
BrickFEM: An Automated Finite Element Model for Static

and Dynamic Simulations of Simple Lego® Sets

Martin Pletz and Matthias Drvoderic

Chair of Designing Plastics and Composite Materials, Montanuniversitaet Leoben,

Otto Gloeckl Strasse 2, Leoben, Austria

Abstract

BrickFEM is a tool that can automatically generate, mesh, run and evaluate Finite

Element Method (FEM) models of simple sets of bricks in the commercial FE software

Abaqus. It uses Python scripts to generate Lego® sets, which can contain regular

bricks, plates, tiles and base plates of any size. The model calculates the full stress

and strain fields of the bricks and can show how Lego bricks disassemble under applied

loads. The clamping connection between the Lego bricks is realized by widening the

lower cavities of the bricks before defining the contact between them. Loads can then

be applied in a static or dynamic step on regions of the bricks or using rigid bodies

that contact the Lego set.

Finite element modeling; toy bricks; clamping connection; Simulia Abaqus

Program title BrickFEM

Developer’s repository link https://github.com/mpletz/BrickFEM

Code license MIT

Programming languages and tools Simulia Abaqus, Python, imagemagick

Support email address martin.pletz@unileoben.ac.at

1 Introduction

The key feature of Lego bricks is that they can be clamped together. The studs of one

brick can be stuck into the bottom cavity of another brick, see Figure 1. The friction

between the studs and the cavities, combined with the normal force, results in a clamping

force. The design of the lower cavity is thus a key feature for the clamping connection and

was the main development in the original Lego brick patent [1].

Building Lego sets with a desired shape, color, and stability is a classical mathematical

optimization problem [2]. Some of these works consider the stability of the Lego sculpture

[3, 4, 5, 6] using simplified systems of forces with contacting bricks and applying the dead

load and external forces on the Lego sets. In this way, large Lego sets can be analyzed

1

https://github.com/mpletz/BrickFEM
mailto:martin.pletz@unileoben.ac.at

studs
... cavities

Figure 1: Some 1×4 and 2×4 Lego bricks with their studs and cavities.

for static loads. However, the clamping between bricks is simplified to a great extent. For

example, Luo [3] uses a critical frictional load between two assembled bricks.

A dynamic Lego model with a massive number of bricks modeled the crash of two Lego

cars in an explicit finite element model [7, 8]. The regular bricks in the model of Gerlinger

et al. [8] are connected by tied contact with parameters calibrated by experiments. Such

simplifications are necessary for models that contain thousands of bricks and therefore

have a rather coarse mesh.

This work presents a package for the automated generation of Lego set FEM models to

study this clamping connection in more detail. The full FEM model can compute realistic

stress- and strain fields in the model in a static or dynamic analysis using Lego bricks,

plates, tiles, and base-plates of any size. It is therefore able to accurately predict the forces

required for disassembly depending on the brick geometry, the material behavior of the

bricks, and the friction coefficient between the bricks.

2 Software description

The main challenge in modeling a Lego set is to establish the clamping of the bricks in

an accurate and efficient way. In a finite element model, the contact faces cannot initially

overlap. Therefore, the model cannot start with the bricks in their positions in the set but

must stick them together in some way.

This could be done by simulating how all the bricks are stuck together, one brick at a

time. Since the time complexity for adding bricks is exponential, this becomes infeasible

even for small models. Therefore, we developed a method for BrickFEM that uses only

three static steps (the clamping steps) to realize the clamping of all bricks at the same

time, see Figure 2:

• widen: The initial overlap of surfaces is resolved by displacements of the lower

cavities. This means that nodes on the face that would lie inside the stud of another

brick are moved so that there is no overlap. The top faces of the studs are fixed in

this step to prevent relative movement between the bricks,

2

• contact : In the second step, the contact between the studs and the lower cavities of

the bricks starts and the applied displacements of the widen step are discontinued.

This results in a first clamping between the bricks. Since the top faces of the studs

are still fixed, this clamping is unrealistic.

• free: The free step frees the top faces of the studs, resulting in a realistic clamping

connection between the bricks is obtained. This is the starting point for applying

the loads in another step.

BrickFEM automatically generates these clamping steps.

u

contact

free

free

uy

initial overlap

1) widen 2) contact

load step

3) free 4) load

clamping steps

Figure 2: Steps in the Lego model: The initial penetration of the contact surfaces is
resolved in the widen step. Then, the contact is defined. In the next step, the initially
fixed faces are released. Then, the clamped Lego bricks can be loaded in the load step,
which can be either static (implicit) or dynamic (explicit).

2.1 Software architecture

The function make model generates a Lego model based on the input dictionaries that de-

fine the brick arrangement (assembly), the loads of a dynamic, explicit step (explicit par),

and the basic Lego dimensions (lego geom), see Figure 3. make model is the main function

of BrickFEM that calls the internal functions that create the geometry, mesh the geometry,

apply loads, set boundary conditions, run the model execution, and evaluate the results.

If no explicit par is passed to the function, the Lego set is loaded in a static, implicit step.

Note that the static analysis will terminate as soon as the bricks disassemble because the

FEM does not converge. Therefore, implicit loading is only relevant for Lego sets that

deform slightly and do not disassemble.

BrickFEM uses the geometry of the 1961 Lego patent [1] including ribs between the

inner tubes at every second inner tube or cylinder, see Figure 1. The dictionary lego geom,

which is an optional input for the make model function, contains all the general geometry

parameters as well as the elastic properties of the brick material and the friction coefficient

3

make model(assembly, explicit par , lego geom)

(lego geom)

assembly

mesh size
step time

explicit par

h t
op

h

b

x

y

z

u

’rigid’

Figure 3: Structure of the model function make model that creates, runs, and evaluates
the Lego model from the input dictionaries assembly, explicit par, and lego geom. Note
that both explicit par and lego geom are optional. By default, lego geom contains basic
Lego dimensions and Lego material properties.

between the bricks. For details on the lego geom dictionary, see the BrickFEM documen-

tation. If not passed to the make model function, BrickFEM uses the geometry of the

Lego patent [1] with typical dimensions.

2.2 Software features

In the following, the possible brick types, types of boundary conditions, and types of loads

on the Lego sets are defined and the necessary form of the input dictionaries assembly and

explicit par is described.

2.2.1 Definition of brick assembly and loads

The assembly of a Lego set in BrickFEM is defined in the dictionary assembly. The

subdictionary bricks lists the bricks used in the model. The subdictionary parts places

these bricks, referenced by their brick id, at the locations loc, see Figure 4a. Note that

each of the bricks defined in the bricks subdictionary can be used multiple times in the

model by referring to it multiple times in the parts subdictionary. Optionally, the color of

each part for the output video can be defined as c, specifying either one of the solid Lego

brick colors from [9] or a 6-digit hex code as a string.

The assembly dictionary further defines the boundary conditions bc, the loads on the

brick sets loads rp, the mesh size mesh size, and the friction coefficient mu:

1 assembly = {

2 ’name’:’case1 -pull -1x1’,

3 ’bricks ’:{

4 1:{’type’:’base -plate’,’nx’:4,’nz’:2},

5 2:{’type’:’regular ’,’nx’:2,’nz’:2}},

6 ’parts ’:{

7 1:{’brick_id ’:1,’loc’:(0,0,0),’c’:’Yellow ’},

8 2:{’brick_id ’:2,’loc’:(8,0,0)},’c’:’Red’},

9 3:{’brick_id ’:2,’loc’:(8,0,0)},’c’:’Yellow ’},

10 4:{’brick_id ’:2,’loc’:(8,0,0)},’c’:’Red’},

4

11 5:{’brick_id ’:2,’loc’:(8,0,0)},’c’:’Yellow ’}},

12 ’bc’:{1:{ ’part_id ’:1,’set_name ’:’BOTTOM ’}},

13 ’loads_rp ’:{},

14 ’mesh_size ’:0.75,’mu’:0.2

15 }

The assembly dictionary is sufficient to define the Lego set, including all loads for the

static implicit analysis. For a dynamic, explicit analysis, additional parameters must be

defined and loads by rigid bodies can be applied, see the next section.

The bricks in the assembly are defined by their brick type type which can be regular,

plate, tile, or base-plate. The size of the brick is defined in terms of the number of studs

in the x-direction and in the z-direction by the parameters nx and nz, respectively. So a

2× 4 brick with the longer axis in x-direction has nx = 4 and nz = 2. Note that there is

no brick rotation implemented in the model; so a 2× 4 brick must be defined twice if its

longer axis points in the x-direction for some parts and in the z-direction for others.

Figure 4b shows the shape and coordinate system origin (green x) of the four possible

brick types regular, plate, tile, and base-plate. The height without studs h for the plate

and tile is only one third of a regular brick. The y-origin of the bricks lies in the bottom

plane for all brick types except for the base-plate, where it lies at the bottom of the stud.

The x- and z-coordinates of the origin of the brick lie in the center of the upper left stud.

When referring to the stud of a brick, this is done in terms of their indices ix,iz, with ix

and iz starting at 1.

u

bc: ’BOTTOM’
x

y

z

xy

z

’loc’

(0,8,0)

(0,0,0)

(9.6,8,0)

(19.2,8,0)

(28.8,8,0)
2

1

(24,2,4)

bricks

’base-plate’

’regular’

’rigid’

parts

nx = 2

nx = 4 nz = 2

xz

x
y

x

z

x
y

nz = 2

(a)

x

z

x

y

(0,0,0)

(1,2) (2,2) (3,2) (4,2)

(ix,iz)nx=4
tie

tie

n z
=

2 (1,1) (2,1) (3,1) (4,1)

’regular’ ’plate’ ’tile’ ’base-plate’

(b)

Figure 4: a) Definition of the bricks used in the model and their positions, as defined
in the assembly dictionary. The load in this model is applied by a rigid cylinder with
a displacement u in the x-direction, as defined in the explicit par dictionary. The green
coordinates indicate the locations of the instances loc of the bricks and b) defines the
origins of the bricks for all brick types and the numbering of the studs for applying loads.

Boundary conditions are defined in the bc subdictionary of assembly. It needs the

part id and the name of the set to fix. Possible sets are ’BOTTOM’, ’TOP-FACES’, and

’STUD-ij’ for the bottom face, all top faces, or the top face of the stud with index i=ix

and j=iz, respectively.

5

Loads applied to sets via reference points work like boundary conditions: The part id

and the set name must be specified. Then a reference point is automatically created in

the center of the set and all nodes of the set are rigidly coupled to this reference point.

The displacements (in mm) and rotation angles (in radians) of the RP can be specified

with the parameters ux, uy, uz, rotx, roty, or rotz. If one or more of those displacements

is not specified, that displacement is free in the model.

The mesh size defines the global mesh size in all Lego bricks. Linear hexahedral

elements with reduced integration are used for implicit load steps and linear tetrahedral

elements for explicit load steps. For hexahedral elements, the regular bricks and plates are

split into two parts at y = h−htop and then connected using surface-based tie constraints

of Abaqus, see Figure 4b.

BrickFEM models the contact using the penalty contact algorithm of Abaqus with the

friction coefficient mu. For the implicit steps (including the clamping steps), the Surface

to Surface contact option of Abaqus is used. For the explicit load step, BrickFEM uses

General Contact.

2.2.2 Definition of explicit load parameters

Parameters of the explicit load step and loads by rigid bodies are defined in the explicit par

dictionary. If make model is parsed an empty dictionary for explicit par, the model is run

implicitly using only the parameters from the assembly dictionary. By default, explicit par

is an empty dictionary.

For the Lego set defined in Figure 4a, the explicit par dictionary looks like this:

1 explicit_par = {

2 ’t_step ’:0.001 ,’is_acc ’:0,’mass_scale_t ’:0,

3 ’load_str ’:’’,

4 ’loads_rigid ’:{

5 1:{’shape’:’sphere ’,’u’:(20 ,0 ,0),

6 ’radius ’:4.,’loc’:(-8.1 ,9.6*4.5 ,4)}}

7 }

The following parameters must be defined in explicit par to run an explicit load step

in BrickFEM:

• t step: The time of the explicit step (float) or the times of the explicit steps (list)

that are independently computed.

• is acc: Whether the load should be applied with constant acceleration (1) or constant

velocity (0) to reach the total displacement at the end of the step.

• mass scale t : If 0, no mass scaling is used. If unequal 0, this is the target time step

used for mass scaling.

• load str : String to add to the model name. If the same Lego set is loaded in different

ways defined in separate explicit par dictionaries, it may be convenient to identify

these load cases in the model name.

6

The subdictionary loads rigid defines rigid parts for loading, which can be either

spheres or cylinders. Both need a location of their center and a radius, which are specified

in the dictionary as loc and radius. For the cylinder, the user also needs to specify the

direction of the cylinder axis and the cylinder length len. Note that the reference point of

the cylinder is located at half of its length for the cylinder and at the center of the sphere.

The displacement of the rigid part is given in u as a list (ux, uy, uz). The rotations of

the rigid part are always fixed. As an alternative to applying a displacement u, the rigid

part can have an initial velocity and then move freely in the load step. This can be done

by specifying m and v0 in loads rigid to specify the mass and the initial velocity of the

rigid part, respectively. The moments of inertia Ijj are calculated from the mass m and

the radius r as Ixx = Iyy = Izz = 2/5 m r2 for the sphere. For the cylinder with a length

l, the moments of inertia are set to Ixx = 1/2 m r2 and Iyy = Izz = 1/12 l m2 with the

x-axis as the cylinder axis.

3 Example problem

To illustrate the use of BrickFEM, the example of a Lego tower made of six 2× 2 regular

bricks on a 2 × 2 baseplate (which is fixed at the bottom) is used. The tower is loaded

by a rigid sphere hitting it from the left. This is the assembly dictionary for the tower

example:

1 assembly_tower = {

2 ’name’:’tower6_2x2 ’,

3 ’bricks ’:{

4 1:{’type’:’base -plate’,’nx’:2,’nz’:2},

5 2:{’type’:’regular ’,’nx’:2,’nz’:2}},

6 ’parts’:{

7 1:{’brick_id ’:1, ’loc’:(0,0,0)},

8 2:{’brick_id ’:2, ’loc’:(0,0,0)},

9 3:{’brick_id ’:2, ’loc’:(0 ,9.6 ,0)},

10 4:{’brick_id ’:2, ’loc’:(0 ,2*9.6 ,0)},

11 5:{’brick_id ’:2, ’loc’:(0 ,3*9.6 ,0)},

12 6:{’brick_id ’:2, ’loc’:(0 ,4*9.6 ,0)},

13 7:{’brick_id ’:2, ’loc’:(0 ,5*9.6 ,0)}},

14 ’bc’:{1:{’part_id ’:1,’set_name ’:’BOTTOM ’}},

15 ’loads_rp ’:{},

16 ’mesh_size ’:0.75,’mu’:0.2}

The sphere is moved by 20 mm at a speed of 20 m/s, 3 m/s, or 0.5 m/s. The velocities

can be set by adjusting the time of the step t step to apply the displacement. For example,

the step time can be 1 ms, so that the speed is 20 mm/1 ms = 20 m/s:

1 explicit_par_tower = {

2 ’t_step ’:0.001 ,’if_acc ’:0,’mass_scale_t ’:0,

3 ’load_str ’:’’,

4 ’loads_rigid ’:{

5 1:{’shape’:’sphere ’,’u’:(20 ,0 ,0),

7

6 ’radius ’:4.,’loc’:(-8.1 ,9.6*4.5 ,4)}}

7 }

Figure 5 shows the resulting von Mises stress field for a sphere velocity of 20 m/s and

the force-displacement curves and deformation of the Lego bricks for all three velocities.

Depending on the velocity of the sphere, the tower tilts or dynamically disassembles. The

highest reaction forces in the sphere occur at the highest velocity.

σmis (MPa)

(a)

0 5 10 15 20
displacement of sphere ux (mm)

10 1

10 0

10 1

10 2

10 3

10 4

10 5

re
ac

tio
n

fo
rc

e
F

x
(N

)

ux

20 m/s
3 m/s

0.5 m/s

ux=10 mm

ux=0

ux=20 mm

(b)

Figure 5: Results of the Lego tower example in terms of a) the von Mises stress in the
bricks when the sphere hits the tower (with the linear-elastic material model used, local
stresses reach about 230 MPa) and b) the force-displacement curves of the sphere for three
sphere velocities.

4 Conclusions

Creating FEM models of Lego sets is not straightforward because the initial clamping

connection needs to be established first. Contact surfaces in a FEM model must not

penetrate each other at the beginning of an analysis. There is no simple way of establishing

this clamping connection in the beginning. This work uses initial displacements to widen

bottom cavities of the bricks and then defines the contact to clamp the bricks. The

automated model can then be statically or dynamically loaded. Due to the full mesh of

all bricks, the number of bricks in the models is limited to a few. For these, however, a

detailed analysis of the clamping with the full stress- and strain fields can be studied.

By providing a versatile tool to compute the detailed clamping behavior of Lego bricks

in simple setups, BrickFEM can help to better understand the connection of Lego bricks

better and improve the analytical models for the stability of Lego designs. In addition, it

can predict dynamic effects that are not captured in existing analytical models or consid-

erably simplified in existing dynamic models [8]. It can also be adapted to help understand

and optimize interlocking mechanisms of materials with high toughness [10, 11]. Further-

more, it can show how mechanical simulation and the FEM method can be applied to

8

everyday objects and that FEM and engineering mechanics does not need to be boring.

References

[1] G. K. Christiansen, Toy Building Brick (1961).

[2] B. Stephenson, A multi-phase search approach to the LEGO construction problem

7 (1) 89–97. doi:10.1609/socs.v7i1.18385.

[3] S.-J. Luo, Y. Yue, C.-K. Huang, Y.-H. Chung, S. Imai, T. Nishita, B.-Y. Chen,

Legolization: optimizing LEGO designs. 34 (6) 222:1–222:12. doi:10.1145/2816795.

2818091.

[4] R. Testuz, Y. Schwartzburg, M. Pauly, Automatic Generation of Constructable Brick

Sculptures, in: M.-A. Otaduy, O. Sorkine (Eds.), Eurographics 2013 - Short Papers,

The Eurographics Association, 2013. doi:10.2312/conf/EG2013/short/081-084.

[5] T. Kollsker, Mathematical Models and Algorithms for Optimisation of the LEGO

Construction Problem, Ph.D. thesis, Technical University of Denmark, Lyngby

(2020).

[6] T. Kollsker, E. Malaguti, Models and algorithms for optimising two-dimensional

LEGO constructions, European Journal of Operational Research 289 (1) (2021) 270–

284. doi:10.1016/j.ejor.2020.07.004.

[7] T. Gerlinger, D. Koch, A. Haufe, N. Karajan, T. Weckesser, P. Glay, A. Saharnean,

M. Thiele, On the Setup and Simulation of Large Scale LEGO® Models built with

LS-DYNA® and LoCo, Koblenz, Germany, 2019, p. 15.

[8] T. Gerlinger, D. Koch, A. Haufe, N. Karajan, T. Weckesser, P. Glay, A. Saharnean,

M. Thiele, Simulation Data Management from CAD to Results with LoCo and CAViT

for Large Scale LS-DYNA® LEGO® Crash Models, 2020.

[9] Bricklink, Bricklink color guide (Dec. 2022).

URL https://www.bricklink.com/catalogColors.asp

[10] P. Fratzl, O. Kolednik, F. D. Fischer, M. N. Dean, The mechanics of tessellations –

bioinspired strategies for fracture resistance, Chemical Society Reviews 45 (2) (2016)

252–267. doi:10.1039/C5CS00598A.

[11] L. Djumas, G. P. Simon, Y. Estrin, A. Molotnikov, Deformation mechanics of non-

planar topologically interlocked assemblies with structural hierarchy and varying ge-

ometry 7 (1) 11844. doi:10.1038/s41598-017-12147-3.

9

https://doi.org/10.1609/socs.v7i1.18385
https://doi.org/10.1145/2816795.2818091
https://doi.org/10.1145/2816795.2818091
https://doi.org/10.2312/conf/EG2013/short/081-084
https://doi.org/10.1016/j.ejor.2020.07.004
https://www.bricklink.com/catalogColors.asp
https://www.bricklink.com/catalogColors.asp
https://doi.org/10.1039/C5CS00598A
https://doi.org/10.1038/s41598-017-12147-3

	Introduction
	Software description
	Software architecture
	Software features
	Definition of brick assembly and loads
	Definition of explicit load parameters

	Example problem
	Conclusions

