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Abstract 

Applying machine learning (ML) techniques is a complex task when the data quality is poor. Integrating 

first-principle models and ML techniques, namely hybrid modelling significantly supports this task. This 

paper introduces a novel approach to developing a hybrid model for dynamic chemical systems. The 

case in analysis employs one first-principle structure and two ML-based predictors. Two training 

approaches (serial and parallel), two optimisers (particle swarm optimisation and differential 

evolution) and two ML functions (multivariate rational function and polynomial) are tested. The 

polynomial function trained with the differential evolution showed the most accurate and robust 

results. The training approach does not significantly affect the hybrid model accuracy. However, the 

main effect of the training approach is on the robustness of the parameter predictions. The coefficients 

of determination (R2) on the test batches are above 0.95. In addition, it showed satisfactory 

extrapolation capabilities on different production scales with R2>0.9.  

Keywords: hybrid modelling, dynamic system, solvent switch, optimization, statistical modelling, data 

value 

1. Introduction 

In recent years, the process industry is gaining several benefits in the application of big data and 

machine learning (ML) techniques to model their processes (Bogojeski et al., 2021; Chiang et al., 2017; 

Ge et al., 2021; Mohd Ali et al., 2015; Qin and Chiang, 2019). These techniques use experimental data 

to develop data-driven models (or statistical models) to predict the physical phenomena described in 

the dataset used for the training. Despite the augmented prediction accuracy and the interest from 

the chemical industry, the application of ML modelling is still limited to specific industrial-scale 

processes because of a data quality problem. The data should respect the 5Vs rule to apply ML 

techniques (BBVA, 2020; Demchenko et al., 2014), namely: 

1. Volume – higher amount of data allows for higher model accuracy. 

2. Variety – an observed phenomenon should be described using different kinds of data. 

3. Velocity - the data should be available in real-time to refine the parameters of the model. 

4. Veracity – the uncertainty related to the data should be available and low. 

5. Value – the information contained in the data should be helpful and not redundant. 

The data obtained from chemical processes lacks Value and often Veracity. The process industry can 

benefit from the high amount of data coming from production processes. However, they usually have 

little use in building prediction models since 1) they cover only a narrow parameter space and 2) the 
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isolated effect of each process parameter on the final output is often not captured by the data (Reis et 

al., 2016). In addition, the information obtained from the plant is highly intercorrelated (McBride et 

al., 2020) and often suffers missed information because of communication and storage problems 

(Fisher et al., 2020). 

The hybrid modelling approach is a solution to apply statistical modelling to cases with low availability 

and quality of data. It employs first-principle modelling and statistical modelling to make its 

predictions. The statistical model can be used either to refine the prediction of the first-principle model 

or to predict the parameters utilised by it to perform the predictions. It increases the overall accuracy 

and extrapolation capabilities of the model (McBride et al., 2020; Sansana et al., 2021; von Stosch et 

al., 2014). For this reason, the hybrid modelling overcomes the abovementioned issues related to the 

narrow investigation space that characterises data coming from a chemical process. It is well known 

that the statistical models can perform their predictions only within the boundaries within which the 

data are located. On the contrary, the hybrid models can extend their predictions range beyond the 

data boundaries since they can rely on the presence of a first-principle model. Moreover, the 

integration of the first-principle model allows the incorporation of the first-principle correlation 

between the variables before the model training (Glassey and von Stosch, 2020; von Stosch et al., 

2014). This reduces the amount of data required to train the model. For these reasons, we hypothesise 

that using a hybrid model is a solution to Value and Veracity insufficiencies in chemical process data. 

This work utilises the constant volume solvent switch (CSS) as a case study. It is one of the primary 

downstream operations required to produce active pharmaceutical ingredients (API). It aims to switch 

the reaction solvent to the crystallisation solvent allowing the purification of the API (Elgue et al., 2006; 

Papadakis et al., 2016). Developing a model with high prediction capabilities of the CSS operation by 

using the first-principle approach is challenging to execute. The system has a significant dynamic 

behaviour, making it too complex to accurately model using thermodynamic equations. In addition, 

the interaction of the API with the various solvents utilised in this process is hard to predict with high 

accuracy. As a matter of fact, the first-principle model used in this work returns poor prediction 

accuracy (Table 4). 

This paper proposes a new methodology to develop hybrid models in the dynamic system running 

under uncertainties, focusing on the separation systems. We intend to overcome the Value and 

Veracity issues mentioned above. The hybrid model utilised in this paper is composed of one first-

principle model and two statistical models. Eight combinations of statistical modelling techniques have 

been investigated in this work. These are the combinations of two statistical functions, two optimisers, 

and two training strategies. The statistical functions are namely multivariate rational function (MRF) 

and polynomial. The optimisers are particle swarm optimisation (PSO) and differential evolution (DE). 

The training of the models was performed using parallel and serial strategies. 

The usage of MRF has been briefly explored in chemical engineering for the approximation of functions 

not described by first-principle models (Willis and von Stosch, 2017), while it has shown excellent 

capabilities in other fields (Austin et al., 2021; Hong et al., 2018). The DE and PSO algorithms have 

already been applied to chemical engineering problems to perform both parameter identification and 

process optimisation (Aguitoni et al., 2018; Angira and Santosh, 2007; Biazi et al., 2020; Dragoi and 

Curteanu, 2016; Mariano et al., 2011; Schwaab et al., 2008). They are valid alternatives to the 

traditional gradient-based optimisation approaches due to their ability to escape from the local 

minimum and converge to the global optimum in the search area (Dragoi and Curteanu, 2016). 

We hypothesise that combining these powerful techniques leads to a hybrid model with high 

prediction accuracy and robustness. This way, we resolve the Value and Veracity issues with high 

extrapolation capabilities. The new methodology relies on the capability of MRF and polynomial to 

predict and handle non-linear behaviours and the augmented quality of the parameter tuning of the 
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differential evolution approach compared to the traditional gradient-based approaches. This new 

hybrid model methodology focuses on batch and fed-batch operations. However, it applies to all the 

separations and reaction processes. The model developed with this approach is validated through data 

from an industrial plant provided by a pharmaceutical partner company. 

 

2. Material and methods 

2.1 The process 

The data used in this study were obtained from a process in development. The process aims to swap 

the solvent from dichloromethane (DCM) to acetone (Ac). A low concentration (below 10% mol) of 

methanol (MeOH) is present within the reboiler at the beginning of the operation. Figure 1 shows the 

schematic representation of the equipment used for this operation.  

The CSS operation is divided into two phases according to the optimisation strategy suggested in the 

literature (Elgue et al., 2006). These are, namely, the first evaporation and constant volume phases. 

During the first evaporation step, the reaction solvent (DCM in this study) is evaporated to a minimum 

volume optimised during the design phase. In the constant volume phase, the crystallisation solvent 

(Ac) is fed while the evaporation of the solvent blend (DCM+Ac) takes place at the designed minimum 

volume. 

 
Figure 1: Schematic representation of the solvent switch process utilised as a case study in this work. At the initial state, the 

reboiler contains only dichloromethane (DCM). The acetone (Ac) is contained in a tank and fed to the reboiler. During the 
solvent switch operation, Ac and DCM evaporate from the reboiler while the Ac is fed to keep the liquid volume within the 

reboiler constant. This increases the concentration of Ac in the solution within the reboiler and decreases the DCM 
concentration. 

2.2 Data description and input-output of the final model 

Three batches are utilised in this study. All the batches were executed in the same reactor, with the 

same equipment and following the same control strategy. In addition, a supplementary batch was 

utilised to investigate the extrapolation capabilities of the model. This batch data was used following 

the training phase to test the extrapolation abilities of the model. This extrapolation batch was 

executed with half the volume compared to the training batches. A list of all the process variables 

contained in the datasets and utilised to develop the model is available in Supplementary Information 

(SI) section 1.2. The model utilises as input the flowrate of Ac, the temperature of the heat transfer 

fluid within the jacket, the reflux direction and the stirring speed. It predicts all the other variables 

contained in the dataset; however, the main ones are the temperature inside the reboiler, the volume 

inside the reboiler and the evaporated amount of solvent leaving the reboiler.  

2.3 The first-principle model 
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The first-principle model contains material balance, phase equilibrium equations and heat balance. It 

was built with the following assumptions: 1) Thermodynamic equilibrium between liquid and vapour, 

2) The pressure of the system is constant during the operation, 3) The viscous dissipation heating due 

to the stirring is negligible, 4) The fluid within the reboiler is perfectly mixed, 5) The condenser is ideal 

(all the vapour entering into it is condensate without any vapour-liquid equilibria), 6) No chemical 

reactions take place during the process, 7) Inert gas is not dissolved within the liquid, 8) The gas phase 

behaves as ideal. A detailed description of the first-principle model is available in SI section 1.3. 

The energy balance was written by considering the evaporation of the solvent blend driven by the 

service fluid. The overall heat-balance equation is reported in (1): 
𝑑(𝑀𝐿 ∗ ℎ𝐿 + 𝑀𝑉 ∗ ℎ𝑉)

𝑑𝑡
=

= 𝐹𝑖𝑛 ∗ ℎ𝐹 + 𝑅 ∗ 𝐹𝑟𝑒𝑓 ∗ ℎ𝑟𝑒𝑓 − 𝐹𝑜𝑢𝑡 ∗ ℎ𝑉 + 𝐹𝑔𝑎𝑠
𝑖𝑛𝑒𝑟𝑡 ∗ ℎ𝑔𝑎𝑠 + 𝑈 ∗ 𝐴 ∗ (𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒 − 𝑇) (1)

 

where 𝑀𝐿 [𝑚𝑜𝑙] is the molar amount of liquid within the reboiler, ℎ𝐿[𝐽 ∗ 𝑚𝑜𝑙−1] is the liquid enthalpy, 

𝑀𝑉  [𝑚𝑜𝑙] is the molar amount of vapour within the reboiler, ℎ𝑉[𝐽 ∗ 𝑚𝑜𝑙−1] is the liquid 

enthalpy, 𝐹𝑖𝑛[𝑚𝑜𝑙 ∗ 𝑠−1] is the molar flowrate of crystallisation solvent flowing to the reboiler, ℎ𝐹 [𝐽 ∗

𝑚𝑜𝑙−1] is the enthalpy of the crystallisation solvent flowing to the reboiler, 𝑅[−] is the state of the 

reflux (0 or 1), 𝐹𝑟𝑒𝑓[𝑚𝑜𝑙 ∗ 𝑠−1] is the flowrate of the reflux stream, ℎ𝑟𝑒𝑓[𝐽 ∗ 𝑚𝑜𝑙−1] is the enthalpy of 

the reflux liquid stream, 𝐹𝑜𝑢𝑡 [𝑚𝑜𝑙 ∗ 𝑠−1] is the flowrate of vapour leaving the reboiler, 𝐹𝑔𝑎𝑠
𝑖𝑛𝑒𝑟𝑡[𝑚𝑜𝑙 ∗

𝑠−1] is the flowrate of inter gas flowing into the system, ℎ𝑔𝑎𝑠[𝐽 ∗ 𝑚𝑜𝑙−1] is the enthalpy of the inert 

gas, 𝑈 [𝐽 ∗ 𝑠−1 ∗ 𝐾−1 ∗ 𝑚−2] is the overall heat transfer coefficient between the liquid within the 

reboiler and the heat transfer fluid, 𝐴 [𝑚2] is the contact area between the liquid within the reboiler 

and the heat transfer fluid,  𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒[𝐾] is the temperature of the heat transfer fluid, 𝑇 [𝐾] is the 

temperature of the fluids (liquid and vapour) within the reboiler.  

The heat-transfer coefficient from the jacket to the reboiler (𝑈) was modelled utilising the heat 

resistance chain model (Bird et al., 2006). For the study case, the wall is composed of two solid layers 

(steel/glass enamel) and the convection layer inside the reboiler; the resistance related to the 

convection layer jacket-side was considered negligible. The convection heat transfer coefficient inside 

the reboiler was calculated by using the Nusselt equation correlation (2).  

𝑁𝑢 =
ℎ ∗ 𝐷

𝑘
= 𝑓(𝑅𝑒, 𝑃𝑟, 𝑉𝑖) = 𝑘𝑈𝐴 ∗ 𝑅𝑒𝛼 ∗ 𝑃𝑟𝛽 ∗ 𝑉𝑖𝛾  (2) 

where 𝑁𝑢 [−] is the Nusselt number, ℎ [𝐽 ∗ 𝑠−1 ∗ 𝐾−1 ∗ 𝑚−2] is the thermal convection coefficient 

inside the reboiler, 𝐷 [𝑚] is the characteristic dimension of the system, 𝑘 [𝑊 ∗ 𝑚−1 ∗ 𝐾−1] is the 

thermal conductivity of the liquid inside the reboiler, 𝑘𝑈𝐴[−], 𝛼[−], 𝛽[−] and 𝛾[−] are case-

dependent parameters, 𝑅𝑒[−] is the Reynolds number, 𝑃𝑟[−] is the Prandtl number, and 𝑉𝑖[−] is the 

ratio between the viscosity of the liquid on the wall of the reboiler and in the liquid bulk. 

To compute (2) four case-dependent parameters should be identified. In the literature, the following 

parameter values are suggested 𝑘 ∈ [0.3,1.5], 𝛼 = 0.66, 𝛽 = 0.33, 𝛾 = 0.14 (Mohan et al., 1992). 

2.4 The structures of the statistical models 

Applying a first-principle model with the parameter optimised for the analysis case returned poor 

prediction accuracy and low generalisation capabilities among the batches. Two main deviating 

parameters were identified from the sensitivity analysis on the parameters of the first-principle model. 

Namely, the heat transfer coefficient (3) and the liquid enthalpy (4). Two statistical functions were 

employed to correct the identified parameters and model their deviations: 

𝑘𝑈𝐴
𝐻𝑀 = 𝑘𝑈𝐴

𝐼𝐷𝐸𝐴𝐿 + 𝑘𝑈𝐴
𝑑𝑒𝑣 (3) 

ℎ𝐿
𝐻𝑀 = ℎ𝐿

𝐼𝐷𝐸𝐴𝐿 + ℎ𝐿
𝑑𝑒𝑣 (4) 
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where 𝑘𝑈𝐴
𝐻𝑀 [−] is the corrected proportional value in the Nusselt equation (2), 𝑘𝑈𝐴

𝐼𝐷𝐸𝐴𝐿[−] is the ideal 

proportional value in the Nusselt equation, 𝑘𝑈𝐴
𝑑𝑒𝑣[−] is the correction function for the proportional 

factor in the Nusselt equation, ℎ𝐿
𝐻𝑀[𝐽 ∗ 𝑚𝑜𝑙−1] is the corrected value of the liquid enthalpy, ℎ𝐿

𝐼𝐷𝐸𝐴𝐿[𝐽 ∗

𝑚𝑜𝑙−1] ] is the ideal value of the liquid enthalpy, ℎ𝐿
𝑑𝑒𝑣[𝐽 ∗ 𝑚𝑜𝑙−1] is the correction function for the 

liquid enthalpy. 

We hypothesise that the heat transfer coefficient deviates because of the effect of the liquid volume 

change on the mixing efficiency. For this reason, 𝑘𝑈𝐴 was computed as a function of the liquid volume 

inside the reboiler. 

The deviation of the liquid enthalpy from the first-principle model was computed as a function of the 

concentration of Ac and the temperature of the liquid within the reboiler. In this case, the ℎ𝑑𝑒𝑣
𝐻𝑀  is not 

only the enthalpy of the mixture containing Ac, DCM and MeOH. However, it includes 1) the enthalpy 

excess of the mixture Ac-DCM, 2) the interaction between the solvents and the API, and 3) the 

deviation from the ideality of the model.  

MRF and polynomial functions were employed to model the abovementioned deviations. The explicit 

expressions of the functional forms are reported in Table 1. In the equation contained in this table, 

𝑉[𝑚3] is the volume of liquid within the reboiler, 𝑇 [𝐾] is the temperature within the reboiler, 

𝑥𝐴𝑐[𝑚𝑜𝑙 ∗ 𝑚𝑜𝑙−1] is the molar-fraction of Ac within the liquid contained in the reboiler, 

𝑘𝑈𝐴
𝐼𝐷𝐸𝐴𝐿 , 𝐴1, 𝐵1, 𝐴2, 𝐵2 are the fitting coefficients identified from the optimiser 

Table 1: Explicit form of the functional structure used to perform the black-box function estimation. 

 MRF Polynomial 

𝑘𝑈𝐴
𝐻𝑀 𝑘𝑈𝐴

𝐼𝐷𝐸𝐴𝐿 +
𝐴1 ∗ 𝑉

1 + 𝐵1 ∗ 𝑉
 𝑘𝑈𝐴

𝐼𝐷𝐸𝐴𝐿 + 𝐴1 ∗ 𝑉 + 𝐵1 ∗ 𝑉2 

ℎ𝐿
𝑑𝑒𝑣 

𝐴1 ∗ 𝑥𝐴𝑐 + 𝐴2 ∗ 𝑥𝐴𝑐 ∗ 𝑇

1 + 𝐵1 ∗ 𝑥𝐴𝑐 + 𝐵2 ∗ 𝑥𝐴𝑐 ∗ 𝑇
 𝐴1 ∗ 𝑥𝐴𝑐 + 𝐴2 ∗ 𝑥𝐴𝑐 ∗ 𝑇 + 𝐵1 ∗ 𝑥𝐴𝑐

2 + 𝐵2 ∗ 𝑥𝐴𝑐
2 ∗ 𝑇2 

2.5 The search algorithms 

Differential evolution (DE) (Storn and Price, 1997) and particle swarm optimisation (PSO) (Kennedy and 

Eberhart, 1995) were employed to identify the coefficients of the black-box models. Both the 

algorithms were trained with 20 particles initially distributed on the coefficient space using a Latin 

hypercube sampling strategy. 30 iterations were used to perform the training of the models. Each 

search was repeated 10 times with different positions of the initial population. A more detailed 

description of the search algorithms is in the SI section 1.4. For the DE, the best/2/bin was used as 

mutation strategy with a mutation coefficient F=0.5. The cross-over probability factor was set to be 

0.7. For the PSO, the inertia coefficient 𝜔 = 0.85, the individual coefficient 𝑐𝑝 = 2 and social 

coefficient 𝑐𝑔 = 1. 

2.6 The training approaches 

Two different training approaches were used to train the coefficients of the two statistical models 

(𝑘𝑈𝐴
𝐻𝑀 and ℎ𝐿

𝑑𝑒𝑣) with the different optimisers. The statistical models were trained simultaneously 

(Parallel approach) or consecutively (Serial approach). The serial approach was possible due to the 

structure of the statistical models contained in the hybrid model. The ℎ𝑑𝑒𝑣
𝐻𝑀  model does not have any 

impact during the first evaporation (see Section 2.1) since the concentration of Ac in this phase is zero. 

For this reason, the 𝑘𝑈𝐴
𝐻𝑀 model could be trained separately on this first step of the process. Once its 

coefficients were identified, the ℎ𝑑𝑒𝑣
𝐻𝑀  model was trained on the constant volume step of CSS (see 

Section 2.1). The authors hypothesise that the performance of the training approaches will change 

with the functional form and the optimiser employed during the training. In addition, the authors 

hypothesise that the serial approach will return models with higher prediction accuracy and 
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robustness. Eight different combinations of training approaches, optimisers and functional forms were 

tested and compared (Table 2). 

Table 2: Abbreviation of the eight combinations of training approach, optimiser and functional form tested and compared in 
this work 

Abbreviation Approach Optimiser Functional form 

PSO/MRF/Parallel Parallel PSO MRF 

PSO/poly/Parallel Parallel PSO Polynomial 

DE/MRF/Parallel Parallel DE MRF 

DE/poly/Parallel Parallel DE Polynomial 

PSO/MRF/Serial Serial PSO MRF 

PSO/poly/Serial Serial PSO Polynomial 

DE/MRF/Serial Serial DE MRF 

DE/poly/Serial Serial DE Polynomial 

The training of the statistical models was performed utilising two batches; the fitness functions were 

calculated for each of them, and then the two values were averaged and fed back to the optimiser. 

The training loop and the variables used in it are shown in Figure 2. 

 

Figure 2: Hybrid model training structure. The coefficients set proposed by the optimiser is used to run the simulation driven 
by experimental input. The model returns the estimated time profile of the output variables. These are compared with the 

experimental output from the plant, and the fitness function is calculated using these deviations. The calculated value of the 
fitness function is given to the optimiser, which will propose a new set of coefficients to test. 

2.7 Fitness function 

The fitness function was composed of the most representative and stable variables of the process. 

Their experimental values were compared to the model predictions at each time step.  

In case of premature interruption of the DAE resolution, the fitness function returns 1014; on the 

contrary, the equation (5) is applied to compute its value. 

𝐶𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝝓) = 𝐶𝑇𝑒𝑚𝑝𝑅𝑒𝑏(𝝓) + 𝐶𝑅𝑒𝑐𝑇𝑎𝑛𝑘(𝝓) + 1𝑒10 ∗ 𝐶𝑇𝑖𝑚𝑒(𝝓) (5) 

where 𝝓 is the vector associated with the statistical model coefficients, 𝐶𝑇𝑒𝑚𝑝𝑅𝑒𝑏(𝝓) is the fitness 

function part associated with predicting the temperature inside the reboiler; it is computed as the 

mean squared error (MSE) of the temperature. 𝐶𝑅𝑒𝑐𝑇𝑎𝑛𝑘(𝝓) is the fitness function part associated with 

predicting the volume inside the receiver tank. This variable has a high uncertainty due to process-

related unquantified losses (e.g. sensor noise, vent gas purge, sloshing); 𝐶𝑅𝑒𝑐𝑇𝑎𝑛𝑘(𝝓)  is thus 

computed taking into account these uncertainties as described in SI section 1.5. 𝐶𝑇𝑖𝑚𝑒(𝝓) is fitness 
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function part associated with the prediction of the end time of the process. A more detailed description 

of the cost function is available in SI section 1.5. 

2.8 Definition of the success criteria 

The prediction accuracy of the hybrid models was evaluated utilising the fitness function values 

returned from each training run. Since each model was trained 10 times, the median and the variance 

of the fitness function values were employed as descriptors for each training group. Lower values of 

the variance indicate higher robustness of the training technique to the initial conditions. Lower values 

of the median indicate the better prediction accuracy of the technique. 

A twofold approach was applied to evaluate the quality of the black-box models that drive the 

parameters of the first-principle model. The quality of the models that define 𝑘𝑈𝐴
𝐻𝑀 is evaluated utilising 

both the physical boundaries suggested in the literature (Mohan et al., 1992) and a reference trend 

proposed by the DE/poly/Serial. 

The ℎ𝑑𝑒𝑣
𝐻𝑀  statistical model was evaluated only utilising the trend proposed by DE/poly/Serial. It was 

used as a reference for two main reasons: 1) in the preliminary tests, it returned both the more robust 

fitness score median and variance in moving from the training set to the test set and 2) the statistical 

models estimated by this technique are less sensitive to the initial population distribution.  

The index of dispersion (IoD) (6) was utilised to assess the quality of the black-box models returned 

by the various techniques and training approach 

𝐼𝑜𝐷 =
𝜎2

𝜇
(6) 

where 𝜎 is the standard deviation of the training group and 𝜇 is the average of the training group. 

For each training group, the 𝐼𝑜𝐷 value was calculated at fixed independent variables of the black-box 

models. The average and maximum values of this descriptor are used as indicators: the lower their 

values, the more robust the technique with the initial population. 

3. Results and discussion 
3.1 Parallel training 

3.1.1 Comparison of the complete hybrid model prediction in the parallel training 

In the parallel training, the hybrid models based on the polynomial structure show higher accuracy and 

robustness than the MRF (Figure 3a). The presence of the denominator in the MRF structure increases 

the non-linearity of the coefficient search and narrows down the validity domain of the functions. It 

led to some runs to numerical instabilities or premature interruption of the hybrid model on the test 

set. In the polynomial form, the absence of the denominator increases the range of the solution, 

decreases the non-linearity of the search and reduces the instabilities of the system. All these factors 

allow the polynomial-based models to have higher accuracy and robustness than the MRF-based 

models (Figure 3).  

The optimiser in the parallel training has a marginal effect on the overall hybrid model performances. 

In the literature, the DE algorithm is well-known to be more robust and performant in the coefficient 

search than the PSO (Civicioglu and sBesdok, 2013; Vesterstrom and Thomsen, 2004; Zhang and Wei, 

2014). However, in this case, its results do not differ so much from the one of the PSO. We hypothesise 

that the robustness of the DE is not enough to stabilise the solution proposed by the MRF statistical 

functions for the case study. 

The models obtained using DE/poly/Parallel return a lower median value of the fitness function on the 

training and test sets than the models trained with the PSO/poly/Parallel. This is possible because the 

DE utilises a more complex search procedure than the PSO. The DE has the possibility to both crossover 

and mutate the members of the population, facilitating the search and allowing escape from local 
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minima (exploration capabilities). On the other hand, the PSO has a simpler particle selection algorithm 

based only on the position of the particle and its score. It decreases the possibility of escaping from 

local minima (Stacey et al., 2003). Therefore, the search performed by the PSO is more inclined to 

examine the convexity in which the current best particle is allocated. This behaviour makes the search 

executed with the DE more inclined to overfit the training set when the MRF is employed as the 

statistical function within the hybrid model. On the contrary, when the polynomial functional form is 

employed as statistical function, this behaviour increases the prediction capabilities of the obtained 

hybrid model. 

 

Figure 3: a) Boxplot of the fitness function for different approaches, optimisers and functions obtained on the train set. b) 
Boxplot of the fitness score for different approaches, optimisers and functions obtained on the test set. In these plots, 
numerical instabilities are detectable when the fitness function values are equal to 1014. For the plot reporting the scores on 
the test set, the overall view is reported at the top, and the zoom of the lower fitness functions area is on the bottom. The 
polynomial function and the serial approach are the better performing techniques in this study. They return the lower median 
values and the lower variance on the test set. No significant differences are detectable in changing the optimiser. However, 
the usage of DE slightly increases the model accuracy and robustness. 

3.1.2 Comparison of the black-box model parameters prediction in the parallel training 

From Figure 4 and Table 3, one can observe that the polynomial functions show higher robustness with 

the initial condition and higher identification accuracy than the MRF when predicting 𝑘𝑈𝐴
𝐻𝑀. The MRF 

structure shows numerical instabilities. The role of the optimiser is negligible when the MRFs are used 

as the statistical functional form. On the contrary, when the polynomial structure is used, the usage of 

DE increases the robustness of the predictions (Table 3) and their accuracies. 



9 
 

 

Figure 4: Profile of the 𝑘𝑈𝐴
𝐻𝑀  predicted with the parallel approach with the various combination of optimiser and black-box 

structure. MRF return poor prediction capabilities and low robustness since the numerical instabilities and wrong trend. The 
usage of the polynomial function returns better prediction capabilities than the MRF. In this case, when DE is used as the 
optimiser, the parameter estimation shows higher robustness with the initial population. 

From Figure 5, one can observe the lower prediction accuracy and robustness of the MRF structure. It 

returns highly scattered solutions with different trends without any physical meaning, such as 𝑘𝑈𝐴 

values lower than 0. The solutions delivered by the PSO/MRF/Parallel do not follow the trends of the 

reference for both 𝑘𝑈𝐴
𝐻𝑀 and ℎ𝑑𝑒𝑣

𝐻𝑀 , furthermore the predicted values of 𝑘𝑈𝐴
𝐻𝑀 are outside the acceptable 

physical boundaries, or they show negative values. Despite these deficiencies, the fitness score of the 

PSO/MRF/Parallel on the training set is still low both in variance and median since the technique 

overfits on the training set. The overfitting is due to the synergistic training of the two models (parallel). 

To compensate for the deviation brought from one black-box model (e.g. 𝑘𝑈𝐴
𝐻𝑀), the other (e.g. ℎ𝑑𝑒𝑣

𝐻𝑀 ) 

should adapt its values to reduce the value of the fitness function. The search carried out by the PSO 

is more affected by this synergistic effect as none of the solutions proposed by the PSO follows the 

reference trend, and most of the 𝑘𝑈𝐴
𝐻𝑀values are negative. The usage of the DE optimiser slightly 

mitigates the effect of the non-linearity brought by the MRF, yet the majority of the solutions proposed 

by the DE/MRF/Parallel do not follow the reference. Only the models associated with the random state 

8 return a solution that follows the reference trend. This unreliability of MRF trained with parallel 

training limits its usage and, in this case, prohibits it. 

The usage of the polynomial increases the accuracy and robustness of the solution. When the 

polynomial structure is employed, both the optimisers return functions that follow the reference. 

However, the DE is more robust to the initial population than PSO because of the lower scattered 

profiles of the black-box estimated parameters. Using the polynomial structure drastically increases 

the capabilities to identify the coefficients of the black-box model. It allows the domain of the black-

box models to be ℝ. Thus, the majority of the solutions proposed by the PSO are now able to follow 

the reference trends in 𝑘𝑈𝐴
𝐻𝑀 values except for the solution associated with random states 3, 4 and 7 

(Figure 4). This also affects the quality of the models that describe ℎ𝑑𝑒𝑣
𝐻𝑀  that now have the same trend 

of the reference. However, the PSO/poly/Parallel approach returns more scattered solutions than 

DE/poly/Parallel. In Table 3, the average and the maximum values of the IoD related to the 
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PSO/poly/Parallel technique are higher than the DE/poly/Parallel. This behaviour is due to the 

increased robustness of the DE algorithm to the initial population compared to the PSO optimiser 

(Vesterstrom and Thomsen, 2004). All the black-box models obtained with the DE follow the trend of 

the reference, and all the values of 𝑘𝑈𝐴
𝐻𝑀 are within the literature boundaries.  

 

Figure 5: Profiles of the ℎ𝑑𝑒𝑣
𝐻𝑀  predicted using the parallel approach with the various combination of optimiser and black-box 

structure calculated at 50°C. The polynomial functions show higher robustness and accuracy than the MRF. The models 
obtained with the MRF show numerical instabilities and poor accuracy regardless of the used optimiser. The polynomial 
function shows higher prediction accuracy and robustness with the random state with both the optimisers. 

The superior prediction accuracies and robustness offered by the DE/poly compared to the other 

techniques is related to a combination of several factors: 1) the DE search is very robust to the 

variations in the initial population; 2) the DE has better capabilities in finding the global minimum 

compared to the PSO (Vesterstrom and Thomsen, 2004) and 3) the coefficient search for the 

polynomial structure is linear and less complex to perform compared to MRF. 

Table 3: The IoD average and max absolute value for the various techniques and training approaches. The calculation is 
made at the same independent variable values for the different random states 

  Parallel training Serial training 
  𝒌𝑼𝑨

𝑯𝑴 𝒉𝑳
𝒅𝒆𝒗 𝒌𝑼𝑨

𝑯𝑴 𝒉𝑳
𝒅𝒆𝒗 

Technique Average Max Average Max Average Max Average Max 
PSO/MRF 636.77 2.87e4 7.01 7.23 1.39e-2 2.80e-2 449.02 687.13 
PSO/poly 0.43 0.74 194.49 592.99 2.96e-3 4.24e-3 86.58 217.71 
DE/MRF 3.15 566.66 3.39e3 7.78e3 2.01e-2 3.47e-2 466.34 1328.65 
DE/poly 8.57e-2 1.98e-1 153.75 266.02 6.16e-4 1.95e-3 5.24 7.14 

3.2 Serial training 

3.2.1 Comparison of the hybrid model prediction in the serial training 

Due to mathematical instabilities, none of the hybrid models trained with the serial training approach 

show any premature interruption on the test set (Figure 3). The PSO/MRF/Serial returns a higher 

median fitness score on the training set than the PSO/poly/Serial, thus a lower accuracy on the training 
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set. However, on the test set, the result is the opposite favouring the MRF from the point of accuracy. 

This is related to the synergic effect of the lower exploration capabilities of the PSO technique and the 

non-linearity in the coefficient search provided by the MRF structure. These two factors do not allow 

the PSO/MRF/Serial to overfit the training set and have a better score on the test set compared to the 

PSO/poly/Serial. 

The functional form marginalises when the DE is used as an optimiser. DE/MRF/Serial and the 

DE/poly/Serial return comparable variance and median fitness scores. This is linked to the robustness 

of the DE technique that mitigates the non-linear effects in the coefficient search of the MRF and lets 

it behave as a polynomial. 

3.2.2 Comparison of the black-box model coefficient prediction in the serial training 

All the techniques, when trained with the serial approach, return predicted 𝑘𝑈𝐴
𝐻𝑀 values within the 

boundaries proposed in the literature. The solutions obtained with the PSO technique are less accurate 

and robust than those proposed by the DE (Figure 6 and Table 3). All the solutions of ℎ𝑑𝑒𝑣
𝐻𝑀   proposed 

from this training approach return values that follows the reference trend (Figure 7).  

The MRF shows lower robustness compared to the polynomial. In Table 3, their IoD is one order of 

magnitude higher than the one associated with the polynomial. This is linked to the linearity of the 

coefficient search in the polynomial function; it makes the coefficients search less complex to perform. 

The usage of DE has higher robustness than the PSO because of the more complex algorithm that the 

DE uses to find the solution. 

Like the 𝑘𝑈𝐴
𝐻𝑀, also for ℎ𝑑𝑒𝑣

𝐻𝑀  the models proposed by the PSO are more scattered than the solutions 

proposed by the DE when using the same black-box form. In addition, using the same optimiser, the 

polynomial functions show fewer scattered solutions than the MRF (Table 3). The serial training results 

in the lower median and variance fitness function in the test set values when the solution is searched 

with the PSO/MRF. However, this technique is not optimal for predicting the coefficient black-box 

model where the DE/poly returns the best coefficient search. 

 

Figure 6: Predicted profile of 𝑘𝑈𝐴
𝐻𝑀obtained with the serial approach with various combinations of optimisers and black-box 

structure. All the solutions are within the acceptable range and follow the correct trend of the predicted variables. However, 
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the polynomial show higher robustness than the MRF since the lower scattering of the solutions. The DE report higher 
robustness to the initial condition in the optimisation than the PSO. 

 
Figure 7: Predicted profiles of ℎ𝑑𝑒𝑣

𝐻𝑀  obtained with the serial approach using various combinations of optimisers and statistical 
functions. The solutions are calculated at 50°C. All the solutions follow the reference trend and show comparable prediction 
accuracy. The MRF shows lower robustness with the initial condition than the polynomial function. The DE increase the 
robustness of the solution. The Poly/DE show the lower scatting degree of this work and the higher robustness with the initial 
populations. 

3.3 Comparison between the two training approaches 

In general, serial training shows a lower variance and median of the fitness function for all the 

techniques (Figure 3). It increases both the accuracy and the mathematical stability of the solutions. In 

addition, it reduces the influence of the initial population on the model training for the DE and PSO.  

The serial training has higher accuracy and robustness than the parallel approach in predicting the 

behaviour of the overall system and the trend and the values of the black-box model. The primary 

deficiency observed in the parallel training is the mathematical instabilities in the test set linked to the 

synergistic effect of the two models in the coefficient search. The parallel training performs the 

coefficient search in a space with seven degrees of freedom. Moreover, these variables belong to 

different sub-models (enthalpy and heat transfer coefficient models). This increases the complexity of 

the system, and the overall fitness function can have more local minima compared to the serial training 

approach. On the contrary, the serial approach performs the coefficient search at first on a coefficient 

space with three degrees of freedom during the first evaporation (see Section 2.1), then on a 

coefficient space with four degrees of freedom during the constant volume phase (see Section 2.1). In 

addition, the coefficient search influences only one black-box model in this case.  

Given that, the DE performs a better coefficient search compared to the PSO thanks to its augmented 

exploration capabilities, allowing the search to escape from local minimum easily.  

The black-box functional form helps in decreasing the complexity of the cost function shape. The usage 

of the MRF increases the non-linearity due to the presence of the coefficients at the denominator. On 

the contrary, the polynomial has a linear coefficient search. Therefore, using the polynomial black-box 

structure decreases the complexity of the fitness function with 7 degrees of freedom and makes the 

coefficient search less complex. 
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A step toward reducing the complexity of the fitness functions is splitting the training of the two 

statistical models into two different moments. In this case, the coefficient search is more accurate than 

the one carried out with the parallel training. Here, all the techniques converge to a solution and return 

models with high accuracy and robustness. This is possible thanks to the reduced complexity of the 

fitness function that returns a local minimum from which is easier to escape. The technique that better 

performs in the serial training is the DE/poly. In this case, there is a combination of the high exploration 

capabilities and robustness of the optimisation algorithm, the reduced non-linearity provided by the 

polynomial structure and the reduced complexity obtained with the training splitting. However, the 

performance difference between the serial and the parallel training is negligible in this case. In other 

words, parallel training performs as well as serial training when DE/poly is employed as the training 

technique. 

3.4 Extrapolation capabilities of the trained models 

As discussed in section 2.2, the extrapolation capabilities of the model were evaluated on an extra 

batch. It was executed utilising half of the volume compared to the batches on which the models have 

been trained. From Table 4, it can be detected how the hybrid model outperforms a case-optimised 

first-principle model. In addition, from this table, one can see how serial training has superior results 

compared to parallel training. However, the difference is highly remarkable when PSO and MRF are 

employed to train the model. On the contrary, the accuracy of the models obtained by DE and 

polynomial function has little change when the training approach has changed. 

Table 4 proves how the hybrid model developed with the techniques reported in this study can 

generalise and extrapolate very well on the variable area that was never experienced. This is an 

essential step when dealing with data that lacks variety. 
Table 4: Determination coefficient (R2) of the profiles within the reboiler predicted for the batch obtained with half of the 

volume than the batches used for the training. 

  Reboiler Temperature Reboiler Volume 
Technique Parallel Serial Parallel Serial 
PSO/MRF 0.973 0.976 0.781 0.881 
PSO/poly 0.986 0.986 0.894 0.916 
DE/MRF 0.974 0.986 0.789 0.926 
DE/poly 0.986 0.986 0.931 0.918 

FP model 0.975 0.707 

4 Conclusions 
This paper introduces a novel approach to developing hybrid models for chemical processes. The 

methodology aims to predict the behaviour of chemical systems under uncertainty (see SI section 1.5 

and SI section 1.2). The proposed technique can work with data that lacks variety and value. Moreover, 

the resulting model has been shown to have enhanced extrapolation capabilities. The study case 

utilised in this paper is the constant volume solvent switch; however, the proposed methodology 

applies also to reactive systems and continuous processes. Besides developing a robust hybrid model, 

the methodology shows promising capabilities in estimating the physical coefficients of the system and 

letting their values be within acceptable physical boundaries. 

This work investigated the performances of two heuristic optimisers (DE and PSO), two black-box 

functional structures (MRF and polynomial) and two training approaches (Serial and Parallel). The 

hybrid models based on the polynomial functions achieved better results than the MRF. The linearity 

of the polynomial form with the coefficient allows a more accurate coefficient identification than the 

MRF. The MRF structures report mathematical instabilities and overfitting issues when trained in 
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parallel. On the contrary, the hybrid models based on the polynomial functions do not show any 

mathematical instabilities. Although the serial approach usage resolved the mathematical stability 

issues, the prediction capabilities of the models based on MRF do not increase.  

The role of the optimiser is marginal to the hybrid model accuracy. Even though the accuracy of the 

solutions proposed by the DE is higher than the one obtained with the PSO, the quality of the two 

models is comparable. On the contrary, the optimisers play a crucial role in estimating the coefficients 

of the black-box functions. The coefficient searches obtained with the PSO are more scattered and 

sensitive to the initial population positions than the ones proposed by the DE. For these reasons, the 

authors suggest using the PSO when there is no need to perform physical parameter estimation and 

the quality of the hybrid model is evaluated only on its final predictions. By contrast, the DE is 

suggested when the black-box coefficient estimation drives crucial information about the process.  

The training approach has a crucial impact on the quality of the solutions. The serial approach stabilises 

the black-box solutions making them less sensitive to the initial population of the optimisers compared 

to the parallel training. This effect is linked to the lower complexity of the benchmark function when 

training the system in a serial manner. 

The hybrid model obtained with the serial approach employing the polynomial function as a statistical 

function trained with the differential evolution algorithm (DE/Poly/Serial) returns a hybrid model with 

both the highest prediction capabilities and the most stable black-box function estimation. The high 

robustness of the optimiser, the linearity of the coefficient search and the serial training reduce the 

complexity of the cost function. This combination of search algorithm /model/ training scheme 1) 

reduces the dispersion of the black-box solutions, 2) lets the estimated parameters be within the 

acceptable physical boundaries and 3) returns a hybrid model able to predict the system behaviour 

with high accuracy.   
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