝑥1, 𝑥2, … 𝑥𝐾 , 𝑇)) |𝑆𝑀. (12) 

Since the external disturbance also affects the pure component activity applying the limit conditions to the 

hybrid model equations is impossible. In addition, in case the level of the external disturbance is quantifiable, 

it is possible to include this information within the coefficients of the statistical model. In this case, the utilized 

function represents the model coefficient as zero in case of a null disturbance level. Although the reported 
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case is a further development in this framework, this work illustrates only the case with an unknown level of 

external disturbance. In addition, the level of external disturbance is supposed to be constant. 

2.3. Proof of the 3rd-order polynomial statistical function 

This section illustrates how characterizing the statistical part of the hybrid model utilizing physical restriction 

has two main benefits: 1) adding physical information into the system and increasing the model 

generalization capabilities and 2) reducing the number of the free parameter that the optimizer must identify 

during the training. So far, the focus of the paper was about increasing the physical awareness of the model; 

however, the second point is also crucial since it allows the reduction of the required training data points. 

To show how the statistical models are constrained via the proposed framework, a third-order polynomial of 

a ternary mixture is considered 

ln(𝜸) |𝑆𝑀 = 𝑨 ∙ 𝒙 + 𝑩 ∙ 𝒙2 + 𝑪 ∙ 𝒙3, (13) 

ln(𝜸) |𝑆𝑀 is a 3x1 vector containing the statistically modelled values of the ACs. 𝑨,𝑩 and 𝑪 are matrixes 

containing the parameters tunable by the search algorithm; their shape is 3x4, 3x10 and 3x20 respectively. 

Therefore, the overall system has 102 free parameters to identify prior to the physical characterization. The 

vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑇)
𝑇 contains all model inputs, here 𝑥𝑖 is the concentration of the i-th chemical 

component contained in the mixture, and 𝑇 is the temperature of the mixture. The vector 𝒙2 =

(𝑥1
2,  𝑥1𝑥2,  𝑥1𝑥3, 𝑥1𝑇, 𝑥2

2, 𝑥2𝑥3, 𝑥2𝑇, 𝑥3
2, 𝑥3𝑇, 𝑇

2)𝑇 contains all the          d                                 2nd-order interactions 

of the variables contained in the vector 𝒙. The vector 𝒙𝟑 =

(𝑥1
3, 𝑥1

2𝑥2, 𝑥1
2𝑥3, 𝑥1

2𝑇, 𝑥1𝑥2
2, 𝑥1𝑥2𝑥3, 𝑥1𝑥2𝑇, 𝑥1𝑥3

2, 𝑥1𝑥3𝑇, 𝑥1𝑇
2, 𝑥2

3, 𝑥2
2𝑥3, 𝑥2

2𝑇, 𝑥2𝑥3
2, 𝑥2𝑥3𝑇, 𝑥2𝑇

2, 𝑥3
3, 𝑥3

2𝑇, 𝑥3𝑇
2, 𝑇3)𝑇 contains 

all the 3rd-order interactions of the variables contained in the vector 𝒙. In the final hybrid model, equation 

(13) is combined with the first-principle model describing the interaction between the known part of the 

system as reported in equation (1). 

2.3.1. Application of the 3rd-order polynomial over a system with internal disturbance 

As described in section 2.2.1, the system can be characterized by equation (10). Both physical constraints 

can be applied, namely the Gibbs-Duhem equation (7) and the limit condition (3). In this example, a three 

components system is analyzed. Component 3 is the unknown part of the system. Therefore, it is possible 



 

13 
 

to describe the interaction between components 1 and 2 using first-principle models, while the statistical 

model describes the interactions between 1-3 and 2-3. Consequently, the model becomes 

{
 
 
 
 
 
 

 
 
 
 
 
 
ln (𝛾1)|𝑆𝑀 =  𝐴(1, 3) ∗ 𝑥3 +  𝐵(1, 3) ∗ 𝑥1𝑥3 +  𝐵(1, 6) ∗ 𝑥2𝑥3 +  𝐵(1, 8) ∗ 𝑥3

2 + 

+𝐵(1, 9) ∗ 𝑥3𝑇 +  𝐶(1, 3) ∗ 𝑥1
2𝑥3 +  𝐶(1, 6) ∗ 𝑥1𝑥2𝑥3 +  𝐶(1, 8) ∗ 𝑥1𝑥3

2 +

+𝐶(1, 9) ∗ 𝑥1𝑥3𝑇 +  𝐶(1, 12) ∗ 𝑥2
2𝑥3 +  𝐶(1, 14) ∗ 𝑥2𝑥3

2 +  𝐶(1, 15) ∗ 𝑥2𝑥3𝑇 +

 𝐶(1, 17) ∗ 𝑥3
3 +  𝐶(1, 18) ∗ 𝑥3

2𝑇 +  𝐶(1, 19) ∗ 𝑥3𝑇
2

ln(𝛾2)|𝑆𝑀 = 𝐴(2, 3) ∗ 𝑥3 +  𝐵(2, 3) ∗ 𝑥1𝑥3 +  𝐵(2, 6) ∗ 𝑥2𝑥3 +  𝐵(2, 8) ∗ 𝑥3
2 + 

𝐵(2, 9) ∗ 𝑥3𝑇 +  𝐶(2, 3) ∗ 𝑥1
2𝑥3 +  𝐶(2, 6) ∗ 𝑥1𝑥2𝑥3 +  𝐶(2, 8) ∗ 𝑥1𝑥3

2 + 

𝐶(2, 9) ∗ 𝑥1𝑥3𝑇 +  𝐶(2, 12) ∗ 𝑥2
2𝑥3 +  𝐶(2, 14) ∗ 𝑥2𝑥3

2 +  𝐶(2, 15) ∗ 𝑥2𝑥3𝑇 + 

𝐶(2, 17) ∗ 𝑥3
3 +  𝐶(2, 18) ∗ 𝑥3

2𝑇 +  𝐶(2, 19) ∗ 𝑥3𝑇
2

ln (𝛾3)|𝑆𝑀 = 𝐴(3, 3) ∗ 𝑥3 +  𝐵(3, 3) ∗ 𝑥1𝑥3 +  𝐵(3, 6) ∗ 𝑥2𝑥3 +  𝐵(3, 8) ∗ 𝑥3
2 + 

𝐵(3, 9) ∗ 𝑥3𝑇 +  𝐶(3, 3) ∗ 𝑥1
2𝑥3 +  𝐶(3, 6) ∗ 𝑥1𝑥2𝑥3 +  𝐶(3, 8) ∗ 𝑥1𝑥3

2 + 

𝐶(3, 9) ∗ 𝑥1𝑥3𝑇 +  𝐶(3, 12) ∗ 𝑥2
2𝑥3 +  𝐶(3, 14) ∗ 𝑥2𝑥3

2 +  𝐶(3, 15) ∗ 𝑥2𝑥3𝑇 +

 𝐶(3, 17) ∗ 𝑥3
3 +  𝐶(3, 18) ∗ 𝑥3

2𝑇 +  𝐶(3, 19) ∗ 𝑥3𝑇
2

 (14) 

Applying the Gibbs-Duhem equation and the limit condition constraints to the reported case, the physical 

characterization of the statistical model, reduces the number of free parameters identifiable by the optimizer 

from 102 to 28. 

2.3.2. Application of the 3rd-order polynomial over a system with external disturbance 

As described in section 2.2.2, the system can be characterized by only equation (12) and the Gibbs-Duhem 

restriction (7). The nature of the system blocks the possibility of applying the limit condition restriction. In 

addition, the statistical model requires as input the concentration of the components described already in 

the first-principle model and the temperature (i.e., x1, x2 and T). In the reported case, the physical 

characterization of the statistical model has reduced the number of free parameters identifiable by the 

optimizer from 102 to 86. 

2.4.  Description of the characterization algorithm 

2.4.1. Description of the algorithm 

The framework developed for characterizing the Gibbs-Duhem equation and limiting conditions over 

polynomial statistical functions is deployed in a python library available on request mailing the authors. This 

section describes the most relevant steps performed by the algorithm. The algorithm initiation requires a 

few definition parameters. The most relevant definition parameters are 1) the number of components within 

the system (i.e., K+1 in the case of internal disturbance or K in case of external disturbance), 2) the order 
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of the polynomial function to implement as the statistical model, and 3) the presence of an unknown 

component. The resolution of the equations applying the physical restriction within the algorithm is entirely 

symbolic. However, at the end of the resolution, the resulting characterized equations describing the ACs 

are deployed within a python function more responsive than a symbolic relation. The algorithm developed 

for this work is fully developed in python, employing SymPy 1.10.1 [26] for the symbolic manipulation and 

resolution of the equations. The procedure described in the following steps is deployed in a python class. 

The various parts of the algorithm are deployed in the class methods.  

When executed, the procedure creates a symbolic vector having many elements as the number of 

components within the mixture. If the temperature is added to the input space, the variables vector also 

contains a symbolic element for the temperature. The description performed in this section hypothesizes 

that the temperature is selected as the input element. Therefore, the dimension of the vector is M+1. For 

example, looking at (13), this procedure generates the symbolic representation of 𝒙. After creating such an 

array, the higher-order monomial terms are symbolically computed. They are generated by multiplying each 

term of the variable vector both by itself and all the other terms. The resulting terms are stored in another 

array containing all the monomial terms of the set order. The procedure is repeated until the monomial order 

set during the class definition is reached. In equation (13), this procedure generates the symbolic 

representation of 𝒙𝟐 and 𝒙𝟑. Once all the monomial terms are generated, the procedure computes the 

matrices containing the model parameters. Each matrix is associated with a monomial order and contains 

symbolic elements. It has as many rows as the number of components within the mixture and as many 

columns as the number of monomial terms associated with the monomial order. In equation (13), this 

procedure generates the symbolic representation of 𝑨,𝑩 and 𝑪. The statistical model is generated by 

summing the dot products between the vector and the matrix associated to the same monomial order. After 

creating the statistical functions, they are characterized to the case in the analysis. More specifically, the 

parameters of the variables to exclude from the computation are set to 0. For example, in the case of the 

presence of an unknown component, the statistical model considers only the interactive and non-interactive 

terms containing the unknown species. Therefore, all the parameters associated with the known species 

and their interactions are set to 0. This procedure creates the symbolic equations of the statistical model. 

The symbolic representation is then utilized to compute the equations to physical-restrict the statistical 
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models. The first step is calculating the limit conditions if needed. It is done by iteratively setting to 1 the 

molar fraction of one specie and 0 the molar fractions of all the other chemical species in the symbolic 

equations of the statistical models. For each component, this procedure returns an equation containing the 

model parameters. Some of the model parameters are multiplied by the temperature. These equations are 

stored in a python list and will be solved later in the procedure. After characterizing the limit conditions, the 

restrictions for the binary interaction of the Gibbs-Duhem equation are computed. It is performed by 

iteratively considering binary mixtures within the symbolic equations of the statistical model and 

implementing equation (7). It creates a polynomial function in the concentration of one of the two species. 

This relation must be equal to 0 for any temperature and molar fraction value, as expressed in (7); the only 

way to achieve this is to set all the coefficients of the equation to 0. Thus, the procedure sets all the 

polynomial coefficients to 0. This operation creates an equation set containing the model parameters and 

the system temperature. The equations are stored in the equations list to be solved. Later, the equations 

obtained with the Gibbs-Duhem correlation and the limit condition are united. This procedure generates an 

equations system to solve in order to constrain the statistical function. This equation set is linear in the 

model parameters. The only non-linear term is the product between the temperature and the model 

parameters; however, this does not restrict the resolution since the validity of the Gibbs-Duhem equation is 

at a constant temperature. The same can be claimed for the limit condition. Because of the linearity of the 

problem, the system admits only one solution that can be obtained analytically. The system is then solved 

in a symbolic manner returning correlations between variables. The obtained restrictions are implemented 

on the variable matrices, and the restricted equations are generated in a symbolic form.  

2.4.2. The computational complexity of the algorithm 

An analysis of the computational time required for the characterization of the system was performed. The 

investigation considered a system with external disturbance containing interactive terms between the 

variables. In addition, the limit condition was added to the system to cover the worst-case scenario, even if 

it does not make physical sense. The polynomial order and the number of components were considered for 

the analysis. The polynomial order varied from 1 to 5, while the number of components varied from 2 to 5. 

A full factorial analysis was performed involving 20 data points. The analysis returned an exponential 

complexity on the polynomial order and the number of components. Therefore, using the O-notation, the 
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system has a model complexity of 𝑂(𝑒𝑁𝐶∗𝑃𝑂) where 𝑁𝐶 is the number of components within the mixture and 

𝑃𝑂 is the polynomial order utilized in the model. Characterizing the function is the slowest step of the 

algorithm, and the abovementioned model complexity is related only to this part. Once the function has been 

characterized, it is converted to a python lambda function, and the computational time is negligible. Further 

information about the algorithm complexity and computational time are reported in the Supplementary 

Information of this paper in section s2. The computational complexity of the algorithm reported in this work 

is very unscalable since it grows exponentially with the number of components and the polynomial order. In 

this work, we focus on the methodology to obtain the hybrid model rather than the scalability of the algorithm. 

Further research can be executed to increase the scalability of the characterization algorithm by reducing 

the computational complexity. 

3. Application of the framework and results 

This section reports and analyses the application of the hybridGamma framework over experimental cases 

obtained from the literature and simulation. The investigated cases involved vapor-liquid equilibria (VLE) 

systems with 1) two organic components and one electrolyte, obtained from literature data, and 2) a multi-

components organic mixture obtained from simulations. The literature data were obtained by Iliuta et al. 

[27]. They reported the VLE data for a system involving acetone and methanol as molecular liquids and LiCl 

as the dissolved electrolyte salt. The paper refers to this dataset as the “Iliuta dataset”. The simulation data 

were obtained by calculating the VLE profiles of mixtures, including tetrahydrofuran, cyclohexane, 

acetonitrile, and benzene, obtained using Aspen Plus V10 using the NRTL model [3]. This paper refers to 

this dataset as the “Aspen dataset”. Most of the mixture in the Aspen dataset was composed of 

tetrahydrofuran and cyclohexane, with a total molar composition above 80%. On the other hand, the molar 

fraction of acetonitrile and benzene is lower than 20%. Therefore, the sub-mixture acetonitrile-benzene is 

considered the disturbance when operating with the Aspen dataset. Further information about the 

simulations executed to obtain the Aspen dataset is reported in the Supplementary Information section of 

this paper, in paragraph s3.  

Both datasets were utilized to test the framework for the cases with external disturbance (in Section 3.1) 

and internal disturbance (in Section 3.2). Only the known components were considered for the external 
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disturbance, and their mass fraction was normalized to 1. Although both experimental cases were employed 

to validate the framework, the approaches for the parameter identification of the statistical model differ 

between the two cases. For the Iliuta dataset, the hybrid models were trained using information about the 

VLE data. Therefore, the models were not trained directly on the ACs values; however, the cost functions 

aim to minimize the error between the boiling temperature of the system and the vapor concentration. For 

this reason, the framework validation includes Raoult’s law for non-ideal mixtures  

𝑃𝑡𝑜𝑡𝑦𝑖 = 𝑃𝑖
0(𝑇)𝛾𝑖|𝐻𝑀(𝒙, 𝑇)𝑥𝑖, (15) 

where the ACs 𝛾𝑖|𝐻𝑀 are calculated using the hybrid model (1), 𝑃𝑡𝑜𝑡 is the total system pressure, 𝑦𝑖 is the 

vapor molar-fraction of the i-th component within the mixture, 𝑃𝑖
0(𝑇) is the vapor pressure of the i-th 

component and 𝑥𝑖 is the liquid molar fraction of the i-th component within the mixture. A schematic 

representation of the training loop employed for the Iliuta dataset is given in Figure 2a. For the Aspen 

dataset, the hybrid models were trained using the ACs experimental values of the known components 

directly in the cost function (Figure 2b). The two training paradigms were designed to evaluate the 

performances of the framework both when direct information about the ACs is available and when this is 

missed but are available other measurable variables affected by the ACs (e.g., the boiling temperature for 

the evaluation case reported in this work). The first-principle model in the hybrid model is the non-random 

two liquids (NRTL) [3] for all the cases. 
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Figure 2: Schematic representation of the training approach for the two datasets. In this figure, x is the molar 

fraction of the chemical components in the liquid, 𝛾 is the activity coefficient, T is the temperature of the 

system [K], y is the molar fraction of the chemical components in the vapor [mol/mol], the superscript and 
the subscript exp is the experimental measured property, the superscript and the subscript pred is the 
property predicted by the first-principle model, |HM is the property predicted by the hybrid model a) Training 
loop used for the Iliuta dataset. Here, the ACs are combined with Raoult’s law for non-ideal mixtures, and 
the parameter identification is executed on the temperature and vapor concentration profile predicted by it. 
b) Training loop used for the Aspen dataset. Here, during the training, the predicted values of the ACs are 
compared with the experimental ones to compute the loss function. 

To train the model, as many data points as the number of model parameters were selected. All the other 

experimental data points serve as the validation set for an a-posteriori evaluation of the model and to assess 

its generalization capabilities. The generalization capabilities are evaluated utilizing the root mean squared 

error (RMSE), the mean absolute percentage error (MAPE) and the coefficient of determination (R2). 

3.1. Validation of the framework on a system with external disturbance 

The statistical function utilized for both the systems with external disturbance employed a second-order 

polynomial, including the system temperature in the input space. To further reduce the number of 

parameters included in the system, the statistical function of the AC does not consider the interaction terms 

between the input variable. Because of the nature of the system, the limit condition was not applied (for 

further information, see section 2.2.2). The resulting system after the physical restriction with the Gibbs-

Duhem equation is reported in (16). 

{
𝑙𝑛(𝛾1)|𝑆𝑀  =  𝐴(1, 1) ∗ 𝑥1  +  𝐴(1, 2) ∗ 𝑥2 +  𝐴(1, 3) ∗ 𝑇 + 𝐵(1, 1) ∗ 𝑥1

2  +  𝐵(1, 2) ∗ 𝑥2
2 +  𝐵(1, 3) ∗ 𝑇2 

𝑙𝑛(𝛾2)|𝑆𝑀  =  𝐴(2, 1) ∗ 𝑥1  +  𝐴(2, 2) ∗ 𝑥2  +  𝐴(2, 3) ∗ 𝑇 + 𝐵(2, 1) ∗ 𝑥1
2  +  𝐵(2, 2) ∗ 𝑥2

2  +  𝐵(2, 3) ∗ 𝑇2
 (16) 



 

19 
 

where 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) are the parameters that are identified during the training of the statistical model, 𝑥1 

and 𝑥2 are the molar fraction of the known components, 𝑇 is the temperature of the system. After the 

characterization using the hybridGamma framework, the model (16) has 9 parameters identifiable via the 

search algorithm. In this work, SciPy [28] 1.7.3 was used to fit the model we used the algorithm Broyden–

Fletcher–Goldfarb–Shanno implemented in the optimize.minimize function of SciPy. The minimization was 

executed on the mean absolute error of the predictions. 

3.1.1. Framework validation with external disturbance on the Iliuta dataset 

The VLE data reported by Iliuta et al. [27] with a molar fraction of LiCl of 0.1 were utilized for the validation 

executed in this section. Referring to equation (16), component 1 is the acetone, and component 2 is the 

methanol. LiCl is the external disturbance of the system; the hybrid model is unaware of the LiCl 

concentration. As many data points as the number of model parameters were selected for the training set. 

Figure 3a reports the performances of the trained hybrid model on the VLE system acetone-methanol with 

the external disturbance. Moreover, these plots include the prediction obtained with the first-principle model 

considering only the known part of the mixture and the data points utilized for the training and test of the 

model. Figure 3a reports the excellent generalization and extrapolation capabilities of the hybrid model. The 

result is achieved using only 9 data points in the train set. The model matches almost perfectly the test set 

points. In addition, the model shows excellent extrapolation capabilities toward parts of the investigation 

space not explored during the training set (i.e., the points located at the minimum and the maximum of the 

input space). This behavior is related to the physical awareness of the statistical model achieved via the 

characterization of the functions with the Gibbs-Duhem restrictions. The prediction accuracies over the test 

set are also confirmed by the evaluation metrics reported in Table 1. In this table, the model returns high R2 

scores on the test set and very low RMSE and MAPE, highlighting the outstanding capabilities of the 

obtained model. 
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Table 1. Evaluation metrics for the Iliuta case with the external disturbance over the ACs on the test set. 

 RMSE MAPE R2 

Temperature 0.296 0.403% 0.992 

Vapor concentration 0.0415 5.77% 0.972 

𝛾𝐴𝑐𝑒𝑡𝑜𝑛𝑒  0.128 6.10% 0.855 

𝛾𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 0.0856 12.3% 0.279 

 

Figure 3: Performance of the hybrid model framework to predict Acetone-Methanol-LiCl system VLE having 
as the external disturbance the LiCl concentration. a) Profile of the boiling point varying the acetone 
concentration in the liquid phase. b) profile of the acetone content in the vapor varying the acetone 
concentration in the liquid phase. The obtained ACs model shows significant generalization and 
extrapolation capabilities. 

Figure 3b reports the experimental and predicted profiles of the ACs. The ACs reports in this plot were 

calculated using the information reported in the Iliuta dataset and Raoult’s law for non-ideal mixtures (15) 

using the training loop in Figure 2a. In Figure 3b, it is possible to assess the model prediction quality within 

the entire range, both on training and test sets. The hybrid model profile matches the entire dataset for the 

acetone both on the train and on the test data points. Moreover, they return excellent scores when the 

models are evaluated over the test set (Table 1). The prediction over the methanol ACs profile is less 

accurate than the case of acetone. The profile reported in Figure 3b related to the methanol ACs presents 

a significant deviation in the range of acetone concentration from 0.2 to 0.5. In this area, the model 

systematically overestimates the ACs values. However, the hybrid model predictions of the methanol ACs 

are better in the rest of the experimental space, both on the train and test sets. For this reason, the evaluation 
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metrics on the test set about the methanol ACs are lower than one of the acetone. Most of the points 

included in the test set for the methanol ACs were from 0.2 to 0.5, with few points outside this range. This 

worsens the score values. Despite the bias, the evaluation performed over the test set for the methanol ACs 

returns acceptable RMSE and MAPE values, with values lower than 0.5 and 10% respectively; however, 

the R2 results are lower than the acetone ACs predictions (Table 1). In addition, from Figure 3, it is possible 

to assess the correction level made by the hybrid model over the first-principle model predictions. Figure 3b 

shows the ACs curves predicted by the first-principle model to intersect at 𝑥𝐴𝑐 = 0.5; however, this is not the 

case for the experimental data. The hybrid model performed this correction only using the system output 

and without any information about the actual value of the ACs. Overall, from Figure 3 and Table 1, it is 

possible to conclude that the framework shows excellent parameter identification and generalization 

capabilities, for a system with external disturbance when only the output variables are used for the training. 

In this case, the MAPE on the estimated activity coefficient is around 10% and the RMSE is lower than 0.2. 

All of this makes the developed hybrid model prediction overlap the experimental points in Figure 3b. 

3.1.2. Framework validation with external disturbance on the Aspen dataset 

Table 2. Evaluation metrics for the Aspen dataset with the external cause of disturbance over the ACs on 
the test set. 

 RMSE MAPE R2 

𝛾𝑡𝑒𝑡𝑟𝑎ℎ𝑦𝑑𝑟𝑜𝑓𝑢𝑟𝑎𝑛  2.16e-5 0.075% 0.999 

𝛾𝑐𝑦𝑐𝑙𝑜ℎ𝑒𝑥𝑎𝑛𝑒 4.44e-5 0.351% 0.999 

For this evaluation case, were selected the data points having the molar fraction of the unknown system of 

0.2. This dataset was selected because it has the highest value of disturbance and, therefore, it gives the 

highest effect of the internal deviation. The training points were randomly selected within the experimental 

dataset, excluding the two points at the higher and lower molar fraction of tetrahydrofuran employed in the 

test set. As many data points as the number of model parameters were selected for the training set. 

Referring to equation (16), component 1 is the tetrahydrofuran, and component 2 is the cyclohexane. The 

training was executed using a loss function employing the predicted and experimental ACs values rather 

than the system output, as in section 3.1.1. Figure 4 reports the simulations obtained with the hybrid ACs 

functions identified during the training phase. More specifically, it reports the experimental profile value, 
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hybrid model predictions and first-principle predictions of the tetrahydrofuran (reported in green) and 

cyclohexane (reported in red). From Figure 4, it is possible to evaluate the model performances within the 

training boundaries and its extrapolation capabilities. The hybrid model correctly predicted the entire 

experimental curve on both the training points and the test points. In addition, the training points covered 

the area between 𝑥𝑇𝐻𝐹 = 0.2 and 𝑥𝑇𝐻𝐹 = 0.9. The model did not experience any point outside these 

boundaries during the training phase; however, it can still accurately predict the system behavior for points 

outside the training set. It highlights the excellent extrapolation capabilities and generalization performance 

offered by the framework. They are also proved by evaluating the metrics reported in Framework validation 

with external disturbance on the Aspen dataset 

Table 2. In addition, based on Figure 4, it is possible to evaluate how the statistical model prediction corrects 

the first-principle model predictions. The first-principle model was executed, considering only the mixture 

containing tetrahydrofuran and cyclohexane. The first-principle model predicts an intersection between the 

profiles around 𝑥𝑇𝐻𝐹 = 0.5; however, in the experimental data, the intersection between the lines happens 

around 0.12 because of the external disturbance. The hybrid model detects the deviation given by the 

external disturbance and corrects it based on the concentration of the known components.   
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Figure 4. Performances of the hybrid model framework predict the tetrahydrofuran-cyclohexane system ACs 
having the acetonitrile-benzene presence as an external disturbance. The plot reports the prediction of the 
ACs obtained with the hybrid model and the first-principle predictions. The hybrid model describing the ACs 
shows significant generalization capabilities with MAPE lower than 0.5% on the test points. 

3.2. Validation of the framework with internal disturbance 

The statistical function used in this case employed a third-order polynomial, including the system 

temperature within the input space. Because of the nature of the system, the limit condition is applied (for 

further information, see section 2.2.1 of this paper). For brevity, the obtained equation after the physical 

characterization is given in the Supplementary Information of this paper in Section s4. Overall, the 

characterized function has 28 parameters to be identified by the optimizer. 

3.2.1. Framework validation with internal disturbance on the Iliuta dataset 

The entire dataset of the VLE data reported by Iliuta et al. [27], referred to Methanol-Acetone-LiCl, was 

utilized for this validation. The model was trained on 28 points randomly selected from the dataset; the 

number of the training points were chosen to be equal to the number of model tunable parameters. The 

points for the training set have been randomly chosen within the entire dataset except for the data having 

the concentration of 𝑥𝑈 = 𝑥𝐿𝑖𝐶𝑙 = 0.10; these points were excluded from the training to evaluate the 

interpolation capabilities of the model over a new concentration of unknown component.  Acetone and 



 

24 
 

methanol were assumed to be the known chemicals, and LiCl was the internal disturbance of the system 

(i.e., the unknown component). Therefore, the molar fraction of LiCl was utilized as the molar fraction of the 

unknown component. The model training was executed as reported in section 3 of this paper and Figure 

2a, considering the output variables (i.e., temperature and vapor concentration) in the loss function. The 

prediction capabilities of the model on the test set with 𝑥𝑈 = 0.10 are reported in Figure 5. From this plot, it 

is possible to assess how the prediction capabilities of the first-principle model are enhanced by using the 

hybrid modelling framework. Although the experimental points reported in Figure 5 were not included in the 

training set, the model still achieves better prediction accuracies than the first-principle model employed 

alone. Figure 5a reports the prediction of the VLE obtained with the hybrid model trained. In this figure, the 

predictions of the hybrid model match the experimental points for low acetone concentration in the area 

𝑥𝐴𝑐 < 0.3, after this threshold, the hybrid model starts deviating, and the deviation increases with the acetone 

concentration within the system. However, the maximum absolute deviation detected is 1.5°C. Figure 5b 

reports the value of the ACs obtained experimentally from the data, as reported in section 3.1.1, and the 

values obtained by the first-principle and hybrid models. The ACs for the acetone and methanol are well 

predicted without any bias. The experimental ACs points are spread around the hybrid model prediction 

line. The model was not trained for the data points reported in Figure 5; therefore, it shows excellent 

generalization capabilities. The excellent model generalization capabilities are also confirmed by the metrics 

reported in Table 3. Here, two kinds of evaluations are carried out: the evaluation over the entire test set 

and over the data points characterized by 𝑥𝑈 = 0.1. In both cases, the model results show significant 

accuracy and generalization with MAPE generally lower than 10%; however, the metrics evaluated over the 

overall test set results are better than those evaluated over the data with 𝑥𝑈 = 0.1. In other words, the model 

has better generalization capabilities over the known chemicals rather than the unknown. This behavior is 

related to the structure of the hybrid model since, for the known components, the model can already rely on 

the information contained in the first-principle model. 

Table 3. Performance metrics of the hybrid model over the test set of the system containing acetone-
methanol-LiCl. The system was hypothesized to have an internal disturbance represented by LiCl 

  RMSE MAPE R2 

Overall test set Temperature 0.33 0.44% 0.990 
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Vapor concentration 0.015 2.43% 0.991 

𝛾𝑎𝑐𝑒𝑡𝑜𝑛𝑒 0.124 2.60% 0.948 

𝛾𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 0.068 4.59% 0.913 

Test set with 𝑥𝑈 = 0.1 

Temperature 0.352 0.52% 0.990 

Vapor concentration 0.024 3.66% 0.991 

𝛾𝑎𝑐𝑒𝑡𝑜𝑛𝑒 0.0961 3.75% 0.954 

𝛾𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 0.0665 7.60% 0.651 

 

Figure 5: Performance of the hybrid model over the test set over the system containing acetone-methanol-
LiCl. The system was hypothesized to have an internal disturbance represented by LiCl. a) Boiling point of 
the mixture. b) Acetone concentration within the vapor phase. From these two plots, it is possible to assess 
how the statistical model enhances the prediction capabilities of the first-principle component of the hybrid 
model. 

3.2.2. Framework validation with internal disturbance on the Aspen dataset 

The entire Aspen dataset was employed to train the model with internal disturbance. The training was 

executed with 28 data points randomly selected within the dataset; the number of the training points were 

chosen to be equal to the number of model tunable parameters. In addition, the points having 𝑥𝑈 = 𝑥𝐼𝑚𝑝 =

0.20 were excluded from the training. The points of this dataset were utilized in the validation phase to 

assess the extrapolation capabilities of the model. Tetrahydrofuran and cyclohexane were used as known 

components of the system, while acetonitrile and benzene were considered the internal disturbance of the 

system (i.e., unknown component). Figure 6 reports the model capabilities on the test set with 𝑥𝑈 = 0.20. 

This figure reports the excellent extrapolation capabilities of the model. The training space has a maximum 
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impurity concentration of 𝑥𝑈 = 0.1; therefore, the case reported in this figure is significantly outside the last 

training point. The predictions reported in this figure are remarkable; this is possible because of the physical 

characterization of the characterized hybrid model for the ACs prediction. The remarkable generalization 

capabilities are also highlighted by the evaluation metrics values in Table 4. Here the MAPE values are 

lower than 1% for all the variables and the R2 is always larger than 0.99. This table reports the metrics over 

the test set, for the entire test set (i.e., the union of the random points within the training space and the value 

at 𝑥𝑈 = 0.2 ) and the results obtained only with the extrapolation test points (i.e., the points at 𝑥𝑈 = 0.2). The 

R2 reported in this table is very close to one, and the RMSE and MAPE are significantly small for both test 

sets. However, the evaluations executed over the overall test set are better than the ones executed on the 

test set with 𝑥𝑈 = 0.2. This happens because the entire test set also contains points within the investigation 

space (i.e., interpolative points). The interpolations are generally more accurate than the extrapolations; 

therefore, the error metrics are lower on the entire test set than the extrapolation set alone. Despite this 

scenario, the evaluation metrics computed only over the test set with 𝑥𝑈 = 0.2 does not differ much from the 

values of the evaluation metrics computed on the entire dataset. 

Table 4. Performance metrics of the hybrid model over the test set of the system containing tetrahydrofuran, 
cyclohexane, acetonitrile, and benzene. The system was hypothesized to have an internal disturbance 
represented by acetonitrile and benzene. 

  RMSE MAPE R2 

Entire test set 

𝛾𝑡𝑒𝑡𝑟𝑎ℎ𝑦𝑑𝑟𝑜𝑓𝑢𝑟𝑎𝑛 3.75e-6 0.136% 0.999 

𝛾𝑐𝑦𝑐𝑙𝑜ℎ𝑒𝑥𝑎𝑛𝑒 1.08e-4 0.606% 0.998 

Test set with 𝑥𝑈 = 0.2 

𝛾𝑡𝑒𝑡𝑟𝑎ℎ𝑦𝑑𝑟𝑜𝑓𝑢𝑟𝑎𝑛 5.53e-6 0.191% 0.997 

𝛾𝑐𝑦𝑐𝑙𝑜ℎ𝑒𝑥𝑎𝑛𝑒 1.78e-4 0.972% 0.997 
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Figure 6. Extrapolation capabilities of the framework on the Aspen dataset considering an internal 
disturbance. The data contained in this figure refers to 𝑥𝑈 = 0.2. 

4. Conclusions 

In this paper, we introduced a novel framework to construct physic-aware hybrid models of ACs. It contains 

two main parts, a first-principle model utilizing established knowledge about the known part of the system 

(e.g., NRTL or UNIFAC) and a statistical model able to characterize the hybrid model to the system in 

analysis via parameters to be identified on experimental cases. The framework was designed to handle the 

behavior of systems with internal or external disturbances. The methodology constructs physic-aware hybrid 

models by constraining the statistical part of the model using physical equations (i.e., Gibbs-Duhem 

equation and limit condition). It increases the generalization capabilities of the model and reduces the 

number of free parameters to identify during the training phase. The reduced number of parameters reduces 

the number of data points required for the model training, increasing the data efficiency of the methodology 

compared to an entirely statistical approach. This paper mathematically proved the fundamental paradigms 

on which the framework relies. In addition, the algorithm to construct the physics-aware hybrid models was 

described in detail. The algorithm was implemented in a python library available on request mailing the 

authors. The implemented algorithm is available on request and easy to use scientists and researchers. 
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The application and validation of the framework were performed on two cases involving experimental data 

obtained from literature and a dataset containing simulation data obtained from a first-principle model 

calculation. The datasets refer to vapor-liquid equilibria (VLE) profiles; however, different training strategies 

were applied to investigate the framework flexibility over various data sources. Both cases have been 

treated as containing an internal and an external disturbance. The models were trained using the minimum 

amount of data required for this task to demonstrate the data-efficiency of the methodology. The training of 

the hybrid models describing the ACs was performed in combination with Raoult’s law for non-ideal mixtures 

to prove the robustness of the methodology. All the training returned outstanding prediction accuracy, 

generalization, and extrapolation capabilities on the test set.  

This paper focused on a single type of statistical function (i.e., polynomial) and simple validation cases. A 

natural prosecution of this work is the application of the methodology over other statistical functions (e.g., 

multivariate rational functions and artificial neural networks). Furthermore, the framework can be applied to 

more extensive hybrid models involving fermentative or pharmaceutical processes.  

Table of symbols 

Latin letters 

𝑨,𝑩, 𝑪, … Matrices containing the parameters of the statistical 

K Number of known chemicals present within the system 

M Number of total chemicals present within the system 

𝑇 Temperature of the system 

U Number of unknown chemicals present within the system 

𝑥 Molar fraction of a component in the liquid phase 

𝒙 Vector containing the molar fractions of the components within the liquid 

𝑦 Molar fraction of a component in the vapor phase 

Greek letters 

𝛾 Activity coefficient 
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Superscripts 

◻̅ Molar fraction of the unknown components 

∗ Normalized molar fraction overall the known components 

Subscripts 

𝐹𝑃 First-principle model  

𝐻𝑀 Hybrid model 

𝑆𝑀 Statistical model 

𝑈 Unknown component 
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