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Abstract

Distributed energy resources can enhance community resilience to power outages in the
aftermath of natural disasters. We develop a method to quantify the resilience value that rooftop
solar can provide to residential neighborhoods. As a case study, the method is applied to
single family homes in San Carlos subjected to an earthquake based on the 1906 San Francisco
event. We characterize the impact on resilience of increasing adoption of rooftop solar and of
grouping homes into resilience clusters for energy sharing. Policy intervention can ensure more
geographically uniform adoption of solar and therefore more even resilience. We evaluate the
effect and cost of such an intervention.

1 Introduction

Community resilience is receiving increased attention as climate change threatens more frequent
catastrophic weather events and as improved technology enhances the ability of people to respond
[1–4]. Hurricanes Irma and Maria severely damaged the electric grids in Florida and Puerto Rico,
respectively, leading to widespread and prolonged power outages [5, 6]. Earthquakes also cause
significant damage to power systems [7–9]. For example, the medium-size Mw 6.0 Napa earthquake
left 70,000 residents completely without power in 2014 [10]. Distributed energy resources, such as
rooftop solar and storage, are gaining commercial traction and have the potential to mitigate the
impact of catastrophic events by generating and managing energy locally when the centralized grid
is out of service [11–15].

Public entities are studying the combined sustainability and resilience benefits of microgrids,
which are a group of interconnected loads (i.e., power demands) and distributed energy resources
(i.e., generation and storage) that can connect and disconnect to the main grid [16–19]. A microgrid
can act as an independent entity and sustain itself for an extended period of time. Evidence has
shown that microgrids can increase the disaster resilience of power systems. The Roppongi Hills and
the Sendai microgrids functioned as secure power islands following the 2011 Tohoku earthquake and
tsunami in Japan [20]. However, there are key microgrid policy questions that need to be addressed
to guide their deployment in communities in a way that maximizes the power resilience benefit. For
example, what types of distributed energy resources are more effective in microgrids? How should
they be sized? And where should they be located? Also in question is whether significant policy
interventions will be required to achieve resilience goals. Modeling and quantifying how distributed
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energy resources can improve resilience is a necessary prerequisite to answering these questions. In
its roadmap for the commercialization of microgrids, the California Energy Commission identified
the development and validation of metrics of resilience benefit as a key next step. Our study
addresses just that need.

We characterize how the adoption of rooftop solar can improve residential community resilience
in terms of electrical energy in the aftermath of a Mw 8.0 earthquake scenario representing the
1906 San Francisco event. Specifically, we study how likely it is that rooftop solar systems can
supply enough energy in a day to meet the needs of a group of homes, assuming they reduce
their energy consumption by some fraction in the aftermath of the earthquake. We use energy
consumption and building construction data for single family homes in the city of San Carlos,
California. We do not consider the problem of the mismatch in timing between solar generation and
energy consumption, nor do we address how to physically share electrical energy within a group of
homes. These challenges could be addressed by energy storage devices, the use of electric vehicles
as mobile storage units, and reconfigurable microgrids built into the distribution grid infrastructure.
We provide a first-cut analysis of whether the daily energy balance will work out, which is a simpler
and more fundamental question.

We focus on net-zero sized solar systems, which renewably generate 100% of a home’s electrical
energy needs over a certain time span. Net-zero sizing is in line with explicit policy goals in
California [21, 22]. We quantify the effect of increasing adoption of rooftop solar on power resilience.
We also quantify the improvement in resilience gained by grouping homes together into clusters that
share energy, and we identify a threshold for cluster size that obtains most of the benefit. Finally,
we compare the resilience provided by two different adoption patterns - one in which households
choose to adopt rooftop solar based on their own economic benefit, and another in which a policy
intervention ensures more diffuse adoption of solar. We estimate the cost of such an intervention.

2 Model and Method

2.1 Defining risk

Consider a community of N single family homes H = {H1, . . . ,HN}. The electrical energy used by
home Hi is li, with li,d being the usage on day d. Let A be an adoption scenario that defines which
homes have a rooftop solar panel, sized to be net-zero, and which do not. For the homes that have
adopted, the indicator variable qi(A) = 1; otherwise, qi(A) = 0. If home Hi has a solar panel, the
panel generates energy ei,d on day d.

Let V = {V1, . . . , VM} be a partition of H; each home belongs to exactly one element of V . We
call the elements of V resilience clusters. A resilience cluster is a group of homes that cooperate to
share energy in case of an outage of the main grid.

Now suppose a catastrophe C occurs, which causes a power outage with a span of s(C) days.
The catastrophe also destroys some of the homes. Let xi(C) = 1 if home Hi is uninhabitable after
event C, and 0 otherwise. We assumed that, in the immediate aftermath of the earthquake, all
homes will reduce their electricity consumption to a fraction f of the pre-earthquake consumption.

Consider a sequence of days T as the time span of analysis, which could be a season or an entire
year. Let S(C, T ) be the set of all spans of length s(C) in T . For example, if T is a 90 day season,
and if s(C) is 3, then S(C, T ) is the set of all 88 spans of 3 consecutive days in T . Let s̃ be chosen
uniformly at random from S(C, T ). We define the risk for cluster Vj over period T for event C as
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the probability that if event C happens, the homes in the cluster will be unable to generate enough
energy to meet their reduced load for at least one day in the randomly chosen span s̃. Formally:

R(Vj , T, C) = P

[ ⋃
d∈s̃

( ∑
Hi∈Vj

fli,d >
∑
Hi∈Vj

(
1− xi(c)

)
ei,d

)]
(1)

We include the loads of homes rendered uninhabitable by the event under the following framework.
The electrical energy usage of a home can be conceptually divided into baseline usage by always-on
devices (e.g., a refrigerator) versus active usage initiated by occupants (e.g., a toaster). If a home is
uninhabitable, its occupants will move in with a neighbor in their resilience cluster, bringing their
active usage with them. Furthermore, even though the uninhabitable home may be structurally
unsound, its electrical wiring may still be in place and some of its baseline usage may continue. By
contrast, we assume that uninhabitable homes with solar panels cannot generate energy, under the
assumption that the panels are destroyed or that they enter a fault state that cannot be cleared
without human intervention.1

2.2 Empirical estimation

The daily load and solar energy generation for a household are random variables. There is also
uncertainty in which homes would be uninhabitable as a result of earthquake damage. We use a
realization of daily load and daily solar generation for each household, as well as multiple Monte
Carlo realizations of building damage due to the earthquake shaking, in order to generate an
empirical estimate of the risk.

Let l̃i,d and ẽi,d be the realized load and solar generation. Let C̃ be a set of equally likely
realizations of a given earthquake scenario C. Each element c̃ of C̃ is a particular realization,
associated with a span of s(c̃) as well as a set of homes rendered uninhabitable for which xi(c̃) = 1.

The empirically estimated risk is an average taken across all earthquake realizations and spans:

R̂(Vj , T, C) =

∑
c̃∈C̃

∑
s̃∈S(c̃,T ) 1

{⋃
d∈s̃

(∑
Hi∈Vj f l̃i,d >

∑
Hi∈Vj

(
1− xi(c̃)

)
ẽi,d

)}
∑

c̃∈C̃ |S(c̃, T )|
, (2)

where 1{·} is the indicator function, which evaluates to 1 if its argument is true and 0 if it is
false. Note that |S(c̃, T )| = |T | − (s(c̃)− 1).

2.3 Cluster size and risk

Here we present a simple, stylized model that demonstrates that increasing cluster size does not
necessarily reduce risk. Consider a single time period with homogeneous households. Each household
has an independent and identically distributed load li ∼ N (µL, σ

2
L), with µL > 0. All households in

the cluster are nearby each other, so they experience the same solar irradiance I ∼ N (µS , σ
2
S), with

µS > 0, which is independent of the household loads. The solar panel for a household scales with its

1There is some evidence that rooftop solar panels can survive natural disasters [23], but returning them to an
operational state is a separate matter. For example, residents may be unable or unwilling to enter a partially destroyed
home in order to reset inverters or otherwise get their rooftop panels into an operational state.
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mean consumption, as in net-zero sizing, so the energy generated by a household that has adopted
rooftop solar is ei = βµLI, where β > 0 is the scaling between mean load and net-zero size.

Let the cluster size be Q, let the fraction of households who have adopted rooftop solar
be r ∈ [0, 1], and let the fraction of adopter homes that are inhabitable after the catastro-
phe be γ ∈ [0, 1]. Then the reduced load of the cluster in the aftermath of the catastrophe
is L =

∑Q
i=1 fli, so L ∼ N (fQµL, f

2Qσ2L). The energy generated by the cluster is E =
∑γrQ

i=1 ei,
so E ∼ N (γrβµLQµS , γ

2r2β2µ2LQ
2σ2S). Define Y ≡ L − E. We know that Y ∼ N

(
Q(fµL −

γrβµLµS), Q(f2σ2L + γ2r2β2µ2Lσ
2
SQ)

)
. Denote the mean of Y as µY and the standard deviation as

σY .
The risk faced by the cluster is R = P (Y > 0) = P (Y−µYσY

> −µY
σY

) = 1− Φ(−µY
σY

), where Φ(·) is
the cumulative distribution function for the standard normal distribution. The risk R is increasing
in µY

σY
:

µY
σY

=
QµL(f − γrβµS)√

Q(f2σ2L + γ2r2β2µ2Lσ
2
SQ)

=
µL(f − γrβµS)√
f2σ2

L
Q + γ2r2β2µ2Lσ

2
S

. (3)

The effect on risk of increasing the cluster size Q depends on the sign of f − γrβµS , which
captures the balance between load and generation in the aftermath of the catastrophe. If the
generation is likely to be enough, i.e. if f − γrβµS < 0, then R is decreasing in Q, so risk decreases
with increasing cluster size. On the other hand, if the generation is unlikely to be enough, i.e. if
f − γrβµS > 0, then risk is increasing in cluster size. The magnitude of the impact on R of changes
in Q is governed by the ratio of f2σ2L to γ2r2β2µ2Lσ

2
S . Also, increasing cluster size leads to a limiting

behavior in R:

lim
Q→∞

R = 1− Φ

(
− µL(f − γrβµS)

γrβµLσS

)
. (4)

Thus, beyond a certain point, increasing the cluster size won’t have much impact on risk.

2.4 Creating resilience clusters

Homes are grouped together into resilience clusters, each containing about the same number of
homes.2 The clustering is accomplished using a same-sized k-means algorithm using Euclidean
distance based on location coordinates available for each home [24,25]. The k-means method has
deficiencies - some clusters are intermingled, some include homes that are far from each other, and
the outcome varies based on the random initialization. Simple Euclidean distance does not take
into account access through usable pathways. Furthermore, in a real world setting, the resilience
communities that households and city planners form will be of varying sizes, will change over time,
and will not be isolated from each other, particularly in the aftermath of a disaster. For the specific
purpose of quantifying the effect of cluster size, however, we consider static clusters of the same
size. This clustering method yields mostly reasonable clusters that are a good starting point for our
analysis.

2.5 Variations studied

We compute the empirically estimated risk metric for the resilience clusters under different scenarios
for adoption and cluster size. An adoption scenario A is a combination of adoption rate and adoption

2Specifically, the largest cluster has at most one more home in it than the smallest cluster.
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Figure 1: This figure provides an example illustrating the difference between the adoption rules. There are
12 total homes grouped into two resilience clusters of 6 homes each, with the dotted lines demarcating the
clusters. The number on each house is its economic benefit bi. The adoption rate r = 1

3 , and the adopters are
the houses filled with green. The overall adoption rule results in the situation shown in (a), and the even
adoption rule results in that shown in (b).

rule. The adoption rate r is simply the fraction of homes that have adopted rooftop solar. With N
homes, the total number of adopters will be rN . The adoption rule determines which rN homes
out of the N homes will be the adopters. We consider two different rules: overall adoption and even
adoption.

First, for each home, define bi as how much it would save on its annual electricity bill if it had
a net-zero rooftop solar system. Under the overall adoption rule, the adopters are the rN homes
with the highest values of bi. By contrast, under the even adoption rule, the adopters are the homes
in each cluster that are in the top r within their cluster as ordered by bi. The even adoption rule
spreads adoption out among the clusters, with the homes that stand to benefit the most within each
cluster being the adopters, whereas the overall adoption rule may lead to some clusters having many
more adopters than other clusters. Figure 1 illustrates the difference between the two adoption rules.
The adoption pattern generated by the overall adoption rule is more in line with what households
might do if left to their own devices. Those who stand to benefit more have a greater incentive to
adopt rooftop solar. Achieving the adoption pattern generated by the even adoption rule would
require a policy intervention.

We compute the risk under different cluster sizes in order to study the advantage of larger
resilience clusters. For each cluster size, we compute one set of cluster assignments. Note that the
clusters thus generated are not necessarily hierarchically nested. In other words, the clusters of
size 10 are not formed by merging two clusters from the size 5 clustering results. We also note
that practically speaking, the size of a resilience cluster may be limited by the logistics involved in
planning and coordination among households.

We consider two values of the energy reduction fraction f : 1
2 and 1

3 . An analysis of data from
the Pecan Street Project found that for many homes, refrigeration and air conditioning made up
less than 50% of total usage [26]. Communication loads (e.g. charging cell phones) are very small,
as are nighttime lighting loads if LEDs are used. On this basis, we regard a reduction to 1

2 as readily
attainable in the aftermath of a disaster, and a reduction to 1

3 as achievable with some thought.
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3 Data

3.1 Building construction

The San Mateo County Tax Assessor’s data provides the latitude and longitude coordinates for
over 8700 single family homes in San Carlos. The data also includes the height of the home and
the square footage. Figure 2 geographically depicts the homes. This data is almost complete in
its coverage of single family homes in San Carlos. While the building height is available for all
buildings, the number of stories is available for only 65% of the buildings. We performed a Bayesian
inference based on the building height to estimate the most likely number of stories for the buildings
without this information, using a cutoff height of 14 feet to separate single story homes from two
story homes.

3.2 Electrical energy consumption

The household electrical energy consumption data comes from smart meters for over 1800 single
family homes in San Carlos and 46 single family homes in nearby Redwood City, California. The
smart meters recorded hourly electrical energy consumption for each home from November 1, 2011,
to October 31, 2012. We exclude any meters with less than 0.1 kW annual mean consumption or with
more than half of the readings being zero. We sum the hourly data each day to produce the daily
electrical energy consumption for each home, l̃i,d. Figure 3 characterizes the energy consumption
data by giving the distributions of various load statistics for each household.

We have survey data that includes the year built and a square footage range for each home. Figure
4 shows the relationship between average daily consumption and these home characteristics. The
Redwood City smart meters are included to augment the small number of San Carlos meters available
in the 501-750, 4001-5000, and 5001-10000 square foot ranges. There is a definite relationship
between the area of a home and its energy consumption, while there is no evidence of a relationship
between consumption and year built.

3.3 Combining energy and construction data

The energy consumption data does not contain precise location information for the meters. In
addition, we only have energy consumption data for 1900 homes, while there are 8700 homes in
the construction data. Therefore we cannot perform a precise one-to-one matching between the
consumption data and the construction data. As shown in Figure 4b, square footage is correlated
with electrical energy consumption. This relationship motivates the use of stratified sampling based
on square footage in order to assign meter data to buildings, as described in Algorithm 1.

3.4 Solar energy generation and economic benefit

We follow [27] for defining the solar irradiance and net-zero system sizes for each home.3 Together,
these produce ẽi,d, the energy that each household would generate if it had a net-zero rooftop solar
system. We use the annual bill savings computed in that study as the economic benefit bi, assuming
that households purchase electricity at the retail time of use rate and sell any surplus back at the

3The homes in San Carlos are in one zip code, so they all experience the same irradiance.
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0 1 2.5 Miles

Figure 2: The building construction data comes from the tax assessor’s file. Single family homes with a
height less than or equal to 14 feet are light orange, and those with a height greater than 14 feet are blue.
That cutoff is related to an assumption about one story versus two story homes that is used in the earthquake
damage modeling. The green shaded area marks the extent of the city of San Carlos.

7



0

50

100

150

200

0 25 50 75 100

Mean daily
consumption (kWh)

co
un

t

(a)

0

50

100

150

200

0 50 100 150 200

97th percentile daily
consumption (kWh)

co
un

t
(b)

0

100

200

300

0 10 20 30 40

Standard deviation of
daily consumption (kWh)

co
un

t

(c)

Figure 3: These figures provide distributions of statistics of the daily load for each household. The statistics
are computed over a year’s worth of data for each household.
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Figure 4: These figures capture the relationship between mean daily load and characteristics of the home
in the energy consumption data. (a) There is not a strong relationship between mean daily load and year
built. (b) Mean daily load generally increases with the square footage of the home. Note that there are only
ten meters from homes in the 5001− 10000 square feet range, and only one in the 10000+ range, so that
information is less reliable.
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Figure 5: The area and year built of homes in the energy consumption data are shown in (a) and (b), while
(c) and (d) show the same for the homes in the building construction data. As a population, the homes in the
energy consumption data are smaller and somewhat newer than the homes in the construction data, which is
more representative of the stock of single family homes in San Carlos. One possible explanation for this bias
is that the survey responses for the energy consumption data are self-reported, and people are more likely to
decline to state large home sizes, whereas the building construction data is gathered directly by a public
official.
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Algorithm 1 Stratified sampling procedure for assigning smart meter data to homes in construction
data. The inputs to this algorithm are as follows: a partition of possible home areas A =
{A1, . . . , AP } corresponding to the ranges used in the consumption data survey information (e.g.
the numerical ranges on the x-axis of Figure 4b); the set of meter readings U = {U1, . . . , UR}; for
each meter reading Uj , ãj is the element of the area partition reported in the survey information;
the set of homes H = {H1, . . . ,HN} from the construction data; the area ai of each home Hi.

1: for k =1,P do
2: Uk ← {Uj | ãj = Ak} . Uk is all meters whose survey data shows area range Ak
3: Bk ← Uk

4: for i=1,N do
5: Find k such that ai ∈ Ak . Find the area range for home Hi

6: if Bk is empty then
7: Bk ← Uk

8: Choose b uniformly at random from Bk

9: li ← b . Hi’s load li comes from a home with same area range
10: Bk ← Bk \ b . Sample without replacement and refill when needed

wholesale rate.4 The annual bill savings for a household are strongly positively correlated with its
net-zero system size.

3.5 Earthquake simulations

The catastrophe C in our study is modeled after the 1906 San Francisco earthquake in terms of
the magnitude and the fault. The geometry of the 1906 rupture was extracted from the Uniform
California Earthquake Rupture Forecast (UCERF) version 2 through the OpenSHA engine [28, 29].
Average spectral accelerations, Saav, were computed in San Carlos to represent the shaking intensity
measure. Saav is defined as the geometric mean of the spectral accelerations, Sa, between 0.2
and 3 times a fundamental period of vibration. We choose a period of 0.16 seconds because [30]
demonstrates that it best correlates with seismic damage in 1- and 2-story wooden buildings, which
together represent more that 99.5% of the building typologies in our case study. We computed 500
realizations of spatially distributed Saav using the ground motion model in [31], incorporating a
spatial correlation structure from [32]. The set C̃ contains the 500 realizations as its elements. We
assume that every realization causes a power outage span of one day, so s(c̃) = 1 for all c̃.5

In a post-earthquake setting, buildings are red tagged by trained engineers if the buildings are
unsafe to be occupied. We simulate the post-earthquake building tagging by using fragility functions
developed for 1- and 2-story wooden single-family residential buildings [30]. These functions evaluate
the likelihood that a building is red tagged after an earthquake as a function of Saav. Using
these data and models, the probability of being red tagged pi(c̃) is calculated for each home i
and for each earthquake realization c̃. Then, this probability is used to sample from a Bernoulli

4In [27], homes adopt a net-zero sized PV system as well as a storage device scaled to the size of the PV system.
The storage device itself is responsible for a small fraction of a household’s total bill savings.

5More detailed analysis could give better estimates of the earthquake power outage timespan. Our assumption was
based on previous medium- and large-magnitude earthquake observations that left thousands of households without
power for several days (e.g., 1989 Loma Prieta, 1994 Northridge, and the 2014 Napa earthquakes). Note that longer
outage spans will lead to higher values of risk, all else being equal.
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distribution to determine whether the home will be red tagged or not. We deem that red tagged
homes are uninhabitable, and thus if home i is red tagged, we set xi(c̃) = 1.6 In other words,
xi(c̃) ∼ Bernoulli(pi(c̃)). Figure 6 shows the proportion of times that a given home is deemed
uninhabitable across all 500 realizations of the earthquake.

4 Results

The energy resilience in this study is provided entirely by rooftop solar, so the risk metrics are
strongly seasonal. We estimate the risk for T being the whole year for which we have consumption
data, as well as for T being each season within that year. As shown in Figure 7, the median cluster
risk can vary from close to zero in summer all the way to one in winter. Even with an adoption rate
of 100% and a reduction fraction of f = 1

3 , the median risk in winter remains at 0.4 for all cluster
sizes. Thus, either a different generation technology or a different approach to system sizing would
be required to provide high levels of resilience to outages during winter. From here on, we will focus
on metrics for either the entire year or for seasons other than winter.

4.1 Increasing adoption

Figure 8 illustrates the effect of increasing adoption of rooftop solar on reducing risk. Increasing
adoption steadily shifts the distribution of whole-year cluster risk downward. For the summer season,
however, the risk is almost entirely eliminated at about 20-25% adoption. Thus, one home with a
net-zero panel is very likely to be able to support the energy needs of three or four neighbors during
an outage in summer if they can all manage to cut their consumption to 1

3 of their usual usage.
As seen in Figure 8c, a small decrease in adoption from 15% to 10% can lead to a large and

widespread increase in risk. The same results are depicted geographically in 10c as compared with
10a. This sensitivity point is a function of how much energy a home with a net-zero system will
generate in excess of its own needs. In this particular case, one home with a net-zero system can
reliably support the reduced energy needs of about 7 homes but no more. The decrease from three
adopters in a cluster of 20 to just two makes a big difference.

4.2 Different adoption rules

By design, the even adoption rule leads to much more even risk across clusters. As shown in Figure
8c vs. 8d, the median cluster risk is similar for both adoption rules, but the dispersion is much
wider under overall adoption. This same effect is evident when comparing Figures 10a and 10b,
showing many more homes belonging to clusters with high risk in the overall adoption case.

The total system size adopted, and the total bill savings of the adopters, will vary under the
overall and even adoption rules. For the cases in the figures just mentioned, the cluster size is 20
and the adoption rate is 15%. Under the overall adoption rule, the total system size adopted is
12.4 MW, and the total annual bill savings is $3.02 million. Under the even adoption rule, the total
system size adopted is 11.8 MW, and the total annual bill savings is $2.87 million.

6Note that in an actual earthquake, it may take some time for an engineer to show up and officially red tag
a building. We assume, however, that the occupants would abandon such a home out of caution right after the
earthquake.
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Figure 6: This figure depicts the proportion of times that a home is deemed uninhabitable across the 500
simulations of the 1906 San Francisco earthquake. The distribution is bimodal, with two story homes more
likely to be red-tagged than one story homes, as can be seen by comparing this figure to Figure 2.
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4.3 Increasing cluster size

Figure 9 illustrates the effect of increasing cluster size for a fixed adoption rate and reduction
fraction f . The effect of cluster size varies depending on the adoption rule. The even adoption
rule satisfies some of the conditions of the theoretical model presented in Section 2.3. For the case
depicted in Figure 9a, the fundamental balance between generation and load in the aftermath of the
earthquake tilts in favor of generation, so increasing cluster size reduces risk as in the theoretical
model. The model’s limiting behavior of risk with respect to increasing cluster size is also apparent
in the figure, with most of the benefit achieved at a cluster size of 20-25.

The homes in our study, however, have heterogeneous loads, which is a departure from the
theoretical model. As a consequence, with even adoption, the adopting households will be different
for different cluster sizes. At larger cluster sizes, it becomes more and more the case that the
households who save the most overall — and therefore have the largest net-zero system size — are
the adopters.7 This increases the total adopted system size, which has a direct impact on reducing
the risk. For example, in Figure 9a, the total adopted system size is 14.1 MW for cluster size 5,
15.0 MW for cluster size 30, and 15.1 MW for cluster size 50. The total adopted system size with
overall adoption is 15.3 MW.

By contrast, under the overall adoption rule, the adopting households are the same for different
cluster sizes, so the total adopted system size is the same. Thus, the improvement in risk seen in
Figure 9b, in particular the shift downward at the upper end of the distribution, is due to improved
sharing with larger groups. Specifically, as the cluster size increases, it becomes less and less likely
that any given cluster will have no adopters in it. Thus, the worst case cluster risk decreases. There
is no clear trend for the median risk.

5 Discussion

We present a methodology for conducting a first order assessment of the contribution of distributed
energy resources to energy resilience in the aftermath of a catastrophe. Resilience officers can apply
our methods to estimate how increasing rooftop solar adoption will affect risk related to outages
in their neighborhoods. This type of assessment lays the groundwork for developing metrics that
account for the resilience value of rooftop solar in addition to its value in terms of bill savings
and sustainability. In addition, quantifying the benefits of clustering and sharing can help inform
resilience planning efforts in residential communities. We find that increasing the size of a resilience
cluster can be beneficial or detrimental depending on the fundamental statistics of energy balance
within a cluster in the aftermath of the disaster.

Turning to the adoption rule comparison, if households that stand to save the most from rooftop
solar adopt first, the resulting adoption pattern will be close to that of the overall adoption rule. In
our study, we find that overall adoption can lead to large and widespread disparities in risk, with
some clusters at much lower risk than others. Bill savings are higher for homes with larger net-zero
systems, which are homes that consume more energy. These also tend to be larger homes. We find
a negative correlation between home square footage and risk for the case depicted in Figure 10b,
despite the fact that larger homes are more often red tagged after the earthquake because they are
more likely to have two stories. In other words, neighborhoods with larger homes sustain more

7In the limit, with a single cluster containing all households, the even adoption rule results in the same adopters as
the overall adoption rule.
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Figure 7: The cluster risk is strongly seasonal because the resilience clusters rely on solar energy to meet
their needs. Note in particular the dramatic difference between summer, where the median cluster risk is
around 0.1, and winter, where the median risk is at its maximum possible level of 1. For this figure, the
cluster size is 20, the adoption level is 15%, the adoption rule is even adoption, and the reduction fraction
f = 1

3 .

loss of rooftop PV generation but are nonetheless more likely to be able to meet their electrical
energy needs. These neighborhoods tend to be inhabited by people with more wealth and income,
so disparities in risk overlap with economic disparities.

Policymakers interested in evening out risk could seek to encourage adoption patterns closer to
those generated by the even adoption rule. For the case shown in Figure 10a, which is the same as
Figure 10b but with even adoption, there is a small but positive correlation between home square
footage and risk. The neighborhoods with larger homes are now less likely to meet their energy
needs due to the greater loss of PV that they suffer. We can compare the overall and even adoption
rules economically based on the total adopted system size and the total bill savings for the two cases
as reported in Section 4.2. Suppose that, under either rule, the adopters as a group attempt to fund
their purchase of the rooftop solar systems out of their bill savings. Their per unit bill savings is the
key figure that they would compare to the per unit costs of rooftop solar systems. Because the total
number of adopters is the same in both cases, we assume that the fixed costs are the same. In the
overall adoption case, the annual bill savings divided by the system size comes to $244.2/year/kW;
in the even adoption case, that figure is just slightly lower at $242.8/year/kW. If a policymaker
augmented the total bill savings of the adopters under even adoption by $16,700/year, then their
per unit bill savings would match that of the adopters under overall adoption. The policymaker
would need to compare that annual augmentation with costs of other methods to reduce risk.

Our study poses even adoption and overall adoption as exclusive alternatives in order to cleanly
compare them. In order to perfectly implement the even adoption rule, however, the policymaker
would have to prohibit additional adoption in clusters that already had the right number of adopters.
Thus, some clusters would face higher risk under even adoption than they would under overall
adoption. This is not feasible or desirable from the standpoint of promoting the adoption of
distributed energy resources. Any real policy intervention aimed at more evenly dispersed adoption
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Figure 8: The cluster risk for cluster size 20 and f = 1
3 is shown as a function of the adoption rate. The left

two panels are for the even adoption rule, the right two for the overall adoption rule. Note that the increase
in adoption from 5-25% is in linear steps, whereas the last two steps to 50% and 100% represent a geometric
increase.
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Figure 9: The cluster risk for spring with f = 1
3 and an adoption rate of 20% is shown as a function of

cluster size for the (a) even adoption rule and (b) overall adoption rule. Note that the last step from size 30
to 50 is much larger than prior steps.

is likely to result in an adoption scenario somewhere between even and overall adoption. Some
clusters, those with larger homes and greater potential bill savings, will end up with a greater
fraction of adopters, and other clusters will require targeted help to achieve some minimum level of
adoption for resilience.

We identify three key steps to advance this study. The first is to translate our risk metrics into
dollar terms. There are direct costs to disaster related outages, like spoiled food and medicine,
productivity loss, and damage to home equipment. Some of these can be mitigated by reducing
outage risk as proposed in our study. More importantly, making neighborhoods more resilient makes
it more likely that people will stay in their communities in the aftermath of a disaster, avoiding the
direct costs and economic dislocation of evacuation, resettlement, and return. Quantifying these
avoided costs may be more important than the direct costs of outages in residential communities.
The second extension is to address the distribution of energy — how to physically share energy
between homes, and how to deal with the mismatch in timing between generation and consumption
through storage and other means. Finally, we note that electrical energy resilience is only one part of
what makes a residential community livable in the aftermath of a disaster. Water and communication
infrastructure are also essential. A holistic framework that accounts for the interactions of these
and other systems would be an important contribution to modeling and quantifying resilience.
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Figure 10: These images geographically depict the risk faced by the households during summer under
varying conditions. Each home is colored based on the risk value for the cluster to which it belongs. (a) The
homes face relatively low risk when they are grouped into resilience clusters of size 20, with rooftop solar
adoption rate of 15% with the even adoption rule, and with reduction fraction f = 1

3 . (b) The conditions
are the same as in (a) but with the adoption rule changed to overall adoption. Now the risk is much more
uneven across the homes, as would be expected. The overall adoption rule can lead to very uneven adoption
among clusters, with some clusters having no homes with rooftop solar. (c) The conditions are the same as in
(a) but with the adoption rate reduced to 10%. This decreases the number of adopters in a typical cluster
from three to two, dramatically driving up the risk for many homes. (d) The conditions are the same as
in (a) but with f = 1

2 . Consistently meeting this higher fraction of the original load is much harder with
net-zero sized rooftop solar, leading to higher risk across the city.
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