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s1. Material and methods 

s1.1 The process 

The reboiler is equipped with a jacket to supply the thermal energy needed to drive the process. The 

evaporated solvent leaving the reboiler is condensed and collected in the receiver tank. The operation 

is controlled by: 1) the jacket temperature, 2) the speed of the stirrer, 3) the flow-rate of the Ac to the 

reboiler from the feed tank and 4) the direction of the condensed vapor (it can either be refluxed to 

the reboiler or conveyed to the receiver tank where all the evaporated solvent are collected).  

The constant volume phase is performed using the jacket to supply the heat required for the 

evaporation task and the fresh solvent flowrate is controlled to keep the volume inside the reboiler 

constant.  

The process takes place at 101.5 kPa. Inert gas and a vent system are used to control the pressure 

within the reboiler.  

s1.2 The available data  

The process variables used to develop the hybrid model are the following: 

1) Temperature of the liquid inside the reboiler; the error of this measurement is +/- 1.5 °C. 

2) Temperature of the service-fluid inside the jacket; it is the temperature at the inlet of the jacket 

coils. The error of this measurement is +/- 1.5 °C. 

3) Stirring speed of the stirrer inside the reboiler. 

4) Volume of the liquid inside the reboiler; it is measured by a radar sensor. The measurements have 

an uncertainty related to the stirring effect.  

5) Volume of the liquid inside the receiver tank; measured by a radar sensor. This measurement bears 

an underestimation of the evaporated amount because of the loss on the vent gas. This bias has 

been estimated to be 10% of the volume inside the receiver tank. 

6) Mass of solvent contained in the feed tank. 

7) Reflux direction: direction of the stream that leaves the condenser. It can be either routed to the 

receiver tank or back to the reboiler 

To compute the Ac flowrate the variable “Mass of solvent contained in the feed tank” was filtered 
by using a low-pass filter in order to reduce the measurement noise and its accumulation when 
the derivative is computed. 
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s1.3 The white-box model 

The model was deployed in Python 3.7.4 with packages managed by using anaconda environments. 

The model considers the presence of three components in the liquid phase and four components in 

the vapor phase. (1𝑠) and (2𝑠) represent the mass balances for the organic solvent and for the inert 

gas respectively. 
𝑑𝑀𝑖
𝑑𝑡

= 𝐹𝑖𝑛 ∗ 𝑧𝑖
𝐹 + 𝑅 ∗ 𝐹𝑅(𝑡 − 𝑑𝑡) ∗ 𝑧𝑖

𝑅(𝑡 − 𝑑𝑡) − 𝐹𝑜𝑢𝑡 ∗ 𝑦𝑖 (1𝑠) 

𝑑𝑀𝐼
𝑑𝑡

= 𝐹𝑔𝑎𝑠 − 𝐹𝑜𝑢𝑡 ∗ 𝑦𝐼  (2𝑠) 

In (1𝑠), i = Ac, DCM and MeOH. 𝑀𝑖 [𝑚𝑜𝑙] is the total amount of moles within the reboiler of i, 

𝐹𝑖𝑛 [𝑚𝑜𝑙 ∗ 𝑠
−1] is the flowrate of the fresh solvent to the reboiler, 𝑧𝑖

𝐹 [𝑚𝑜𝑙 ∗ 𝑚𝑜𝑙−1] is the 

concentration of i in the fresh solvent stream, 𝑅 [−] is the reflux direction, 𝐹𝑅(𝑡 − 𝑑𝑡)[𝑚𝑜𝑙 ∗ 𝑠
−1]  is 

the flowrate of condensate amount of solvent leaving the system, 𝑧𝑖
𝑅 [𝑚𝑜𝑙 ∗ 𝑚𝑜𝑙−1] is the 

concentration of the component i within the condensate amount of solvent leaving the system, 

𝐹𝑜𝑢𝑡 [𝑚𝑜𝑙 ∗ 𝑚𝑜𝑙
−1]  is the flowrate of the vapor leaving the reboiler, 𝑦𝑖  [𝑚𝑜𝑙 ∗ 𝑚𝑜𝑙

−1] is the 

concentration of the component i in the vapor leaving the reboiler. 

In (2𝑠), 𝑀𝐼 [𝑚𝑜𝑙] is the total amount of inert gas within the system, 𝐹𝑔𝑎𝑠 [𝑚𝑜𝑙 ∗ 𝑠
−1] is the flowrate 

of inert gas sent to the reboiler, 𝐹𝑜𝑢𝑡  [𝑚𝑜𝑙 ∗ 𝑠
−1]  is the flowrate of the vapor leaving the reboiler, 𝑦𝐼 

is the concentration of the inert gas in the vapor leaving the system. 

The vapor-liquid equilibrium was modelled by using the modified Raoult’s law (3𝑠).  

𝑃 ∗ 𝑦𝑖 = 𝑃𝑖
0(𝑇) ∗ 𝛾𝑖(𝒙, 𝑇) ∗ 𝑥𝑖 (3𝑠) 

where 𝑃[𝑘𝑃𝑎] is the pressure of the system, 𝑦𝑖  is the vapor molar fraction of the i-th component, 

𝑃𝑖
0(𝑇) [𝑘𝑃𝑎] is the vapor pressure of the i-th component at the temperature 𝑇, 𝛾𝑖(𝒙, 𝑇) is the activity 

coefficient of the i-th component within a mixture with 𝒙 molar fractions at the temperature 𝑇 and 𝑥𝑖 

is the liquid molar fraction of the i-th component. 

The DCM-Methanol and DCM-Ac mixtures have a non-ideal liquid behavior (Khurma et al., 1983). To 

model the deviation from the ideality of the liquid mixtures, the non-random two liquid (NRTL) model 

was used (Renon and Prausnitz, 1968). The parameter required by the NRTL model were obtained by 

Aspen HYSYS v10. The parameter were tested busing the experimental studies available in literature 

(Amer et al., 1956; Khurma et al., 1983; Martin et al., 1991; Nath and Prakash Dixit, 1990). 

Determination coefficients (R2) above 0.97 were obtained for all the comparisons. 

s1.4 The structures of the black-box models 

s1.4.1 Differential evolution 

To initialize the DE algorithm a population is located within the search space and the fitness function 

for each particle is calculated. 

For each member of the population 𝝓𝑝𝑎𝑟𝑒𝑛𝑡, the following three steps are executed 

1. Mutation: four different vectors 𝝓1, 𝝓2, 𝝓𝟑, 𝝓𝟒 are randomly chosen among the population. 

The four vectors are linear combined to obtain a mutated vector 

𝝓𝑡𝑟𝑖𝑎𝑙 = 𝝓𝑝𝑎𝑟𝑒𝑛𝑡 + 𝐹 ∗ ((𝝓1 −𝝓2) + (𝝓3 −𝝓4 )) (4𝑠) 

2. Crossover: the components of the trial and parent vector are shuffled to create a new trial 

vector 𝝓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 using a crossover probability factor 𝐶𝑟 whose value can vary in the range 

[0,1] 

𝝓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 = {
𝝓𝑡𝑟𝑖𝑎𝑙,𝑖 𝑖𝑓 𝑟𝑎𝑛𝑑𝑖 ≤ 𝐶𝑟

𝝓𝑝𝑎𝑟𝑒𝑛𝑡,𝑖 𝑖𝑓 𝑟𝑎𝑛𝑑𝑖 > 𝐶𝑟
 (5𝑠) 

3. Selection: The fitness function 𝐶𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝝓)  is calculated for the vector 𝝓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔. Its value is 

compared to the one generated from 𝝓𝑝𝑎𝑟𝑒𝑛𝑡. If 𝐶𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝝓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) < 𝐶𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝝓𝑝𝑎𝑟𝑒𝑛𝑡) 
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than the 𝝓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 is selected for the next generation in place of 𝝓𝑝𝑎𝑟𝑡𝑒𝑛𝑡, otherwise 

𝝓𝑝𝑎𝑟𝑡𝑒𝑛𝑡 is kept for the next generation. 

All the steps listed above are repeated for each particle until the termination criterion is satisfied. 

The model training was run by using the implementation of the DE algorithm available in SciPy 

(Virtanen et al., 2020).  

S1.4.2 Particle swarm optimization (PSO) 

To initialize the PSO algorithm a population is located within the search space by giving to each particle 

an initial position 𝝓𝑖  and an initial random velocity 𝒗𝑖. For each particle the fitness score is calculated. 

The one with the lower fitness function is selected to be the best particle 𝝓𝑏𝑒𝑠𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

. For each particle an 

individual best 𝝓𝑏𝑒𝑠𝑡
𝑖𝑛𝑑𝑖𝑣𝑖𝑢𝑎𝑙,𝑖  is assigned; during the initialization phase, the individual best corresponds 

to the initial position of each particle. The loop is composed by two steps repeated for each particle: 

1. Velocity update: the following relation is applied to compute the velocity of each particle 

𝒗𝑖+1 = 𝜔 ∗ 𝒗𝑖 + 𝑐𝑝 ∗ 𝒓𝑝 ∗ (𝝓𝑏𝑒𝑠𝑡
𝑖𝑛𝑑𝑖𝑣𝑖𝑢𝑎𝑙,𝑖 −𝝓𝑖) + 𝑐𝑔 ∗ 𝒓𝑔 ∗ (𝝓𝑏𝑒𝑠𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
−𝝓𝑖) (6𝑠) 

where 𝒓𝑝 and 𝒓𝑔 are two vectors with the same dimension of the parameter space which 

components are randomly chosen in the range [0,1]. 𝜔 is the inertial parameter, 𝑐𝑝 is the 

cognitive parameter and 𝑐𝑔 is the social parameter. 

2. Update the position of each particle 

𝑿𝑖+1 = 𝑿𝑖 + 𝒗𝑖+1 (7𝑠) 

where 𝑿𝑖+1 is the position of the particle at the iteration i+1, 𝑿𝑖 is the position of the particle 

at the iteration i and 𝒗𝑖+1 is the updated velocity calculated trough (6𝑠). 

The fitness function is calculated to the new position of the particle i-th. If the new solution 

has a lower fitness score than the individual best it become the new individual best for the i-

th particle. If the solution has a lower fitness score than the global best it become the new 

global best. 

All the steps listed above are repeated for each particle until the termination criterion is satisfied. 

The model training was run by using the implementation of the PSO algorithm available in PySwarms 

(Miranda, 2018). 

s1.5 Fitness function 

In the following list the description of the components used for the fitness function are reported: 

1. Reboiler temperature: the mean squared error was used as benchmark 

𝐶𝑇𝑒𝑚𝑝𝑅𝑒𝑏(𝝓) =
∑ (𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) − 𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟
𝑒𝑥𝑝 (𝑡𝑖))

𝑁
𝑖=1

2

𝑁
 (8𝑠)

 

where 𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟
𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) is the value of the temperature within the reboiler predicted by the model 

at the time 𝑡𝑖, 𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟
𝑒𝑥𝑝 (𝑡𝑖) is the experimental value of the temperature within the reboiler at 

the time 𝑡𝑖 and 𝑁 is the amount of sample points used for the comparison. 

2. Receiver tank volume: the benchmark of this variable is non-trivial due to the loss in the vent 

gas. The loss was estimated to be up to 10% of the amount inside the receiver tank 
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𝐶𝑅𝑒𝑐𝑇𝑎𝑛𝑘(𝝓)

=

{
 
 
 

 
 
 ∑ |𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) − 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑒𝑥𝑝

  (𝑡𝑖)|
𝑁
𝑖=1

1.5

𝑁
 𝑖𝑓 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑒𝑥𝑝
  (𝑡𝑖) < 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) < 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑒𝑥𝑝

  (𝑡𝑖) + 10%

∑ (𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) − 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑒𝑥𝑝 (𝑡𝑖))
𝑁
𝑖=1

2

𝑁
 𝑖𝑓 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) > 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑒𝑥𝑝

  (𝑡𝑖) + 10%

∑ (𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) − 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑒𝑥𝑝 (𝑡𝑖))
𝑁
𝑖=1

2

𝑁
 𝑖𝑓 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘

𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) < 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑒𝑥𝑝

  (𝑡𝑖)

(9𝑠) 

where 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑚𝑜𝑑𝑒𝑙 (𝑡𝑖) is the value of the volume within the receiver tank predicted by the model 

at the time 𝑡𝑖, 𝑉𝑅𝑒𝑐𝑇𝑎𝑛𝑘
𝑒𝑥𝑝

  (𝑡𝑖) is the experimental value of the volume within the receiver tank 

at the time 𝑡𝑖 and 𝑁 is the amount of sample points used for the comparison. This part of the 

fitness function aims to let the receiver tank profile be in the accepted error bounds of the 

variable. If the value of the predicted variable is within the error range, the error is less than 

squared, on the contrary the error is squared.  

3. Process time: the process time predicted by the model is compared to the experimental one 

by accounting the absolute error.  

𝐶𝑇𝑖𝑚𝑒(𝝓) = 𝑡𝑓
𝑒𝑥𝑝

− 𝑡𝑓
𝑚𝑜𝑑𝑒𝑙  (10𝑠) 

where 𝑡𝑓
𝑒𝑥𝑝

 is the experimental end time of the process and 𝑡𝑓
𝑚𝑜𝑑𝑒𝑙 is the modelled end time of the 

process. This part of the fitness function is needed to avoid premature interruption of the process due 

to a high evaporation rate. In case the computation of the differential evolution fails because of the 

instabilities due to the black-box function, the cost function value is set to be 1014. 

s2. Results and discussion 

s2.1 Parallel training 

s2.1.1       PSO/MRF/Parallel 

The PSO/MRF/Parallel hybrid models have a high accuracy and robustness on the training set because 

of the low variance and median value in Figure 3a. However, on the test set the accuracy is lower with 

a significant amount of runs that stopped the calculation because of mathematical instabilities (Figure 

3b). The black-box parameter identified by the PSO/MRF/Parallel do not follow the reference, are 

outside the physical validity range and show numerical instabilities related to the presence of the 

denominator (Figure 4Error! Reference source not found. and Figure 5).  

s.2.1.2       PSO/poly/Parallel 

The PSO/poly/Parallel hybrid models have an high accuracy both on the training set (Figure 3a) and on 

the test set (Figure 3b) where no outlier can be detected. The linearity in the parameter search permits 

high black-box parameter identification capabilities. Most of the black-box models follow the trend of 

the reference and the 𝑘𝑈𝐴
𝐻𝑀 values are in the boundaries proposed in literature (Figure 4 and Figure 5 

s.2.1.3       DE/MRF/Parallel 

Th hybrid models DE/MRF/Parallel have an high accuracy and search robustness on the training set 

(Figure 3a). However, on the test set it shows low generalization capabilities and mathematical 

instabilities (Figure 3b). The black box model profiles show instabilities in the training range, poor 

accuracy in following the trend of the reference and low robustness with the initial condition (Figure 4 

and Figure 5). 

s.2.1.4       DE/poly/Parallel 
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The hybrid models DE/poly/Parallel show the lower fitness function values among all the model trained 

with the parallel approach both on the train set (Figure 3a) and on the test set (Figure 3b). This training 

technique returns no instabilities and high robustness to the initial population. These level of accuracy 

and robustness are related to the augmented prediction capabilities of the black-box functions. In this 

case all the values predicted by the black-box models follows the reference trend and the 𝑘𝑈𝐴
𝐻𝑀 values 

are in the boundaries proposed in literature (Figure 4Error! Reference source not found. and Figure 

5).  

s2.2 Serial training 

s2.2.1       PSO/MRF/Serial 

The PSO/MRF/Serial training technique shows high fitness scores when evaluated on the training set. 

In addition, the prediction returned from the hybrid model are highly scattered (Figure 3). Despite that, 

on the test set the model has the higher accuracy among all the training techniques with a low variance 

(Figure 3b). In addition, the simulation does not experience any mathematical instabilities. The 

majority of the ℎ𝐿
𝐻𝑀 value follow the trend of the reference, even if their absolute values is lower than 

the reference. The value of 𝑘𝑈𝐴
𝐻𝑀 are in the boundaries suggested from the literature and follow the 

trend of the reference (Figure 6 and Figure 7). 

s2.2.2       PSO/poly/Serial 

The PSO/poly/Serial training technique return low median and variance fitness function scores both 

on the training set and on the test set (Figure 3a and Figure 3b). The robustness and accuracy of the 

hybrid models is possible thanks to the fine prediction of the function for their black-box sub-models. 

All the curves predicted by the PSO/poly/Serial return curves with the trend that match the reference; 

the values of ℎ𝐿
𝐻𝑀 are comparable with the reference and the values of 𝑘𝑈𝐴

𝐻𝑀 are within the range 

proposed by the literature (Figure 6 and Figure 7). 

s2.2.3       DE/MRF/Serial 

The hybrid models obtained with the DE/MRF/Serial show high prediction accuracy and robustness. 

The fitness function scores have a median and a variance comparable to the other models obtained 

with the serial approach. In addition, the calculation did not show any instabilities on the test set. The 

accuracy of the hybrid model is consequence of the high identification accuracy and robustness of the 

black-box parameters. The majority of the curves follow the trend both for the values of ℎ𝐿
𝐻𝑀 and 𝑘𝑈𝐴

𝐻𝑀 

where the values are in the range identified from the literature (Figure 6 and Figure 7). 

s2.2.4       DE/poly/Serial 

The hybrid models obtained with the DE/poly/Serial are the most accurate and robust obtained in this 

work. The accuracy of the predictions obtained from this model is comparable with the other 

techniques performed with the serial training, however the variance of the fitness score calculated on 

the training and on the test set is the lowest experience in this study (Figure 3a and Figure 3b). The 

high accuracy and robustness are related to the augmented robustness in the parameter identification. 

The influence of the initial condition on the predicted profile is neglectable and the values of 𝑘𝑈𝐴
𝐻𝑀 are 

within the range identified from the literature (Figure 6 and Figure 7). 

s2.2.4       Comparison of the black-box model parameter prediction in the parallel training 

Further information can be deducted from Table 3. DE/poly/Parallel returns lower IoD values 

compared to the PSO/poly/Parallel. However, the grater capabilities of the DE are only partially 

respected when the MRF are used as black-box structure. The DE/MRF/Parallel shows a still lower IoD 

value than the PSO/MRF/Parallel when predicting 𝑘𝑈𝐴
𝐻𝑀. On the contrary, when investigating the ℎ𝑑𝑒𝑣

𝐻𝑀  

model the PSO/MRF/Parallel obtain lower IoD than the DE/MRF/Parallel. However, the results 

obtained by the PSO/MRF/Parallel do not have physical sense. Thus, the lower IoD values are related 
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to the overfitting problem and the capability of the PSO to exploit the minimum that has already found 

rather than find new minimum. This is more critical on the search of the parameter of ℎ𝑑𝑒𝑣
𝐻𝑀  rather than 

𝑘𝑈𝐴
𝐻𝑀 since the function of ℎ𝐿

𝐻𝑀 have two independent variables while 𝑘𝑈𝐴
𝐻𝑀 has only one independent 

variable. 

s2.3 Comparison between the two training approaches 

All the techniques show the increased accuracy when trained in serial but the PSO/MRF when is 

evaluated on the training set. In this case, parallel training achieves a lower median fitness function 

value and variance on the training set. However, the prediction capabilities are not conserved when 

moving to the test set. Here, the parallel training present instabilities, a higher median of the fitness 

function together with a higher variance than the serial training. For these reasons, the 

PSO/MRF/Parallel overfits on the training data and returns poor prediction capabilities. On the 

contrary, the PSO/MRF/Serial extend its prediction capabilities also on the test set. 

s2.4 Physical simulation results and model extrapolation capabilities 

Figure 1s and Table 1s accent the poor prediction accuracy obtained by the PSO/MRF/Parallel and 

DE/MRF/Parallel trainings. The temperature inside the reboiler deviates from the experimental data 

at the half of the first evaporation phase (see Section 2.1). However, the prediction returned from all 

the other techniques follow the experimental trend.  

 

Figure 1s: Overall view of the predicted process variable for the test batch at the random state that return the lower fitness 
function value for the technique compared with the experimental values. The PSO/MRF/Parallel is the weakest technique 

since the strong deviation on the reboiler temperature and the meaning less profile in the reboiler volume. The polynomial 
function shows better performance than the MRF function, especially in predicting the volume inside the reboiler. However, 

all the techniques perform better than the optimized white model 

The PSO/MRF/Parallel and the DE/MRF/Parallel techniques are highly influenced by the structure of 

the fitness function because the MRF structure increases the non-linearity of the parameter search 

that make the exploration of new solution more complex since the relation between the parameter 

changing and the changing in the fitness function is strongly non-linear.  

The PSO/Poly/Parallel and the DE/Poly/Parallel show augmented prediction accuracy compared to the 

solutions obtained using the MRF. This is related to the increased prediction accuracy and robustness 

in the ℎ𝑑𝑒𝑣
𝐻𝑀  profile returned by the Poly/Parallel techniques compared to the results returned by the 

MRF/Parallel approaches. In Table 1s all the determination coefficients returned by the 

PSO/MRF/Parallel have lower values than the ones associated to the polynomial structure. 
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The usage of the serial training approach does not deliver any observed improvement on the accuracy 

of the MRF based models; also in this case the predictions from the hybrid model based on polynomial 

structure outstand the ones based on MRF in following the experimental data. The DE/Poly/Serial 

solution shows better predictions in the volume profile compared to all the other techniques.  

Table 1s: Determination coefficient (R2) of the profile within the reboiler predicted by the various training technique and 
approaches for the test batch and the extrapolation batch 

 Test batch 

 Reboiler Temperature Reboiler Volume 

Technique Parallel Serial Parallel Serial 

PSO/MRF -0.081 0.978 0.940 0.778 

PSO/poly 0.981 0.983 0.970 0.969 

DE/MRF 0.939 0.984 0.789 0.962 

DE/poly 0.984 0.983 0.948 0.966 

FP model 0.975 0.631 

Table 1s highlights the increased prediction accuracy of the hybrid models compared to the white-box 

approach. The increased prediction capabilities affect mostly the amount of liquid within the reboiler 

and has only a marginal impact on the temperature. This is related to the physic of the system; the 

temperature is linked to the boiling temperature of the mixture inside the reboiler. The concentration 

inside the reboiler is influenced by the evaporated solvent blend, however the impact of this 

parameter higher on the reboiler volume than the temperature. 

Beside the increased prediction accuracy on the test set, the hybrid models based on polynomial 

function also report high extrapolation capabilities. They follow the process variables obtained also 

from a batch that works with half of the volume of the training batch. This can be observed in the right 

side of Figure 2s in which the polynomial functions are still able to follow the experimental data. An 

interesting result is the stabilization of the temperature profile in the PSO/MRF/Parallel and 

DE/MRF/Parallel that in the batch where the volume is the half of the original one returns a solution 

that follows the physical trend of the temperature profile inside the reboiler. This could be related to 

the volume inside the reboiler that affect the 𝑘𝑈𝐴
𝐻𝑀 model and stabilize the solver. Further 

investigations are needed to explore the reported extrapolation phenomena of the PSO/MRF/Parallel 

and DE/MRF/Parallel. The extrapolation capabilities are one of the main advantages of the hybrid 

model, however they are possible only by choosing the proper black-box function technique. From 

Table 4 is possible to assess the quality of the extrapolation. All the hybrid models have increased 

prediction capabilities compared to the white-box model. Among the hybrid models the 

DE/poly/Parallel performs the better.  

The authors want to highlight that the differences in the volume prediction capabilities between the 

various techniques and approaches for the extrapolation batch is more pronounced than what is 

reported in Table 1s. As shown in Figure 2s, during the operation a premature interruption of the 

volume measurement occurred. It takes place in the area where the different models differ more and 

the values after the stop of the volume measurement are not utilized to calculate the determination 

coefficient. 
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Figure 2s: Overall view of the extrapolation capabilities of the models obtained with the various techniques and approaches. 

The MRF performs worse than the polynomial in predicting the displayed variables. The usage of different techniques and 
optimizer does not improve the prediction accuracy of the model based on MRF functions. 
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