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ABSTRACT
Creep deformation in single-phase ɤ-TiAl alloys manufactured using
different processing techniques has been an extensively studied
topic owing to the high specific strength and excellent
creep properties of these alloys at temperatures between 760 and
1000°C. In addition, these lightweight and creep-resistant alloys are
being presently considered as replacements to the comparatively
heavier Ni-based superalloys for application in the low-pressure
turbine blades of the next-generation gas turbine engines.
However, there is limited information on the tensile creep deforma-
tion behaviour and creep life of ɤ-TiAl alloys at 832°C where these
alloys have been reported not to exhibit steady-state creep. To
this end, the present work revisits the work on understanding the
tensile creep deformation behaviour of wrought single-phase ɤ-TiAl
alloy by Saha [1] and is aimed to develop an understanding of
the tensile creep deformation behaviour at 832°C and the influence
of creep activation energy on the creep life of wrought single-phase
ɤ-TiAl alloy for stress levels of 69.4 and 103.4 MPa at 832°C using
Monkman–Grant [2] approach.
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1. Introduction

Near γ-titanium aluminide (TiAl) alloys offer a range of attractive properties such as high
specific strength and good high-temperature properties which include high oxidation
resistance and good creep resistance [1�]. In addition, single-phase γ-TiAl alloys exhibit
much better fracture toughness and creep resistance as compared to that of near γ-TiAl
alloys [2]. This makes single-hase γ-TiAl alloys potential candidates for the replacement
of the much heavier Ni-based superalloys in the low-pressure turbine blades of the next-
generation gas turbine engines in aircrafts. On the other hand, the creep activation
energies from both bulk and grain boundaries (GBs) simultaneously influence the
creep life of the material for high-temperature applications [3]. This necessitates exten-
sive creep studies primarily focusing on the influence of tertiary creep and creep activa-
tion energy on the creep life of these materials. A series of reports on the room
temperature tensile deformation behaviour of single-phase ɤ-TiAl alloys (L10 structure)
show that the near-ɤ, two phase compositions having ~ 48 at.% Al possess very high
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toughness (ultimate tensile strength ~844–1010 MPa and tensile ductility ~3–4.6% at
room temperature) [4–7]. Extensive creep deformation studies have been carried out on
a number of two phase near-ɤ-TiAl alloys produced by various processing routes [4,8]. In
addition, compression creep-based investigations have been performed on a number of
single-phase ɤ-TiAl alloys and a number of literatures have reported that minimum
strain rates during creep testing at different regimes of temperature and stress hugely
influence the grain size of single-phase ɤ-TiAl alloys (during creep testing) [3,9,10].
Minimum strain rate of such intermetallic-based alloys may be defined in terms of
Mukherjee–Bird–Dorn (MBD) equation [11–13].

Hayes and Martin [4] have presented an analysis of the minimum strain rate deforma-
tion of a wrought single-phase ɤ-TiAl alloy within temperature range of 760–1000°C and
stress range of 32–345 MPa. In addition, the aforementioned work [4] also predicts the
main mechanism for creep rupture at different temperatures, in a given stress range,
using Larson–Miller (L-M) [14] and Monkman–Grant (M-G) plots [15] and extensive
microstructural characterisation using optical microscope (OM) and the transmission
electron microscope (TEM). Besides, a recent report (from the author) on the tensile
creep deformation behaviour of ɤ-TiAl has determined the stress exponent and creep
activation energies between 760 and 900°C at 69.4 and 103.4 MPa [16]. Moreover, based
on creep activation energies and stress exponents, it has been reported that there is
a transition from dislocation-glide to dislocation-climb controlled creep at very low creep
stress levels (~66.68 MPa) [16] and that there is steady-state creep observed for both
interrupted and uninterrupted creep tests at 832°C [4]. A previous work by the author
[16] has refuted some of the major observations of the earlier work by Hayes and Martin
[4] which are:

● There is no tertiary creep between 760 and 900°C, at stress levels of 69.4 and 103.4
MPa in wrought single-phase ɤ-TiAl alloy.

● Steady-state creep is observed at 832°C, at stress levels of 69.4 MPa, for both
interrupted and uninterrupted tests.

● Single-phase ɤ-TiAl alloy does not exhibit dislocation creep at 760, 832 and 900°C
and at stress levels between 32 and 345 MPa.

Moreover, there is limited understanding of creep behaviour and creep rupture life as
a function of stress at 832°C. To this end, the present work is aimed towards under-
standing the creep deformation behaviour at 832°C and the influence of creep activation
energies on the rupture life (of the material) for stress levels of 69.4 and 103.4 MPa at
832°C using M-G approach. 832°C has been chosen as the creep test temperature and
69.4 and 103.4 MPa have been chosen as the creep stress levels since the creep behaviour
and the influence of creep activation energies on the creep life at the aforementioned
temperature and stress levels are not known till date. The approach used in the present
work is the determination of tensile creep deformation behaviour from strain rate vs.
strain plots at 832°C followed by the determination of creep life for two different stress
levels (69.4 and 103.4 MPa) using M-G approach and finally correlating the creep
activation energies using Ashby’s approach [17] for both GB diffusion creep (or Coble
creep) and lattice diffusion creep [or Nabarro–Herring (NH) creep] with the overall
creep life (of ɤ-TiAl alloy) at 69.4 and 103.4 MPa at 832°C .
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2. Theoretical analysis

Based on the single-phase ɤ-TiAl alloy composition and tensile creep test parameters
used by Saha [16], the minimum strain rate (εmin) vs. strain (ε) and ln(εmin) vs. ε plots
have been determined at 832°C for two different stress levels, viz., 69.4 and 103.4 MPa for
the purpose of understanding the influence of creep stress and temperature on the three
creep regimes (viz., primary, secondary and tertiary) and the influence of the same on the
creep life of the material. For creep life determination, M-G approach was used. For
M-G approach, the governing equation�is [3,18]

εs
tr
¼ CMG (2)

where, εs is the steady-state creep rate (~ εmin based on the justification that many
metallic materials may not exhibit steady-state creep (provided in ref [16].)), tr is the
rupture time (expressed in seconds) and CMG (~1.40 at 832°C) is the M-G constant
(obtained from ref [16].).

3. Results

Figure 1(a,b) shows the variation of _ε with ε (in both linear and logarithmic scales,
respectively) for three cases, viz., uninterrupted creep testing and interrupted creep
testing with termination strains of 0.18 and 0.5%. Figure 1(b) shows the creep regimes
at 832°C (for stress levels of 69.4 and 103.4 MPa, respectively) with a higher simplicity.
Based on Figure 1, it is observed that the present material (45.9Ti–0.91Nb–52.9Al (at.%))
shows a very early onset of tertiary creep at 832°C for uninterrupted creep test and for
creep test terminated at 0.5% strain, whereas there is no primary (or transient) creep
observed during creep test interrupted at strain of 0.18% (Figure 1), indicating that the
material (used in the present work) does not exhibit resistance to creep deformation for
the aforementioned deformation condition. Besides there is a limited regime of tertiary

Figure 1. Variation of (a) _ε with ε, and (b) ln(_ε) with ε. In parts (a) and (b), the plot uninterrupted creep
test has been represented using black colour, whereas the creep tests terminated at 0.18% and 0.5%
have been represented using red and blue colours, respectively. The inset images in parts in (a) and(b)
represent the different creep regimes in both interrupted and uninterrupted creep tests with a high
level of clarity (reproduced with permission from ref [16]).
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creep observed for creep tests terminated a 0.18% and 0.5% strain (Figure 1). In addition,
the material shows a dominant tertiary creep regime for the case of uninterrupted tensile
creep testing (Figure 1). Secondary (or steady-state creep) is not observed in any case
(Figure 1). In other words, the interrupted creep tests lead to a higher rate of vacancy
formation at GBs normal to the tensile stress subsequently followed by void growth and
coalescence, leading to an intergranular fracture, as mentioned in refs. [19–21].
Explanation of the above tendencies during interrupted and uninterrupted tensile
creep test (at 832°C) is subject to extensive microstructural investigations which is
beyond the scope of the present discussion.

For uninterrupted creep testing, there is a dominant tertiary creep regime (Figure 1).
Moreover, it has been reported that the extent of tertiary creep hugely influences the
creep life of the material [20,22–24]. To this end, creep life determination has been
performed for samples (with uninterrupted creep testing) at 832°C. Figure 2 shows the
creep life plots (for uninterrupted creep testing) based on M-G approach for stress levels
of 69.4 and 103.4 MPa at 832°C. From Figure 2, it is observed that tr decreases with
increasing _εmin at 832°C (based on equation 2). Moreover, the slope (p) of the M-G curve
(in Figure 2) is calculated as −1.33 which suggests that the mechanism of creep rupture is
power-law breakdown at 832°C (using the criteria mentioned in refs. [3,25–30]). Hayes
and Martin [4] and Saha [16] have reported that _εmin decreases with increasing stress
levels (from 69.4 to 103.4 MPa) at 832°C. Moreover, Saha [16] has reported that the creep
mechanisms operating at different stress levels (69.4 and 103.4 MPa) at 832°C are
independent of each other and, hence, are not sequential. Hence, combining the trend
observed between _εmin with tr (Figure 2) with the aforementioned reports ([4,16]), it may
be inferred that M-G-based approach to determine the creep life also predicts that tr
decreases with increasing stress levels (from 69.4 to 103.4 MPa) at 832°C.

Figure 2. M-G plots for determining creep life for 69.4 and 103.4 MPa at 832°C. _εmin has been
normalised with rupture strain (εr) determined from Figure 1. A justification of the above normal-
isation (for M-G plots) has been provided in ref [14].
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Based on the Ashby’s model [25], the constitutive equation for NH (or lattice diffusion
creep) is given as

_ε ¼ 9:3
DlGb
kT

b
d

� �2 σ
G

� �
(3)

where _ε is the strain rate, Dl is the lattice diffusivity, b is the Burgers vector, d is the grain
size, k is the Boltzmann constant, σ is the creep stress and G is the shear modulus of the
material. Similarly, using Ashby’s model, the constitutive equation for Coble creep (or
GB diffusion creep) is given as

_ε ¼ 33:4
DGBGb
kT

b
d

� �3 σ
G

� � δ
b

� �

(4)

where is the GB�width and DGB is the activation energy for GB diffusion. Both DGB and Dl
are highly temperature-dependent [25]. However, the magnitude of DGB is higher than that
of Dl at lower homologous temperatures, whereas the magnitude of Dl is higher than that of
DGB at higher homologous temperatures [31,32]. This is because GBs offer a higher pathway
for diffusion at lower temperatures when compared with that of the lattice [33]. Moreover,
a comparison of equations (3) and (4) shows that Coble creep has a higher grain-size
dependence as compared to that of NH creep. In other words, although both Coble and NH
creep may operate simultaneously, Coble creep is the dominant diffusion creep mechanism
for fine grain sizes at lower temperatures whereas NH creep dominates for comparatively
coarser grains at higher temperatures. However, both these mechanisms show a similar
sensitivity towards σ (as shown in equations (3) and (4)). Based on the previous reports
[4,16], d has minimal influence on _ε. The direct proportionality between _ε ad σ in equations
(3) and (4) also explains the previous observations (in refs. [4,16,34]) on the increasing
magnitude of _ε with increasing stress levels from 69.4 to 103.4 MPa. Besides, G, σ, T (~ 832°
C) and b are constant in the present work. Table 1 shows the creep activation energy for
stress levels of 69.4 and 103.4 MPa at 832°C and has been obtained from ref. [16]. Based on
the values of NH and Coble creep activation energies (Ql andQGB, respectively) reported for
69.4 MPa (QGB ~ 210 kJ/mol and Ql350 kJ/mol at 832°C in ref. [16]) and for 103.4 MPa
(QGB ~ 151.88 kJ/mol and Ql253.13 kJ/mol at 832°C in ref. [16]), it may be inferred that
a decrease in the creep activation energy (for both Coble and NH creep) significantly
reduces the creep life of the material with increasing stress levels from 69.4 to 103.4 MPa.

4. Discussion

As highlighted by Lu and Hemker [35], the main deformation mechanisms during tensile
creep in absence of steady-state creep at 832 °C are as follows.

Table 1. Coble and Nabarro–Herring (NH) creep activation energies (QGBand Ql , respectively) for stress
levels of 69.4 and 103.4 MPa at 832°C [16].
Stress level
(MPa)

Test temperature
(°C)

Coble creep activation energy (QGB)
(kJ/mol)

Nabarro–Herring creep activation energy
(Ql) (kJ/mol)

69.4 832 210 350
103.4 832 151.88 253.13
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4.1. Superdislocations

These have been observed in two different forms: (i) formation of fault dipoles and (ii)
rectilinear Kuhlmann-Wilsdorf (KW) type of barriers to dislocation motion [36]. For
instance, inverse creep in Ni3Al may be associated with the bowing out of superdisloca-
tions and their movement along cube cross-slip plane [37]. Ni3Al and ɤ-TiAl alloys show
similar inverse creep behaviour, suggesting that superdislocation associated deformation
behaviour is similar in both Ni3Al and ɤ-TiAl alloys [35]. Moreover, in both the afore-
mentioned alloys, the disappearance of fault dipoles and linear profile of locked screw
superdislocations at later stages of creep deformation suggests that the superdislocation
activity only influences the primary creep behaviour in both the aforementioned
alloys [35].

Moreover, the drastic decrease in creep rate during primary creep stage for unin-
terrupted creep test and creep test interrupted at 0.5% strain to failure (Figure 1) may be
attributed to the exhaustion of superdislocation movement. For instance, during yield-
ing, the motion of superdislocations has been reported to be inhibited by the two
competing mechanisms, viz., (i) Localised pinning and formation of fault dipoles [35]
and (ii) global cross slip with formation of KW type of rectilinear barriers [35]. The
formation of fault dipoles at lower temperatures has been attributed to the localised
pinning of superdislocations followed by the bypassing of pinned segments (of super-
dislocations) and the subsequent drawing out of fault dipole whose strain energy is
reduced by the passage of partial dislocations, leading to the formation of extrinsic
stacking faults. The instability of fault dipoles at higher temperatures may be used to
understand the temperature dependence of primary creep [35,38]. However, the forma-
tion of KW type of barriers has been observed to dominate at higher temperatures and
for longer times. Earlier high-resolution transmission electron microscopy (HRTEM)
observations [38] have revealed that these barriers undergo dissociation in a nonplanar
configuration, and hence, act as very strong obstacles to the further movement of
superdislocations.

There is hardly any influence of superdislocation movement on the tertiary creep of ɤ-
TiAl alloy as suggested by the macroscopic shape of the creep curves for both unin-
terrupted and interrupted creep testing (Figure 1). The temperature dependence of
tertiary creep has been reported to be comparatively lesser in ɤ-TiAl than that in Ni3
Al. The high temperature dependence of tertiary creep in Ni3Al has been attributed to the
Peierls-like motion of superdislocations on the cube cross-slip plane [35]. Cross-slipped
superpartials (or superpartial dislocations) have been observed to be more widely dis-
sociated in ɤ-TiAl than that in Ni3Al, resulting in a higher Peierls stress for ɤ-TiAl than
that in Ni3Al [35,37]. In this light, the more moderate temperature dependence exhibited
by ɤ-TiAl indicates that glide of superdislocations (along cubic {100} plane in ɤ-TiAl)
cannot be used to explain tertiary creep in this alloy.

4.2. Ordinary dislocations

The extended nature of tertiary creep that has been shown for the uninterrupted creep
test (Figure 1) may be attributed to the increased activity of ordinary dislocations.
Although present during primary creep, the importance of ordinary dislocation motion
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has been reported to occur after a complete exhaustion of superdislocation movement
[35]. Pinning and aligning of ordinary dislocations along the screw direction during
primary creep suggests that their motion is initially inhibited by the intrinsic process
which have been previously used to describe the yield strength anomaly in TiAl. These
intrinsic processes involve a double cross-slip phenomenon by which a dislocation
undergoes cross-slip to a secondary octahedral slip plane and then comes back to the
primary slip system as shown in Figure 3(a-c)) [35]. When a dislocation attains
a configuration similar to the one as shown in Figure 3(c) [35], the jogged segment is
unable to undergo a forward glide with the remaining part of the dislocation line leading
to one of the several non-conservative phenomenon: (i) zipping of the jog (along the
lateral direction) leading to the growth of one segment at the expense of the other
(Figure 3(d)) [35], (ii) forward climbing of the jog (Figure 3(e)) [35], (iii) pinching off
of the leading dislocation leading to a small loop in their neighbourhood (Figure 3(f))
[35] and (iv) spiral motion of the jog segments and their operationas a Z-mill source
provided that the jog is sufficiently high (Figure 3(g)) [35].

The increasingly bowed shape of the ordinary dislocations (Figure 3) associated with
the latter stages of tensile creep suggests that one or more of the aforementioned
processes occur if there is sufficient time allocated for a dislocation at a high homologous
temperature [35]. Both the expansion of dislocation loops and the spiralling of a Z-mill
source (Figure 3(g)) may lead to an increase in the overall dislocation density [35,39,40].
This may be used to describe the extended tertiary creep regime for controlling the

Figure 3. Movement of ordinary dislocation in TiAl: a localised segment of a screw dislocation (a)
undergoing cross-slip to a secondary octahedral {111} plane (b) and then comes back to the primary
slip plane leading to the formation of (c) two edge segment jogs which cannot undergo glide with the
rest of the dislocation (reproduced with permission from ref. [35]).
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overall creep behaviour during interrupted creep testing of ɤ-TiAl (Figure 1). The role of
diffusion in this particular process is clearly understood. The measured creep activation
energies at stress levels of 69.4 MPa and 103.4 MPa at 832°C (Qcreep = QGB + Ql ~ 560 kJ/
mol at 69.4 MPa, 832°C and 405.01 kJ/mol at 103.4 MPa, 832°C, QGB and Ql obtained
from Table 1) are much higher than that for diffusion of Ti in TiAl (~ 291 kJ/mol,
reported in ref. [35]). The activation energy of Al in TiAl is not accurately measured till
date. Qcreep becomes important in the context of diffusion creep which requires the
diffusion of both Ti and Al in TiAl [40]. Following this principle, Qcreep may be related to
the climb of jogs at different pinning points. In this context, it is worth mentioning that
thermal activation of dislocation motion also plays a key role during diffusion creep in ɤ-
TiAl [40]. However, the influence of mechanical twinning (a thermal process) on the
dislocation motion at the aforementioned stress and temperature in ɤ-TiAl alloy is yet to
be investigated and is beyond the scope of the present discussion.

5. Conclusions

The present work highlights the tensile creep deformation behaviour at 832°C and the
influence of creep activation energies (for both Coble and NH creep) on the creep life (of
single phase ɤ-TiAl alloy) as a function of increasing stress levels from 69.4 to 103.4 MPa
at 832°C (where there is no occurrence of steady-state creep). The approach used in the
present work is based on the determination of different creep regimes at 832°C followed
by the determination of creep life for two different stress levels (69.4 and 103.4 MPa)
using M-G approach and finally correlating the creep activation energies (for both Coble
and NH creep) with the overall creep life at 69.4 and 103.4 MPa at 832°C. Moreover, the
mechanisms of superdislocation and ordinary dislocation motion operative during
tensile creep deformation at the aforementioned stress and temperature have also been
elucidated. The following may be concluded based on the results obtained in the present
work:

● At 832°C, ɤ-TiAl alloy (45.9Ti–0.91Nb–52.9Al (at.%)) shows a dominant tertiary
creep regime for uninterrupted creep testing, whereas there is a limited tertiary
creep regime for creep tests (under the same temperature and stresses) for creep
tests interrupted at 0.18% and 0.5%, indicating that during interrupted creep
testing, there is a higher rate of vacancy formation along GBs normal to the
applied tensile stress followed by void coalescence and growth leading to inter-
granular fracture. Moreover, the dominant creep regime for the uninterrupted
creep test at 832°C may be attributed to the increased activity of dislocations
during tertiary creep.

● At 832°C for stress levels of 69.4 and 103.4 MPa, a drastic decrease in creep rate with
creep strain during primary creep stage for uninterrupted creep test and creep test
interrupted at 0.5% of the strain to failure may be attributed to the exhaustion of
superdislocation activity during primary creep at the aforementioned temperature
and stress levels. Besides, the macroscopic nature of creep curves for both unin-
terrupted and interrupted creep tests suggests that there is hardly any role of
superdislocations on the tertiary creep at the aforementioned temperature and stress
levels.
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● M-G approach (for creep life determination) shows that creep life (for uninter-
rupted creep testing) decreases with increase in stress levels from 69.4 to 103.4 MPa.
In addition, M-G plots indicate the mode of rupture (for uninterrupted creep test) at
832°C (for stress levels of 69.4 and 103.4 MPa) is power-law breakdown.

● A decrease in creep activation energy (for both Coble and NH creep) reduces the
creep life of the material with increasing stress level from 69.4 to 103.4 MPa,
highlighting that creep activation energy largely influences the creep life of single-
phase ɤ-TiAl alloy at 832°C.

6. Future work to be done

Extensive TEM-based microstructural investigations are required to further validate the
observations obtained from creep curves and correlate the different creep mechanisms
with the arrangement of both dislocations and superdislocations during the different
creep regimes for both uninterrupted and interrupted creep testing at 832°C. This would
provide an experimental evidence for understanding the influence of creep activation
energy on the creep life of single-phase ɤ-TiAl alloy.
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