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Abstract—This draft presents a fault-tolerant network 

segmentation system for the Internet of Things (IoT). When 

devices of the IoT malfunction or fail, recovery needs to be 

performed to maintain system functionalities. In modern ad 

hoc networks like mobile ad hoc networks (MANETs), devices 

usually form dynamical clusters to collaboratively handle highly 

diverse sensing environments. To recover cluster information 

when parts of the IoT are not functioning, this study 

develops a centroid-free network segmentation algorithm 

that diverts dependency on centroids into empirical-space 

kernel matrices. The original problem of handling 

nonvectorial centroids is deduced to kernel matrix 

estimation. 

 

Index Terms—Incomplete data analysis, missing-value 

analysis, information recovery, fault-tolerant network 

segmentation, kernel method, iterative pursuit, clustering, 

partial kernel matrix estimation, Internet of Things, smart 

city 

I. INTRODUCTION 

The Internet of Things (IoT) is a key to enabling dynamic urban 

monitoring in a city [1, 2]. When sufficient IoT devices are 

deployed in a city, city dynamics can be delineated, ranging 

from crowd activities to environmental statistics [3, 4]. With 

the recent advancement of telecommunication technology, the 

IoT is capable of being integrated with ad hoc networks, like 

mobile ad hoc networks (MANETs), vehicle ad hoc networks 

(VANETs), and flying ad hoc networks (FANETs). The IoT 

becomes fluid and mobile. Therefore, the IoT is no longer fixed 

at the same place. An IoT device can move around the city. The 

topology and the number of the IoT may change from place to 

place in respond to diversified environments. In highly 

populated areas, more devices can join the IoT, and the density 

of the IoT becomes higher, so that the system can cope with 

complex city dynamics. 

In MANETs [5], IoT devices collaborate with each other to 

share computational/communication burdens, e.g., visual IoT 

devices. Under such circumstances, the entire IoT needs to be 

dynamically segmented to groups, or clusters [6]. At present, a 

great deal of research on IoT clustering has been done. Typical 

approaches like hierarchical clustering, K-means, 

self-organizing maps, and support vector clustering are widely 

used in the IoT. For example, Wang et al. [7] utilized support 

vector clustering for time-series data. Different kernels were 
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employed in the work to examine the effectiveness. The merit 

of support vector learning was that it generated a satisfactory 

result even when few data were present. Besides, support vector 

clustering was rapid for dealing with data streams. The system 

by Tsirmpas et al. [8] was designed for profiling living 

environments, where the IoT was deployed. The authors 

devised self-organizing maps to cluster IoT sensed data. In 

some other studies [9, 10], for instance, Hajjar et al. [10] 

examined machine learning techniques and proposed a hybrid 

clustering algorithm based on hierarchical clustering and 

K-means. Their application was aimed at collaborative resource 

planning for communication networks. 

As discussed above, IoT clusters are important logical 

formation in networks as they help data processing and 

communications. This is because IoT clusters are conducive to 

balancing computational loads or data redundancy in a 

collaborative mode. Devices in the same cluster present 

homogeneous characteristics, either in device parameters or 

data collection. Such a homogeneous characteristic is important 

when a fault-tolerant network is established. In a network, 

especially for the IoT, faults are generated due to device failure 

or malfunctioned nodes. When such a situation occurs, 

harvested data contain missing values. If samples contain 

missing values, they become nonvectorial data. Subsequently, 

typical mathematical operations are inapplicable. This may 

cause a problem to the IoT. To resolve missing values, several 

approaches have been developed, such as deletion, replacement, 

regression [11], K-nearest neighbors [12], multiple imputation 

[13], and matrix completion [14-16]. Among these methods, 

matrix completion provides more flexible choices for data 

imputation. Data imputation can generate approximate values 

for those missing-value entries before IoT cluster recovery is 

performed. The system by Fekade et al. [17] adopted the same 

concept. They used typical K-means and matrix completion as 

the model. Incomplete data were firstly handled and imputed by 

matrix completion, and subsequently K-means was used for 

clustering. In general, matrix completion is usually the first step 

for cluster recovery. However, considering the objective is to 

recover cluster membership, matrix completion requires 

additional computational time. 

Rather than performing matrix completion prior to cluster 

recovery, Chi et al. [18] devised an iterative procedure, which 

contained two phases. One was K-means, and the other 

involved generating imputed values based on centroids. Chi et 

al. [18] filled in missing-value entries with zeros at the initial 

stage, so that K-means could be done in the first iteration. 

Afterwards, missing-value entries were filled in with centroids 

generated by K-means. Two steps were iterated over many 

cycles until the predefined criterion stabilized. Another 
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interesting work that did not rely on matrix completion before 

clustering was the system by Wagstaff [19]. The intuition 

behind it was that [19] split every incomplete sample (i.e., a 

feature vector) into two parts. One was a complete subvector, 

and the other was the rest of the feature vector that contained 

partial data. All of the incomplete subvectors were used for 

constraint generation. Clustering was performed based on 

K-means and complete subvectors with previously discovered 

constraints. Inspired by [18, 19], this work is aimed at reducing 

complexity of the above-mention clustering algorithms while 

maintaining accuracy at the same time. As the above-mention 

methods relied on cluster centers during iterations, the 

dependency on cluster centers is diverted to kernel matrices. 

Updates in centroids become computation of difference in 

kernel matrices. Therefore, such a mechanism enhances speeds 

while avoiding computing centroids in each iteration. 

The rest of this draft is organized as follows. Section II 

introduces the proposed model. Subsequently, the proposed 

fault-tolerant network segmentation based on the model is 

detailed in Section III.  

 

II. PROPOSED METHODOLOGY 

This section describes how malfunctioned IoT devices can be 

divided into clusters without using typical data imputation. 

Firstly, subsection II.A introduces efficient kernelized 

centroid-free clustering. This is because finding centroids 

among missing-value data is not practical. Subsection II.A 

diverts the dependency on centroids to centroid-free kernel 

matrices. Subsequently, subsection II.B details how kernel 

matrices are estimated under the condition of missing values. 

Two versions of kernel matrix estimation are discussed. One 

requires third-party information, and the other needs no 

imputation. 

 

A. Efficient Kernelized Centroid-Free Clustering for the 

Large-Scale IoT 

This step follows the algorithm by [20] with modifications to 

support missing-value data clustering in our scenario. Assume 

that the dataset contains no missing values. Also assume that 

the total number of clusters is S, so that the entire IoT can be 

divided into clusters s, where s denotes the cluster index, and s 

= 1,2,…,S. The clustering algorithm is aimed at minimizing the 

distance between samples and their corresponding centroids, 

EClustering. That is, 
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where ||∙|| stands for the L2 norm, μs represents the centroid of 

cluster s, and ϕ is a kernel function that maps an input xι onto 

the intrinsic space (see the appendix). Input xι is regarded as a 

complete sample without missing values herein. Let N denote 

the total number of IoT devices and Ns signify the number of 

IoT devices in cluster s. Therefore, N1 + N2 + … + NS = N. The 

centroid of cluster s is defined as 

 

 
1

i s

s i

sN




 
x

μ x . (2) 

 

The objective of minimization of (1) is actually equivalent to 

minimization of 

 

 2

Clustering

1

2
s

S

s s

s

E



 

    
x

μ  (3) 

 

as ||ϕ(xι)||2 does not affect the clustering result. Therefore, the 

update of cluster centroids relies merely on ||μs||2 and Rιs. The 

following description focuses on ||μs||2 and Rιs. 

In (3), Rιs is given as follows by definition, and it can be 

interpreted as the similarity between sample ϕ(xι) and centroid 

μs. 
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where  is the transpose operator. 

Plugging (2) into (4) yields 
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where K refers to a kernel matrix formed by all the input 

samples, and Kιi is a scaler and an element of K corresponding 

to samples ι and i. For the squared norm of centroid μs, i.e., 

||μs||2, it can also be represented by using K as follows. 
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The squared norm of centroid μs stands for a submatrix based 

on all the samples in cluster s. 

With (5) and (6), the connection with ||μs||2 and Rιs in (3) 

hinges on kernel matrix K. In clustering, the entire process can 

be decomposed into iterative updates on all the samples. For 

each iteration, a sample needs to select the closet centroid and 

disjoins its original cluster. In brief, two phases are involved for 



a sample. One is to join the closest cluster, and the other is to 

disjoin its original cluster. 

Let q and p respectively represent the index of the closest 

cluster and the original cluster for sample xι. Then, the new 

centroid μ′q of the closest cluster becomes 
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whereas the new centroid μ′p of the original cluster is 
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Notably, the above ||μq||2 and ||μp||2 can be replaced with 

computation of K in (6). 

As the centroids to q and p change, the distance between the 

members and these two centroids, i.e., R, should be 

accordingly modified. Thus, 
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The complexity of the above algorithm is (N2/S); however, 

for a large scale of the IoT, the update is still inefficient. An 

improved and rapid clustering algorithm is introduced. Besides, 

its complexity is merely (N). To remove the dependency on 

Nq and Np in (7)–(10), (3) is rewritten as 
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Then, the new centroid of the closest and the original cluster 

when the membership of sample xι changes is respectively 
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It becomes more efficient when one rewrites the above 

equations into the following form, where the amount of 

changes is introduced. Therefore, 
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Subsequently, 
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B. Kernel Matrix Estimation 

As mentioned earlier at the beginning of this section, the 

objective of subsection II.A is to shift the dependency on 

centroids to kernel matrices. This subsection subsequently 

details estimation of kernel matrices under a condition when 

IoT devices malfunction and incomplete data are generated. 

This work employs the concept by [21] with modifications in 

the Masked Partial Three-Side functions to support 

fault-tolerant network segmentation (see the next section). 

Let B represent a mask that performs dimension selection. 

Then,  
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where xm denotes the m–th dimension of x, and   is the 

element-wise operator, i.e., Hadamard operators. 

Typically, a kernel matrix measures the similarity between 

two vectors, i.e., two samples. However, when the system, e.g., 

[22], calculates such a matrix, no third-party information is 

used. Take the cosine-similarity function for example. The 

kernel matrix is formed by calculating 

 

 
T

Cosine ,
i j

i j

i j

K 
x x

x x
x x

 (20) 

 

where i and j respectively signify the indices of two instances. 

When these two vectors contain missing entries, it involves 

nonvectorial similarities and results in biased estimation.  

Let  
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i.e., double masks. Thus, the Masked Partial-Cosine (MPC) 

function is used for nonvectorial similarities. 
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It is worth noticing that no data approximation is performed in 

(19) and (21) during masking. Based on (22), the Masked 

Partial Three-Side (MPT) cosine function is derived as follows. 
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where μu and μv are respectively centroids of clusters u and v. 

Besides, 
ix  ∈ u and jx  ∈ v. This creates an approximate 

value with a cluster-dependent average in the same attribute. 

The effect of “ ix ⨁μu” and “ jx ⨁μv” indicates that the 

similarity between ix  and jx  should also consider the 

similarity between 
ix  and the cluster centroid of jx  Second, 

the missing-value entries are filled with centroid information. 

Equation (23) can be extended into MPT cosine polynomial 

kernels, MPT radial basis functions (RBFs), and MPT TRBFs, 

respectively, i.e., 
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and 
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where σ2 is the variance, D signifies the kernel order, and τ 

denotes the index of components. 

The upper parts of (24)–(26) rely on no centroids, whereas 

the lowers parts require centroids for imputation. These two 

versions affect the result of fault-tolerant network segmentation, 

detailed in the following section. 

III. PROPOSED FAULT-TOLERANT NETWORK SEGMENTATION 

With kernel matrix estimation and kernelized centroid-free 

clustering in the previously mentioned sections, fault-tolerant 

network segmentation is applicable. 

Two versions of fault-tolerant network segmentation are 

discussed below. Their difference is computation of kernel 

matrices. Kernelized centroid-free clustering is the same. The 

first one repeatedly fills in missing-value entries with centroids. 

The second one directly ignores missing-value entries. 

 

A. Iterative Pursuit 

The iterative pursuit algorithm consists of two steps. These 

steps are iterated until clusters are stabilized by checking (6). 

The first step is kernel matrix estimation with centroid-based 

imputation. The second step uses clustering to update centroids, 

so that changes can be reflected in kernel matrix estimation. 

 
Algorithm I: MPT-Based Iterative Pursuit 

Input: X = [x1,x2,…,xN] with missing values 

Output: 1,2,…,S 

1. Randomly initialize μs ∈ M, where s = 1,2,...,S 

2. Choose an MPT cosine kernel 

3. for limited iterations 

4.  Estimate the kernel matrix, K 

5.   while xn migrates between clusters (n= 1,2,...,N) 

6.    Compute Δ of the squared norm based on (14) and (15) 

7.    Compute ΔR based on (16) and (17) 

8.   end 

9.  Compute μs 

10. end 

 

Let  represent the number of iterations and (M2N3) denote 

the complexity of kernel matrix estimation. Then, the 

complexity of this algorithm is (M2N3). 

 

B. Rapid Computation 

Unlike the above algorithm, this method does not require 

imputation. Besides, no iteration is performed for kernel matrix 



estimation. This algorithm saves more computational time than 

the above algorithm. 

 
Algorithm II: MPC-Based Rapid Computation 

Input: X = [x1,x2,…,xN] with missing values 

Output: 1,2,…,S 

1. Randomly initialize μs ∈ M, where s = 1,2,...,S 

2. Choose an MPC kernel 

3. Estimate the kernel matrix, K 

4.  while xn migrates between clusters (n= 1,2,...,N) 

5.   Compute Δ of the squared norm based on (14) and (15) 

6.   Compute ΔR based on (16) and (17) 

7.  end 

 

As no iteration is used, this algorithm has complexity of 

(M2N3). 

 

 

APPENDIX 

The appendix shows the drawback of centroid-based clustering 

and intrinsic kernel space. Consider the case of complete data X. 

Given an M-by-N matrix X without missing values, where M 

specifies the number of dimensions, and N denotes the number 

of observed samples. In our case, observed samples refer to IoT 

devices. Besides, X = [x1, x2,…, xN]. The objective of matrix 

completion is to minimize the difference between X and its 

approximate matrix formed by UV. That is, X ≈ UV. One of 

the implementation for matrix completion, i.e., ridge 

alternating least squares [14], is shown as follows 
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where U and V are respectively M-by-H and H-by-N unknown 

matrices, H is the intermediate dimension, and ||∙|| represents 

the Frobenius norm. Ridge ALS uses ridge parameters, ρU and 

ρV, to regularize and prevent U and V from overfitting, 

respectively. Differentiating ErALS and zeroing the equations 

yield 
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where I is an identity matrix. The system can iteratively update 

U and V based on (28) and (29) to generate a solution. 

For matrix X with missing values, the procedure is still the 

same, as shown in (30) and (31). The difference is that an 

element-wise mask G is imposed on X. If an element of X is 

missing, then such an entry is temporally substituted with a zero 

first.  
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Finally, the missing elements of X are replaced with the 

corresponding elements of the generated matrix, i.e., UV. This 

completes the matrix approximation. 

For centroid-based clustering, it requires mapping a sample 

from feature space into intrinsic space. Assume the size of the 

dimension in feature space is M, and then that of intrinsic space 

is 
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Let dm represent the power of xm, where m = 1,2,…,M+1. 

After kernel mapping, the new variable in each dimension 

follows the form 

 

     1 1

1

1 1

1 1

1 1

!

!, , !

0 , ,
s.t. 

M Md d d

M M

M

M

M

D
x x x

d d

d d D

d d D













 
 
 

 


  

 (33) 

 

if polynomial kernels are used. When truncated RBFs (TRBFs) 

are employed, 
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In intrinsic space, an M-by-1 vector is converted to a J-by-1 one. 

There are several drawbacks if centroid-based clustering and 

intrinsic space are used. Firstly, typical RBFs are inapplicable 

due to infinite dimensions in intrinsic space. This is 

inconvenient as centroids cannot be represented in intrinsic 

space when RBFs are used. Instead, TRBFs should be adopted. 

Second, kernel mapping requires the missing values in feature 

space to be imputed beforehand.  
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