
Evaluation of GPU Logic Reconfiguration after

Service Start

Yoji Yamato

Network Service Systems Labs

NTT Corporation

Tokyo, Japan

yoji.yamato.wa@hco.ntt.co.jp

Abstract—In order to make full use of heterogeneous

hardware, it is necessary to have a technical skill of hardware

such as CUDA, and the current situation is that the barrier is

high. Based on this background, I have proposed environment-

adaptive software that enables high-performance operation by

automatically converting application code written for normal

CPUs by engineers according to the deployed environment and

setting appropriate amount of resources. Until now, I only

considered conversions and settings before operation. In this

paper, I verify that the logic is reconfigured according to the

usage characteristics during operation. I confirm that the

application running on the GPU is reconfigured into other loops

or applications offloading according to the usage trends.

Keywords—environment adaptive software, automatic

offloading, GPGPU, reconfiguration during operation

I. INTRODUCTION

In recent years, it is said that Moore's law, which states that
the degree of semiconductor integration of CPUs will double in
1.5 years, will slow down. Under such circumstances, not only
CPUs but also devices such as FPGAs (Field Programmable
Gate Arrays) and GPUs (Graphics Processing Units) are being
increasingly used. For example, Microsoft is making efforts to
improve the search efficiency of Bing using FPGA [1], and
Amazon provides FPGA, GPU as instances [2] using Cloud
technologies (e.g., [3]-[9]). In addition, small devices such as
IoT devices (e.g., [10]-[18]) are also increasing.

However, in order to properly utilize devices other than
CPUs with a small number of cores in the system, it is
necessary to make settings and program coding that are
conscious of device characteristics. For example, knowledge
such as OpenMP (Open Multi-Processing) [19], OpenCL
(Open Computing Language) [20], CUDA (Compute Unified
Device Architecture) [21] for GPGPU (General Purpose GPU)
[22] is required. Even if we use high level description
techniques such as [23]-[26], performance improvement needs
much skills.

It is expected that the number of systems that utilize
devices such as GPUs, FPGAs, and multi-core CPUs other
than few core CPUs will increase in the future, but there are
high technical barriers to making the best use of them.
Therefore, in order to remove such a barrier and make it
possible to fully use devices other than few core CPUs, the
software in which the programmer describes the processing

logic is adapted to the environment (FPGA, GPU, multi-core
CPU or so on) of the deployment destination. Therefore, there
is a need for a platform that can be adaptively converted,
configured, and operated according to the environment.

I proposed environment-adaptive software so that the code
once written can be used with the GPU, FPGA, multi-core
CPU or so on that exist in the environment of the deployment
destination. The environment-adaptive software automatically
performs conversion, resource setting and so on to operate the
application with high performance. At the same time, I have
also proposed and evaluated methods of automatically
offloading loop statements and function blocks of C language
program code to GPU and FPGA as elements of environment-
adaptative software [27]-[32].

However, my verification has so far only performed
adaptation processing such as conversion before the start of
operation, and has not considered re-adapting according to the
actual usage characteristics in the production environment
during operation. We will consider an example of image
processing. Before the start of operation, the logic was built so
that GPU processing would be performed on the premise that
there would be a lot of classification processing. However,
when analyzing the actual number of requests 3 months after
the start of operation, object detection process may be larger. In
this case, it is better to change the logic that performs GPU
processing.

This paper focuses on the reconfiguration of GPU logic,
while reconfiguring the applications according to usage
characteristics after the start of operation. There is no
example of reconfiguring GPU logic according to usage
characteristics during operation using GPU for application
acceleration in the production cloud (AWS GPU instance or so
on). GPU reconfiguration has a big impact, I think. First, the
existing application is automatically offloaded to the GPU and
the operation is started. I propose a reconfiguration method
which analyzes the usage characteristics, suggests to the user to
reconfigure the GPU logic to another offload, and changes it
with a shorter break time. The effectiveness of the proposed
method is evaluated by the performance improvement and the
break time through GPU reconfiguration during operation.

II. GPU RECONFIGURATION DURING OPERATION

A. Review of Automatic GPU Offload before Operation Start

I review the automatic GPU offload method verified in my
previous papers. There are two main features for automation.
The point that loop statement extraction suitable for GPU is
performed using the genetic algorithm (GA) [33] is proposed in

Fig. 1. Automatic GPU offload method for loop statements.

[27] (see, Fig. 1), and the point to suppress GPU-CPU data
transfer, the variables used in the nested loop statement are
transferred on the upper loop as much as possible is proposed
in [32]. Based on these two ideas, I have confirmed that the
automatic speedup is several times higher even in medium
sized applications with more than 100 loop statements.

B. Basic Policy for GPU Reconfiguration during Operation

By the method in A, the loop statements suitable for the
GPU can be automatically offloaded to the GPU in the
application specified by the user. After offloading to the
production environment used by the user, the actual
performance and price in the production environment are
confirmed, and the user starts using the application. However,
the performance optimization test case (item for performance
measurement when comparing performance with multiple
offload patterns) used for offload in previous subsection uses
the assumed usage data specified by the user because the
operation is not started. Therefore, there is a possibility that the
data will be significantly different from the data actually used
during operation.

Therefore, in this subsection, I study that if the usage
pattern after the start of operation is different from the initial
assumption and the performance is improved by offloading
another logic to the GPU, the GPU logic should be
reconfigured with less influence on the user. Reconfiguration
may change to different loop statements offload in the same
application, or it may change to a different application offload.

GPU offload logic reconfiguration requires changing the
executed OpenACC, but there are multiple ways to do it. First,
there is a method of stopping current OpenACC and starting
new OpenACC on the running machine. OpenACC is stopped
and started in a short time, and the break time is about several
seconds. Next, there is a method of newly building the machine
itself that executes new OpenACC, then switching the routing
to the new machine at the timing when all the current
OpenACC processing is completed, and then stopping the
current running machine. Routing switching is short and there
is almost no break time. Depending on the degree of user
influence, the GPU logic reconfiguration method may be
selected, but in either case, there will be a slight break time,
and changes to another logic will require an operation

confirmation test, therefore, I think reconfiguration should not
be done frequently. I set restrictions such as proposing only
when the effect is above the threshold.

The reconfiguration process begins with an analysis of
request trends over a period of long term, such as one month.
Request trends are analyzed to see if there is high processing
load than the currently offloaded application. Next, for
applications with high processing load, GPU offload
optimization trials are performed in the verification
environment using data that is actually used for production
environment instead of initial assumed usage data. Then, it is
judged whether the new offload pattern found by the
verification has a sufficiently higher improvement effect than
the current offload pattern, depending on if it is above or below
the threshold. If the effect exceeds the threshold, the user is
proposed to reconfigure. After the approvals, the production
environment is reconfigured, but the user influence is
suppressed as much as possible.

C. Method Proposal of GPU Reconfiguration during

Operation

Based on the basic policy, this subsection proposes a
specific reconfiguration method. The reconfiguration method
consists of 6 steps, and each step is explained in detail.

1. Analyze the production request data history for a certain
period (long term), identify multiple applications with high
processing time load, and acquire representative data when
using those applications.

1-1. Calculate the actual processing time and the total
number of uses from each application usage history for a
certain period. However, for application that is GPU offloaded,
the processing time if not offloaded is calculated. From the test
history of the assumed usage data before the operation,
calculate the improvement coefficient by (actual processing
time when only CPU processing is performed)/(actual
processing time when GPU is used). Next, the sum of the
values obtained by multiplying the actual processing time by
the improvement coefficient is used as the total processing time
for comparison.

1-2. Compare the total actual processing time for all
applications.

1-3. Sort by the total actual processing time, and identify
multiple applications with high processing time load.

1-4. Acquire request data for a certain period (short term)
of high load applications, arrange the data size for each fixed
size, and create a frequency distribution.

1-5. Select one of the actual request data corresponding to
the Mode class of the data size frequency distribution and
select it as the representative data.

2. Offload patterns are extracted through verification
environment measurement to speed up test cases of production
representative data in multiple high load applications.

2-1. In high load applications, count the number of for
statements by parsing such as Clang [34], and use the GPU
compiler function to find and remove for statements that
cannot be processed by the GPU.

2-2. Create a certain number of gene patterns with the
number of remaining for statements as the gene length, 1
means to GPU computation, 0 means to CPU execution, and
corresponding OpenACC directives are added. Directives are
both GPU computations such as #pragma acc kernels and data
processing such as #pragma acc data copy.

2-3. Compile the OpenACC file corresponding to the
genepattern in the verification environment machine, measure
the performance in the test case of the production
representative data, and set the higher goodness of fit for faster
patterns.

2-4. Depending on the goodness of fit, GA processing such
as crossover is performed, next-generation gene patterns are
created, and GA processing is repeated for a certain number of
generations, and the final highest performance pattern is
determined a solution.

3. The processing time with production representative data
of the current offload pattern and the extracted new offload
patterns is measured, and the performance improvement effect
based on the frequency of production use is obtained.

3-1. Calculated with current offload pattern (reduction of
actual processing time in verification environment)*(frequency
of use in production environment).

3-2. Calculated with new offload patterns (reduction of
actual processing time in verification environment)*(frequency
of use in production environment).

4. Reconfiguration proposal is judged based on whether the
performance improvement effect of the new offload pattern is
higher than that of the current offload pattern.

4-1. Calculate high load applications (3-2)/(3-1), check if it
is above the threshold, then propose a reconfiguration if it is
above, and do nothing if it is below.

5. Propose GPU reconfiguration to the contracted user and
get an OK/NG approval.

6. Start new OpenACC in a production environment and
reconfigure. There are two methods of GPU reconfiguration.

6-1. Stop the old OpenACC and start the new OpenACC.

6-1’. A new machine that processes the new OpenACC is
built, and the routing is changed so that the new processing is
sent to the new machine.

III. EVALUATION

A. Evaluation Condition

1) Evaluated applications
The evaluated applications are mainly neural networks,

Fourier transforms, and fluid calculations that are expected to
be used by many users on GPUs.

Darknet [35] is a neural network framework that can
perform various processing such as classification, detection
and nightmare, but this time, speeds up of object detection and
image modification, which are the basic processing are
confirmed. There are various types of neural networks, and
there are many libraries for GPU, but as an example, I use

Darknet which is written in C language. In the offload
verification before operation, detection processing (image
detection) is used in the sample application installed in Darknet.

The Fourier transform process is used in various situations
of monitoring in IoT such as analysis of vibration frequency.
NAS.FT [36] is one of the open source applications for FFT
(Fast Fourier Transform) processing. When considering an
application that transfers data from a device to a network in
IoT, it is expected that the device will perform primary analysis
such as FFT processing and send it to reduce network costs.
For offload verification before operation, the sample test case
attached to NAS.FT is used. The basic data of Class A is that
the grid size is 256*256*128 and the number of iterations is 6.

Himeno Benchmark [37] is a benchmark software used to
measure the performance of incompressible fluid analysis, and
solves the Poisson equation solution by the Jacobi iterative
method. It is frequently used for manual speedup on GPU, and
is used in this time to confirm that speedup can be done
automatically. The basic data used for offload is LARGE
(512*256*256 grid size).

NAS.BT [38] for block diagonal solver computation and
MRI-Q [39] for 3D MRI image processing are run on the same
machine and receive execution requests.

2) Evaluation method
Assuming two users, user A specifies Darknet detection

and user B specifies NAS.FT for automatic offloading before
operation.

The following conditions are performed in an initial
offloading.

Number of loop statements: Darknet 171, NAS.FT 81,
Himeno 13, NAS.BT 120, MRI-Q 16

Number of individuals M: Less than the number of loop
statements (Darknet 30, NAS.FT 30, Himeno 10, NAS.BT 30,
MRI-Q 10)

Number of generations T: less than the number of loop
statements (Darknet 20, NAS.FT 20, Himeno 10, NAS.BT 20,
MRI-Q 10)

Goodness of fit: (processing time)$^{-1/2}$.

The shorter the processing time, the higher the goodness of
fit. The (-1/2) power prevents the goodness of fit of a particular
individual with a short processing time from becoming too
high. It prevents the search area from becoming too narrow.

Selection: Roulette selection. To keep (not crossed or
mutated) best goodness of fit gene in a generation, elite
selection to next generation is also applied.

Crossover rate Pc: 0.9

Mutation rate Pm: 0.05

The operational conditions for reconfiguration are as follows.

Request load:

User A: Darknet detection 16 req/h, nightmare 20 req/h,

NAS.FT 4 req/h, Himeno 3 req/h, NAS.BT 2 req/h, MRI-Q 1

req/h. Darknet detection and nightmare (image modification)
processing uses equipped 3 images with 111 KB, 170 KB, and
374 KB. These data are requested in a ratio of 3:5:2. Data of
NAS.FT, Himeno, NAS.BT and MRI-Q are same as sample
data.

User B: Darknet detection 4 req/h, nightmare 3 req/h,
NAS.FT 20 req/h, Himeno 30 req/h, NAS.BT 2 req/h, MRI-Q
1 req/h. In NAS.FT, Class W, A, and B sizes of sample data
are requested in a ratio of 3:5:2. In Himeno, M, L, and XL
sizes of

Fig. 2. Evaluation environment.

sample data are requested in a ratio of 2:5:3. The data of
Darknet detection and nightmare, NAS.BT and MRI-Q are
same as sample data.

Long term during load analysis: 2 hours

Short term during representative data selection: 1 hour

Number of high load applications: 2

Performance improvement effect threshold: 2.0

During the reconfiguration, the performance improvement
effect and the processing time of each step are obtained.

3) Evaluation environment
NVIDIA GeForce RTX 2080 Ti is used as the evaluation

GPU. The machine equipped with GeForce RTX 2080 Ti is
Iiyama LEVEL-F039-LCRT2W-XYVI. GPU control uses PGI
compiler 19.10 and CUDA toolkit 10.1. By adding the
\#pragma directives to the C language program according to
the OpenACC syntax, GPU offload processing is performed,
and reconstruction to another OpenACC program is also
processed by the PGI compiler. Figure 2 shows the evaluation
environment.

B. Reults

Figure 3 shows the degree of improvement in processing
time before and after reconfiguration of users A and B, and the
total processing time (corrected for improvement coefficient)
for a certain period related to it.

Before the reconfiguration of user A, 4 for statements of
Darknet are offloaded, the degree of improvement in the
assumed data before operation is 2.92, and the loads are 16
req/h for detection processing and 20 req/h for nightmare

processing after the start of operation. 5,960 seconds that can
be calculated by the total actual processing time of the
request*2.92 is the total corrected processing time. As a result
of the calculation, Darknet and NAS.FT are 2 high load
applications. Among them, after the start of operation,
nightmare processing of Darknet was used many times in
production environment, thus new offload patterns for
nightmare processing using representative data are searched,
found a new pattern that offloads 13 for statements, and
reduced the total processing time which multiplies the number
of production uses. The degree of improvement is 96 seconds/h
for Darknet before reconfiguration and 1,850 seconds/h for
Darknet after reconfiguration.

Fig. 3. Performance improvement through proposed reconfiguration.

Before the reconfiguration of user B, NAS.FT was
offloaded, and the degree of improvement in the assumed data
was 2.54. 2,420 seconds that can be calculated by the total
actual processing time of the request*2.54 is the total corrected
processing time. As a result of the calculation, Himeno and
NAS.FT are 2 high load applications. By searching for offload
patterns using representative data after the start of operation
and multiplying the number of production uses, the degree of
improvement in processing time reduction is 308 seconds/h in
NAS.FT before reconfiguration and 1,180 seconds/h in
Himeno after reconfiguration.

From Fig. 3, the improvement threshold value 2.0 is
checked, and in the case of user A, a reconfiguration with
offload loop statement change of Darknet is proposed, and in
the case of user B, a reconfiguration with offload application
change from NAS.FT to Himeno is proposed.

The size of the request analysis is small because only
several hours data is analyzed in this time, but it will take
longer in proportion to the size. This time, it takes about only 1
second for request analysis and representative data selection,
less than a day for improvement effect calculation, and less
than 1 second for reconfiguration. For offload trials before the
operation and new offload pattern trials during operation, it
takes about 7 hours to measure the performance of GAs of
several tens of generations, so it takes less than a day if there
are three high load applications. However, most of the
processing such as analysis, including the trial of the new
offload pattern, is performed in the background during the
operation in the production environment, so there is no user
influence. Only, regarding the conduction of production
environment reconfiguration, the application has a break time,
but it takes less than 1 second even if current OpenACC is
stopped and new OpenACC is started, and it was confirmed

User A
Offload
application

Improvement of
processing time

Summation of
processing time

Before
reconfiguratoin

Darknet
(4 loops)

96.0 sec/h 5,960 sec

After
reconfiguratoin

Darknet
(13 loops)

1,850 sec/h 5,960 sec

User B
Offload
application

Improvement of
processing time

Summation of
processing time

Before
reconfiguratoin

NAS.FT 308 sec/h 2,420 sec

After
reconfiguratoin

Himeno
benchmark

1,180 sec/h 2,790 sec

that there is almost no effect. It is also possible to prepare
OpenACC on the new machine and switch the routing.

It was confirmed that the GPU processing application in
operation was reconfigured to a different loops or to a different
application offload according to the usage characteristics of
each user. It was shown that the degree of performance
improvement increased above the threshold through the
reconfiguration and the break time was sufficiently short.

IV. CONCLUSION

In this paper, as the elemental technology, I proposed a
GPU reconfiguration method during that reconfigures the
appropriate GPU logic during operation according to the usage
characteristics after the application operation starts.

Before starting operation, one of application loop statement
is automatically offloaded to the GPU. In the proposed method,
the applications with the high CPU processing time load are
acquired from the actual request data at regular intervals, and
the corresponding representative test case are also acquired.
Next, the new offload patterns that speed up representative test
cases are extracted through trial measurements in the
verification environment. This is almost the same as offload
before the start of operation. Next, the processing time of the
current offload pattern and the new offload patterns are
measured, and the processing time improvement based on the
frequency of production use are calculated. Here, if the new
offload pattern has an effect greater than the threshold of the
current pattern, the implementation proposes to the user to
conduct reconfiguration. After obtaining the user's consent, the
implementation stops OpenACC in the production environment
and reconfigure GPU logic by starting the new OpenACC. The
experiment showed that the GPU logic was reconfigured to
offload other loop statements or other applications by
reconfiguring the application that was automatically offloaded
to the GPU during operation according to the usage
characteristics. The reduction in processing time was improved
by reconfiguration, and at the same time, reconfiguration was
performed with a short break time, and the effectiveness of the
method was confirmed.

REFERENCES

[1] A. Putnam, et al., "A reconfigurable fabric for accelerating large-scale
datacenter services," Proceedings of the 41th Annual International
Symposium on Computer Architecture (ISCA'14), pp.13-24, June 2014.

[2] AWS EC2 web site, https://aws.amazon.com/ec2/instance-types/

[3] O. Sefraoui, et al., "OpenStack: toward an open-source solution for
cloud computing," International Journal of Computer Applications,
Vol.55, No.3, 2012.

[4] Y. Yamato, "Automatic system test technology of virtual machine
software patch on IaaS cloud," IEEJ Transactions on Electrical and
Electronic Engineering, Vol.10, Issue.S1, pp.165-167, Oct. 2015.

[5] Y. Yamato, "Server Structure Proposal and Automatic Verification
Technology on IaaS Cloud of Plural Type Servers," International
Conference on Internet Studies (NETs2015), July 2015.

[6] Y. Yamato, et al., "Fast Restoration Method of Virtual Resources on
OpenStack," IEEE Consumer Communications and Networking
Conference (CCNC2015), Las Vegas, pp.607-608, Jan. 2015.

[7] Y. Yamato, "Automatic verification for plural virtual machines patches,"
The 7th International Conference on Ubiquitous and Future Networks
(ICUFN 2015), pp.837-838, Sapporo, July 2015.

[8] Y. Yamato, "Proposal of Optimum Application Deployment Technology
for Heterogeneous IaaS Cloud," 2016 6th International Workshop on
Computer Science and Engineering (WCSE 2016), pp.34-37, June 2016.

[9] Y. Yamato, et al., "Fast and Reliable Restoration Method of Virtual
Resources on OpenStack," IEEE Transactions on Cloud Computing,
DOI: 10.1109/TCC.2015.2481392, Sep. 2015.

[10] M. Hermann, et al., "Design Principles for Industrie 4.0 Scenarios,"
Rechnische Universitat Dortmund. 2015.

[11] Y. Yamato, "Proposal of Vital Data Analysis Platform using Wearable
Sensor," 5th IIAE International Conference on Industrial Application
Engineering 2017 (ICIAE2017), pp.138-143, Mar. 2017.

[12] Y. Yamato and M. Takemoto, "Method of Service Template Generation
on a Service Coordination Framework," 2nd International Symposium
on Ubiquitous Computing Systems (UCS 2004), Nov. 2004.

[13] Y. Yamato, et al., "Proposal of Real Time Predictive Maintenance
Platform with 3D Printer for Business Vehicles," International Journal
of Information and Electronics Engineering, Vol.6, No.5, pp.289-293,
Sep. 2016.

[14] Y. Yamato, et al., "Security Camera Movie and ERP Data Matching
System to Prevent Theft," IEEE Consumer Communications and
Networking Conference (CCNC 2017), pp.1021-1022, Jan. 2017.

[15] Y. Yamato, et al., "Proposal of Shoplifting Prevention Service Using
Image Analysis and ERP Check," IEEJ Transactions on Electrical and
Electronic Engineering, Vol.12, Issue.S1, pp.141-145, June 2017.

[16] Y. Yamato, et al., "Analyzing Machine Noise for Real Time
Maintenance," 2016 8th International Conference on Graphic and Image
Processing (ICGIP 2016), Oct. 2016.

[17] Y. Yamato, "Experiments of posture estimation on vehicles using
wearable acceleration sensors," The 3rd IEEE International Conference
on Big Data Security on Cloud (BigDataSecurity 2017), pp.14-17, May
2017.

[18] P. C. Evans and M. Annunziata, "Industrial Internet: Pushing the
Boundaries of Minds and Machines," Technical report of General
Electric (GE), Nov. 2012.

[19] T. Sterling, et al., "High performance computing : modern systems and
practices," Cambridge, MA : Morgan Kaufmann, ISBN 9780124202153,
2018.

[20] J. E. Stone, et al., "OpenCL: A parallel programming standard for
heterogeneous computing systems," Computing in science &
engineering, Vol.12, No.3, pp.66-73, 2010.

[21] J. Sanders and E. Kandrot, "CUDA by example : an introduction to
general-purpose GPU programming," Addison-Wesley, 2011.

[22] J. Fung and M. Steve, "Computer vision signal processing on graphics
processing units," 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Vol. 5, pp.93-96, 2004.

[23] S. Wienke, et al., "OpenACC-first experiences with real-world
applications," Euro-Par 2012 Parallel Processing, pp.859-870, 2012.

[24] M. Wolfe, "Implementing the PGI accelerator model," ACM the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units, pp.43-50, Mar. 2010.

[25] Xilinx SDK web site,
https://japan.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/lyx15040
34296578.html

[26] E. Su, et al., "Compiler support of the workqueuing execution model for
Intel SMP architectures," In Fourth European Workshop on OpenMP,
Sep. 2002.

[27] Y. Yamato, et al., "Automatic GPU Offloading Technology for Open
IoT Environment," IEEE Internet of Things Journal, DOI:
10.1109/JIOT.2018.2872545, Sep. 2018.

[28] Y. Yamato, "Study and Evaluation of Automatic GPU Offloading
Method from Various Language Applications," International Journal of
Parallel, Emergent and Distributed Systems, Taylor and Francis, DOI:
10.1080/17445760.2021.1971666, Sep. 2021.

[29] Y. Yamato, "Study and Evaluation of Improved Automatic GPU
Offloading Method," International Journal of Parallel, Emergent and
Distributed Systems, Taylor and Francis, DOI:
10.1080/17445760.2021.1941010, June 2021.

[30] Y. Yamato, "Improvement Proposal of Automatic GPU Offloading
Technology," The 8th International Conference on Information and
Education Technology (ICIET 2020), pp.242-246, Mar. 2020.

[31] Y. Yamato, "Proposal of Automatic Offloading for Function Blocks of
Applications," The 8th IIAE International Conference on Industrial
Application Engineering 2020 (ICIAE 2020), pp.4-11, Mar. 2020.

[32] Y. Yamato, "Study of parallel processing area extraction and data
transfer number reduction for automatic GPU offloading of IoT
applications," Journal of Intelligent Information Systems, Springer,
DOI:10.1007/s10844-019-00575-8, 2019.

[33] J. H. Holland, "Genetic algorithms," Scientific american, Vol.267, No.1,
pp.66-73, 1992.

[34] Clang website, http://llvm.org/

[35] Darknet website, https://pjreddie.com/darknet/

[36] NAS.FT website, https://www.nas.nasa.gov/publications/npb.html

[37] Himeno benchmark web site, http://accc.riken.jp/en/supercom/

[38] NAS.BT website, https://www.nas.nasa.gov/publications/npb.html

[39] MRI-Q website, http://impact.crhc.illinois.edu/parboil

