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Abstract—In order to make full use of heterogeneous 

hardware, it is necessary to have a technical skill of hardware 

such as CUDA, and the current situation is that the barrier is 

high. Based on this background, I have proposed environment-

adaptive software that enables high-performance operation by 

automatically converting application code written for normal 

CPUs by engineers according to the deployed environment and 

setting appropriate amount of resources. Until now, I only 

considered conversions and settings before operation. In this 

paper, I verify that the logic is reconfigured according to the 

usage characteristics during operation. I confirm that the 

application running on the GPU is reconfigured into other loops 

or applications offloading according to the usage trends. 

Keywords—environment adaptive software, automatic 

offloading, GPGPU, reconfiguration during operation 

I. INTRODUCTION 

In recent years, it is said that Moore's law, which states that 
the degree of semiconductor integration of CPUs will double in 
1.5 years, will slow down. Under such circumstances, not only 
CPUs but also devices such as FPGAs (Field Programmable 
Gate Arrays) and GPUs (Graphics Processing Units) are being 
increasingly used. For example, Microsoft is making efforts to 
improve the search efficiency of Bing using FPGA [1], and 
Amazon provides FPGA, GPU as instances [2] using Cloud 
technologies (e.g., [3]-[9]). In addition, small devices such as 
IoT devices (e.g., [10]-[18]) are also increasing. 

However, in order to properly utilize devices other than 
CPUs with a small number of cores in the system, it is 
necessary to make settings and program coding that are 
conscious of device characteristics. For example, knowledge 
such as OpenMP (Open Multi-Processing) [19], OpenCL 
(Open Computing Language) [20], CUDA (Compute Unified 
Device Architecture) [21] for GPGPU (General Purpose GPU) 
[22] is required. Even if we use high level description 
techniques such as [23]-[26], performance improvement needs 
much skills. 

It is expected that the number of systems that utilize 
devices such as GPUs, FPGAs, and multi-core CPUs other 
than few core CPUs will increase in the future, but there are 
high technical barriers to making the best use of them. 
Therefore, in order to remove such a barrier and make it 
possible to fully use devices other than few core CPUs, the 
software in which the programmer describes the processing 

logic is adapted to the environment (FPGA, GPU, multi-core 
CPU or so on) of the deployment destination. Therefore, there 
is a need for a platform that can be adaptively converted, 
configured, and operated according to the environment. 

I proposed environment-adaptive software so that the code 
once written can be used with the GPU, FPGA, multi-core 
CPU or so on that exist in the environment of the deployment 
destination. The environment-adaptive software automatically 
performs conversion, resource setting and so on to operate the 
application with high performance. At the same time, I have 
also proposed and evaluated methods of automatically 
offloading loop statements and function blocks of C language 
program code to GPU and FPGA as elements of environment-
adaptative software [27]-[32]. 

However, my verification has so far only performed 
adaptation processing such as conversion before the start of 
operation, and has not considered re-adapting according to the 
actual usage characteristics in the production environment 
during operation. We will consider an example of image 
processing. Before the start of operation, the logic was built so 
that GPU processing would be performed on the premise that 
there would be a lot of classification processing. However, 
when analyzing the actual number of requests 3 months after 
the start of operation, object detection process may be larger. In 
this case, it is better to change the logic that performs GPU 
processing. 

This paper focuses on the reconfiguration of GPU logic, 
while reconfiguring the applications according to usage 
characteristics after the start of operation.  There is no 
example of reconfiguring GPU logic according to usage 
characteristics during operation using GPU for application 
acceleration in the production cloud (AWS GPU instance or so 
on). GPU reconfiguration has a big impact, I think. First, the 
existing application is automatically offloaded to the GPU and 
the operation is started. I propose a reconfiguration method 
which analyzes the usage characteristics, suggests to the user to 
reconfigure the GPU logic to another offload, and changes it 
with a shorter break time. The effectiveness of the proposed 
method is evaluated by the performance improvement and the 
break time through GPU reconfiguration during operation. 

II. GPU RECONFIGURATION DURING OPERATION 

A. Review of Automatic GPU Offload before Operation Start 



I review the automatic GPU offload method verified in my 
previous papers. There are two main features for automation. 
The point that loop statement extraction suitable for GPU is 
performed using the genetic algorithm (GA) [33] is proposed in 

 

Fig. 1. Automatic GPU offload method for loop statements. 

[27] (see, Fig. 1), and the point to suppress GPU-CPU data 
transfer, the variables used in the nested loop statement are 
transferred on the upper loop as much as possible is proposed 
in [32]. Based on these two ideas, I have confirmed that the 
automatic speedup is several times higher even in medium 
sized applications with more than 100 loop statements. 

B. Basic Policy for GPU Reconfiguration during Operation 

By the method in A, the loop statements suitable for the 
GPU can be automatically offloaded to the GPU in the 
application specified by the user. After offloading to the 
production environment used by the user, the actual 
performance and price in the production environment are 
confirmed, and the user starts using the application. However, 
the performance optimization test case (item for performance 
measurement when comparing performance with multiple 
offload patterns) used for offload in previous subsection uses 
the assumed usage data specified by the user because the 
operation is not started. Therefore, there is a possibility that the 
data will be significantly different from the data actually used 
during operation. 

Therefore, in this subsection, I study that if the usage 
pattern after the start of operation is different from the initial 
assumption and the performance is improved by offloading 
another logic to the GPU, the GPU logic should be 
reconfigured with less influence on the user. Reconfiguration 
may change to different loop statements offload in the same 
application, or it may change to a different application offload. 

GPU offload logic reconfiguration requires changing the 
executed OpenACC, but there are multiple ways to do it. First, 
there is a method of stopping current OpenACC and starting 
new OpenACC on the running machine. OpenACC is stopped 
and started in a short time, and the break time is about several 
seconds. Next, there is a method of newly building the machine 
itself that executes new OpenACC, then switching the routing 
to the new machine at the timing when all the current 
OpenACC processing is completed, and then stopping the 
current running machine. Routing switching is short and there 
is almost no break time. Depending on the degree of user 
influence, the GPU logic reconfiguration method may be 
selected, but in either case, there will be a slight break time, 
and changes to another logic will require an operation 

confirmation test, therefore, I think reconfiguration should not 
be done frequently. I set restrictions such as proposing only 
when the effect is above the threshold. 

The reconfiguration process begins with an analysis of 
request trends over a period of long term, such as one month. 
Request trends are analyzed to see if there is high processing 
load than the currently offloaded application. Next, for 
applications with high processing load, GPU offload 
optimization trials are performed in the verification 
environment using data that is actually used for production 
environment instead of initial assumed usage data. Then, it is 
judged whether the new offload pattern found by the 
verification has a sufficiently higher improvement effect than 
the current offload pattern, depending on if it is above or below 
the threshold. If the effect exceeds the threshold, the user is 
proposed to reconfigure. After the approvals, the production 
environment is reconfigured, but the user influence is 
suppressed as much as possible. 

C. Method Proposal of GPU Reconfiguration during 

Operation 

Based on the basic policy, this subsection proposes a 
specific reconfiguration method. The reconfiguration method 
consists of 6 steps, and each step is explained in detail.  

1. Analyze the production request data history for a certain 
period (long term), identify multiple applications with high 
processing time load, and acquire representative data when 
using those applications. 

1-1. Calculate the actual processing time and the total 
number of uses from each application usage history for a 
certain period. However, for application that is GPU offloaded, 
the processing time if not offloaded is calculated. From the test 
history of the assumed usage data before the operation, 
calculate the improvement coefficient by (actual processing 
time when only CPU processing is performed)/(actual 
processing time when GPU is used). Next, the sum of the 
values obtained by multiplying the actual processing time by 
the improvement coefficient is used as the total processing time 
for comparison. 

1-2. Compare the total actual processing time for all 
applications. 

1-3. Sort by the total actual processing time, and identify 
multiple applications with high processing time load. 

1-4. Acquire request data for a certain period (short term) 
of high load applications, arrange the data size for each fixed 
size, and create a frequency distribution. 

1-5. Select one of the actual request data corresponding to 
the Mode class of the data size frequency distribution and 
select it as the representative data. 

2. Offload patterns are extracted through verification 
environment measurement to speed up test cases of production 
representative data in multiple high load applications. 

2-1. In high load applications, count the number of for 
statements by parsing such as Clang [34], and use the GPU 
compiler function to find and remove for statements that 
cannot be processed by the GPU. 



2-2. Create a certain number of gene patterns with the 
number of remaining for statements as the gene length, 1 
means to GPU computation, 0 means to CPU execution, and 
corresponding OpenACC directives are added. Directives are 
both GPU computations such as #pragma acc kernels and data 
processing such as #pragma acc data copy. 

2-3. Compile the OpenACC file corresponding to the 
genepattern in the verification environment machine, measure 
the performance in the test case of the production 
representative data, and set the higher goodness of fit for faster 
patterns. 

2-4. Depending on the goodness of fit, GA processing such 
as crossover is performed, next-generation gene patterns are 
created, and GA processing is repeated for a certain number of 
generations, and the final highest performance pattern is 
determined a solution. 

3. The processing time with production representative data 
of the current offload pattern and the extracted new offload 
patterns is measured, and the performance improvement effect 
based on the frequency of production use is obtained.  

3-1. Calculated with current offload pattern (reduction of 
actual processing time in verification environment)*(frequency 
of use in production environment). 

3-2. Calculated with new offload patterns (reduction of 
actual processing time in verification environment)*(frequency 
of use in production environment). 

4. Reconfiguration proposal is judged based on whether the 
performance improvement effect of the new offload pattern is 
higher than that of the current offload pattern. 

4-1. Calculate high load applications (3-2)/(3-1), check if it 
is above the threshold, then propose a reconfiguration if it is 
above, and do nothing if it is below. 

5. Propose GPU reconfiguration to the contracted user and 
get an OK/NG approval. 

6. Start new OpenACC in a production environment and 
reconfigure. There are two methods of GPU reconfiguration. 

6-1. Stop the old OpenACC and start the new OpenACC. 

6-1’. A new machine that processes the new OpenACC is 
built, and the routing is changed so that the new processing is 
sent to the new machine. 

III. EVALUATION 

A. Evaluation Condition 

1) Evaluated applications 
The evaluated applications are mainly neural networks, 

Fourier transforms, and fluid calculations that are expected to 
be used by many users on GPUs. 

Darknet [35] is a neural network framework that can 
perform various processing such as classification, detection 
and nightmare, but this time, speeds up of object detection and 
image modification, which are the basic processing are 
confirmed. There are various types of neural networks, and 
there are many libraries for GPU, but as an example, I use 

Darknet which is written in C language. In the offload 
verification before operation, detection processing (image 
detection) is used in the sample application installed in Darknet. 

The Fourier transform process is used in various situations 
of monitoring in IoT such as analysis of vibration frequency. 
NAS.FT [36] is one of the open source applications for FFT 
(Fast Fourier Transform) processing. When considering an 
application that transfers data from a device to a network in 
IoT, it is expected that the device will perform primary analysis 
such as FFT processing and send it to reduce network costs. 
For offload verification before operation, the sample test case 
attached to NAS.FT is used. The basic data of Class A is that 
the grid size is 256*256*128 and the number of iterations is 6. 

Himeno Benchmark [37] is a benchmark software used to 
measure the performance of incompressible fluid analysis, and 
solves the Poisson equation solution by the Jacobi iterative 
method. It is frequently used for manual speedup on GPU, and 
is used in this time to confirm that speedup can be done 
automatically. The basic data used for offload is LARGE 
(512*256*256 grid size). 

NAS.BT [38] for block diagonal solver computation and 
MRI-Q [39] for 3D MRI image processing are run on the same 
machine and receive execution requests. 

2) Evaluation method 
Assuming two users, user A specifies Darknet detection 

and user B specifies NAS.FT for automatic offloading before 
operation.  

The following conditions are performed in an initial 
offloading. 

Number of loop statements: Darknet 171, NAS.FT 81, 
Himeno 13, NAS.BT 120, MRI-Q 16 

Number of individuals M: Less than the number of loop 
statements (Darknet 30, NAS.FT 30, Himeno 10, NAS.BT 30, 
MRI-Q 10) 

Number of generations T: less than the number of loop 
statements (Darknet 20, NAS.FT 20, Himeno 10, NAS.BT 20, 
MRI-Q 10) 

Goodness of fit: (processing time)$^{-1/2}$.  

The shorter the processing time, the higher the goodness of 
fit. The (-1/2) power prevents the goodness of fit of a particular 
individual with a short processing time from becoming too 
high. It prevents the search area from becoming too narrow. 

Selection: Roulette selection. To keep (not crossed or 
mutated) best goodness of fit gene in a generation, elite 
selection to next generation is also applied. 

Crossover rate Pc: 0.9 

Mutation rate Pm: 0.05 

The operational conditions for reconfiguration are as follows. 

Request load: 

User A: Darknet detection 16 req/h, nightmare 20 req/h, 

NAS.FT 4 req/h, Himeno 3 req/h, NAS.BT 2 req/h, MRI-Q 1 



req/h. Darknet detection and nightmare (image modification) 
processing uses equipped 3 images with 111 KB, 170 KB, and 
374 KB. These data are requested in a ratio of 3:5:2. Data of 
NAS.FT, Himeno, NAS.BT and MRI-Q are same as sample 
data. 

User B: Darknet detection 4 req/h, nightmare 3 req/h, 
NAS.FT 20 req/h, Himeno 30 req/h, NAS.BT 2 req/h, MRI-Q 
1 req/h. In NAS.FT, Class W, A, and B sizes of sample data 
are requested in a ratio of 3:5:2. In Himeno, M, L, and XL 
sizes of  

 

Fig. 2. Evaluation environment. 

sample data are requested in a ratio of 2:5:3. The data of 
Darknet detection and nightmare, NAS.BT and MRI-Q are 
same as sample data.  

Long term during load analysis: 2 hours 

Short term during representative data selection: 1 hour 

Number of high load applications: 2 

Performance improvement effect threshold: 2.0 

During the reconfiguration, the performance improvement 
effect and the processing time of each step are obtained. 

3) Evaluation environment 
NVIDIA GeForce RTX 2080 Ti is used as the evaluation 

GPU. The machine equipped with GeForce RTX 2080 Ti is 
Iiyama LEVEL-F039-LCRT2W-XYVI. GPU control uses PGI 
compiler 19.10 and CUDA toolkit 10.1. By adding the 
\#pragma directives to the C language program according to 
the OpenACC syntax, GPU offload processing is performed, 
and reconstruction to another OpenACC program is also 
processed by the PGI compiler. Figure 2 shows the evaluation 
environment. 

B. Reults 

Figure 3 shows the degree of improvement in processing 
time before and after reconfiguration of users A and B, and the 
total processing time (corrected for improvement coefficient) 
for a certain period related to it. 

Before the reconfiguration of user A, 4 for statements of 
Darknet are offloaded, the degree of improvement in the 
assumed data before operation is 2.92, and the loads are 16 
req/h for detection processing and 20 req/h for nightmare 

processing after the start of operation. 5,960 seconds that can 
be calculated by the total actual processing time of the 
request*2.92 is the total corrected processing time. As a result 
of the calculation, Darknet and NAS.FT are 2 high load 
applications. Among them, after the start of operation, 
nightmare processing of Darknet was used many times in 
production environment, thus new offload patterns for 
nightmare processing using representative data are searched, 
found a new pattern that offloads 13 for statements, and 
reduced the total processing time which multiplies the number 
of production uses. The degree of improvement is 96 seconds/h 
for Darknet before reconfiguration and 1,850 seconds/h for 
Darknet after reconfiguration. 

 

Fig. 3. Performance improvement through proposed reconfiguration. 

Before the reconfiguration of user B, NAS.FT was 
offloaded, and the degree of improvement in the assumed data 
was 2.54. 2,420 seconds that can be calculated by the total 
actual processing time of the request*2.54 is the total corrected 
processing time. As a result of the calculation, Himeno and 
NAS.FT are 2 high load applications. By searching for offload 
patterns using representative data after the start of operation 
and multiplying the number of production uses, the degree of 
improvement in processing time reduction is 308 seconds/h in 
NAS.FT before reconfiguration and 1,180 seconds/h in 
Himeno after reconfiguration. 

From Fig. 3, the improvement threshold value 2.0 is 
checked, and in the case of user A, a reconfiguration with 
offload loop statement change of Darknet is proposed, and in 
the case of user B, a reconfiguration with offload application 
change from NAS.FT to Himeno is proposed. 

The size of the request analysis is small because only 
several hours data is analyzed in this time, but it will take 
longer in proportion to the size. This time, it takes about only 1 
second for request analysis and representative data selection, 
less than a day for improvement effect calculation, and less 
than 1 second for reconfiguration. For offload trials before the 
operation and new offload pattern trials during operation, it 
takes about 7 hours to measure the performance of GAs of 
several tens of generations, so it takes less than a day if there 
are three high load applications. However, most of the 
processing such as analysis, including the trial of the new 
offload pattern, is performed in the background during the 
operation in the production environment, so there is no user 
influence. Only, regarding the conduction of production 
environment reconfiguration, the application has a break time, 
but it takes less than 1 second even if current OpenACC is 
stopped and new OpenACC is started, and it was confirmed 

User A
Offload
application

Improvement of
processing time

Summation of
processing time

Before
reconfiguratoin

Darknet
(4 loops)

96.0 sec/h 5,960 sec

After
reconfiguratoin

Darknet
(13 loops)

1,850 sec/h 5,960 sec

User B
Offload
application

Improvement of
processing time

Summation of
processing time

Before
reconfiguratoin

NAS.FT 308 sec/h 2,420 sec

After
reconfiguratoin

Himeno
benchmark

1,180 sec/h 2,790 sec



that there is almost no effect. It is also possible to prepare 
OpenACC on the new machine and switch the routing. 

It was confirmed that the GPU processing application in 
operation was reconfigured to a different loops or to a different 
application offload according to the usage characteristics of 
each user. It was shown that the degree of performance 
improvement increased above the threshold through the 
reconfiguration and the break time was sufficiently short. 

IV. CONCLUSION 

In this paper, as the elemental technology, I proposed a 
GPU reconfiguration method during that reconfigures the 
appropriate GPU logic during operation according to the usage 
characteristics after the application operation starts. 

Before starting operation, one of application loop statement 
is automatically offloaded to the GPU. In the proposed method, 
the applications with the high CPU processing time load are 
acquired from the actual request data at regular intervals, and 
the corresponding representative test case are also acquired. 
Next, the new offload patterns that speed up representative test 
cases are extracted through trial measurements in the 
verification environment. This is almost the same as offload 
before the start of operation. Next, the processing time of the 
current offload pattern and the new offload patterns are 
measured, and the processing time improvement based on the 
frequency of production use are calculated. Here, if the new 
offload pattern has an effect greater than the threshold of the 
current pattern, the implementation proposes to the user to 
conduct reconfiguration. After obtaining the user's consent, the 
implementation stops OpenACC in the production environment 
and reconfigure GPU logic by starting the new OpenACC. The 
experiment showed that the GPU logic was reconfigured to 
offload other loop statements or other applications by 
reconfiguring the application that was automatically offloaded 
to the GPU during operation according to the usage 
characteristics. The reduction in processing time was improved 
by reconfiguration, and at the same time, reconfiguration was 
performed with a short break time, and the effectiveness of the 
method was confirmed. 
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