


Abstract—This draft presents a fault-tolerant network

segmentation system for the Internet of Things (IoT). When

devices of the IoT malfunction or fail, recovery needs to be

performed to maintain system functionalities. In modern ad

hoc networks like mobile ad hoc networks (MANETs), devices

usually form dynamical clusters to collaboratively handle highly

diverse sensing environments. To recover cluster information

when parts of the IoT are not functioning, this study

develops a centroid-free network segmentation algorithm

that diverts dependency on centroids into empirical-space

kernel matrices. The original problem of handling

nonvectorial centroids is deduced to kernel matrix

estimation.

Index Terms—Incomplete data analysis, missing-value

analysis, information recovery, fault-tolerant network

segmentation, kernel method, iterative pursuit, clustering,

partial kernel matrix estimation, Internet of Things, smart

city

I. INTRODUCTION

The Internet of Things (IoT) is a key to enabling dynamic urban

monitoring in a city [1, 2]. When sufficient IoT devices are

deployed in a city, city dynamics can be delineated, ranging

from crowd activities to environmental statistics [3, 4]. With

the recent advancement of telecommunication technology, the

IoT is capable of being integrated with ad hoc networks, like

mobile ad hoc networks (MANETs), vehicle ad hoc networks

(VANETs), and flying ad hoc networks (FANETs). The IoT

becomes fluid and mobile. Therefore, the IoT is no longer fixed

at the same place. An IoT device can move around the city. The

topology and the number of the IoT may change from place to

place in respond to diversified environments. In highly

populated areas, more devices can join the IoT, and the density

of the IoT becomes higher, so that the system can cope with

complex city dynamics.

In MANETs [5], IoT devices collaborate with each other to

share computational/communication burdens, e.g., visual IoT

devices. Under such circumstances, the entire IoT needs to be

dynamically segmented to groups, or clusters [6]. At present, a

great deal of research on IoT clustering has been done. Typical

approaches like hierarchical clustering, K-means,

self-organizing maps, and support vector clustering are widely

used in the IoT. For example, Wang et al. [7] utilized support

vector clustering for time-series data. Different kernels were

B.-W. Chen is with the Department of Electrical Engineering, National Sun

Yat-Sen University, Taiwan

employed in the work to examine the effectiveness. The merit

of support vector learning was that it generated a satisfactory

result even when few data were present. Besides, support vector

clustering was rapid for dealing with data streams. The system

by Tsirmpas et al. [8] was designed for profiling living

environments, where the IoT was deployed. The authors

devised self-organizing maps to cluster IoT sensed data. In

some other studies [9, 10], for instance, Hajjar et al. [10]

examined machine learning techniques and proposed a hybrid

clustering algorithm based on hierarchical clustering and

K-means. Their application was aimed at collaborative resource

planning for communication networks.

As discussed above, IoT clusters are important logical

formation in networks as they help data processing and

communications. This is because IoT clusters are conducive to

balancing computational loads or data redundancy in a

collaborative mode. Devices in the same cluster present

homogeneous characteristics, either in device parameters or

data collection. Such a homogeneous characteristic is important

when a fault-tolerant network is established. In a network,

especially for the IoT, faults are generated due to device failure

or malfunctioned nodes. When such a situation occurs,

harvested data contain missing values. If samples contain

missing values, they become nonvectorial data. Subsequently,

typical mathematical operations are inapplicable. This may

cause a problem to the IoT. To resolve missing values, several

approaches have been developed, such as deletion, replacement,

regression [11], K-nearest neighbors [12], multiple imputation

[13], and matrix completion [14-16]. Among these methods,

matrix completion provides more flexible choices for data

imputation. Data imputation can generate approximate values

for those missing-value entries before IoT cluster recovery is

performed. The system by Fekade et al. [17] adopted the same

concept. They used typical K-means and matrix completion as

the model. Incomplete data were firstly handled and imputed by

matrix completion, and subsequently K-means was used for

clustering. In general, matrix completion is usually the first step

for cluster recovery. However, considering the objective is to

recover cluster membership, matrix completion requires

additional computational time.

Rather than performing matrix completion prior to cluster

recovery, Chi et al. [18] devised an iterative procedure, which

contained two phases. One was K-means, and the other

involved generating imputed values based on centroids. Chi et

al. [18] filled in missing-value entries with zeros at the initial

stage, so that K-means could be done in the first iteration.

Afterwards, missing-value entries were filled in with centroids

generated by K-means. Two steps were iterated over many

cycles until the predefined criterion stabilized. Another

IoT Network Segmentation When Sensors Fail

Bo-Wei Chen

interesting work that did not rely on matrix completion before

clustering was the system by Wagstaff [19]. The intuition

behind it was that [19] split every incomplete sample (i.e., a

feature vector) into two parts. One was a complete subvector,

and the other was the rest of the feature vector that contained

partial data. All of the incomplete subvectors were used for

constraint generation. Clustering was performed based on

K-means and complete subvectors with previously discovered

constraints. Inspired by [18, 19], this work is aimed at reducing

complexity of the above-mention clustering algorithms while

maintaining accuracy at the same time. As the above-mention

methods relied on cluster centers during iterations, the

dependency on cluster centers is diverted to kernel matrices.

Updates in centroids become computation of difference in

kernel matrices. Therefore, such a mechanism enhances speeds

while avoiding computing centroids in each iteration.

The rest of this draft is organized as follows. Section II

introduces the proposed model. Subsequently, the proposed

fault-tolerant network segmentation based on the model is

detailed in Section III.

II. PROPOSED METHODOLOGY

This section describes how malfunctioned IoT devices can be

divided into clusters without using typical data imputation.

Firstly, subsection II.A introduces efficient kernelized

centroid-free clustering. This is because finding centroids

among missing-value data is not practical. Subsection II.A

diverts the dependency on centroids to centroid-free kernel

matrices. Subsequently, subsection II.B details how kernel

matrices are estimated under the condition of missing values.

Two versions of kernel matrix estimation are discussed. One

requires third-party information, and the other needs no

imputation.

A. Efficient Kernelized Centroid-Free Clustering for the

Large-Scale IoT

This step follows the algorithm by [20] with modifications to

support missing-value data clustering in our scenario. Assume

that the dataset contains no missing values. Also assume that

the total number of clusters is S, so that the entire IoT can be

divided into clusters s, where s denotes the cluster index, and s

= 1,2,…,S. The clustering algorithm is aimed at minimizing the

distance between samples and their corresponding centroids,

EClustering. That is,

 

  

2

Clustering

1

2 2

1

2

s

s

S

s

s

S

s s

s

E






 





 

 

 

   

 

 

x

x

x μ

x μ

 (1)

where ||∙|| stands for the L2 norm, μs represents the centroid of

cluster s, and ϕ is a kernel function that maps an input xι onto

the intrinsic space (see the appendix). Input xι is regarded as a

complete sample without missing values herein. Let N denote

the total number of IoT devices and Ns signify the number of

IoT devices in cluster s. Therefore, N1 + N2 + … + NS = N. The

centroid of cluster s is defined as

 
1

i s

s i

sN




 
x

μ x . (2)

The objective of minimization of (1) is actually equivalent to

minimization of

 2

Clustering

1

2
s

S

s s

s

E



 

    
x

μ (3)

as ||ϕ(xι)||2 does not affect the clustering result. Therefore, the

update of cluster centroids relies merely on ||μs||2 and Rιs. The

following description focuses on ||μs||2 and Rιs.

In (3), Rιs is given as follows by definition, and it can be

interpreted as the similarity between sample ϕ(xι) and centroid

μs.

 s s   x μ (4)

where  is the transpose operator.

Plugging (2) into (4) yields

       
1 1

1

i s i s

i s

s i i

s s

i

s

N N

N

  



   
 



 
    

 



 



x x

x

x x x x

K

 (5)

where K refers to a kernel matrix formed by all the input

samples, and Kιi is a scaler and an element of K corresponding

to samples ι and i. For the squared norm of centroid μs, i.e.,

||μs||2, it can also be represented by using K as follows.

   

   

2

2

2

1 1

1

1
.

s i s

s i s

s i s

s s s i

s s

i

s

i

s

N N

N

K
N













 

 

 

 

 

  





 

 

 

x x

x x

x x

μ μ μ x x

x x (6)

The squared norm of centroid μs stands for a submatrix based

on all the samples in cluster s.

With (5) and (6), the connection with ||μs||2 and Rιs in (3)

hinges on kernel matrix K. In clustering, the entire process can

be decomposed into iterative updates on all the samples. For

each iteration, a sample needs to select the closet centroid and

disjoins its original cluster. In brief, two phases are involved for

a sample. One is to join the closest cluster, and the other is to

disjoin its original cluster.

Let q and p respectively represent the index of the closest

cluster and the original cluster for sample xι. Then, the new

centroid μ′q of the closest cluster becomes

     

2
2 2

2 2 2

2 1

1 1 1

q q

q q q

q q q

N N
K

N N N
 

    
  

μ μ , (7)

whereas the new centroid μ′p of the original cluster is

     

2
2 2

2 2 2

2 1

1 1 1

p p

p p p

p p p

N N
K

N N N
 

    
  

μ μ . (8)

Notably, the above ||μq||2 and ||μp||2 can be replaced with

computation of K in (6).

As the centroids to q and p change, the distance between the

members and these two centroids, i.e., R, should be

accordingly modified. Thus,

1 1
, 1, ,

1
q q

jq ji ji

i iq q

K K j N
N N  

   
 
  . (9)

1 1
, 1, ,

1
p p

jp ji ji

i ip p

K K j N
N N  

   
 
  . (10)

The complexity of the above algorithm is (N2/S); however,

for a large scale of the IoT, the update is still inefficient. An

improved and rapid clustering algorithm is introduced. Besides,

its complexity is merely (N). To remove the dependency on

Nq and Np in (7)–(10), (3) is rewritten as

2

2
1, ,

2
arg min

s s

s S ss

s
NN



 

  
  

  

μ
. (11)

Let  
22 2

1q q qN  μ μ and  
22 2

1 .p p pN  μ μ

Then, the new centroid of the closest and the original cluster

when the membership of sample xι changes is respectively

2 2

2q q q K 
    μ μ (12)

and

2 2

2p p p K 
    μ μ . (13)

It becomes more efficient when one rewrites the above

equations into the following form, where the amount of

changes is introduced. Therefore,

2 2 2

2q q q q K 
     μ μ μ (14)

and

2 2 2

2 .p p p p K 
      μ μ μ (15)

Likewise, let  1jq q jqN     and  1 .jp p jpN    

Subsequently,

, 1, ,jq jq jq jK j N
     (16)

and

, 1, ,jp jK j N    . (17)

B. Kernel Matrix Estimation

As mentioned earlier at the beginning of this section, the

objective of subsection II.A is to shift the dependency on

centroids to kernel matrices. This subsection subsequently

details estimation of kernel matrices under a condition when

IoT devices malfunction and incomplete data are generated.

This work employs the concept by [21] with modifications in

the Masked Partial Three-Side functions to support

fault-tolerant network segmentation (see the next section).

Let B represent a mask that performs dimension selection.

Then,

 
1 if is given

0 otherwise

mx
m


 


xB (18)

and

 
x

x x B (19)

where xm denotes the m–th dimension of x, and  is the

element-wise operator, i.e., Hadamard operators.

Typically, a kernel matrix measures the similarity between

two vectors, i.e., two samples. However, when the system, e.g.,

[22], calculates such a matrix, no third-party information is

used. Take the cosine-similarity function for example. The

kernel matrix is formed by calculating

 
T

Cosine ,
i j

i j

i j

K 
x x

x x
x x

 (20)

where i and j respectively signify the indices of two instances.

When these two vectors contain missing entries, it involves

nonvectorial similarities and results in biased estimation.

Let

i i

i i

i i

j j

  


  

x x

x x

x x B B

x x B B
, (21)

i.e., double masks. Thus, the Masked Partial-Cosine (MPC)

function is used for nonvectorial similarities.

 MPC ,
i j

i j

i j

K 
x x

x x
x x

 (22)

It is worth noticing that no data approximation is performed in

(19) and (21) during masking. Based on (22), the Masked

Partial Three-Side (MPT) cosine function is derived as follows.

 
   

MPT ,
i u j v

i j

i u j v

K
 


 

x μ x μ
x x

x μ x μ
 (23)

where μu and μv are respectively centroids of clusters u and v.

Besides,
ix ∈ u and jx ∈ v. This creates an approximate

value with a cluster-dependent average in the same attribute.

The effect of “ ix ⨁μu” and “ jx ⨁μv” indicates that the

similarity between ix and jx should also consider the

similarity between
ix and the cluster centroid of jx Second,

the missing-value entries are filled with centroid information.

Equation (23) can be extended into MPT cosine polynomial

kernels, MPT radial basis functions (RBFs), and MPT TRBFs,

respectively, i.e.,

 

 
   

MPC 2

MPT 2

1
, 1

1
, 1

D

i j

i j

i j

D

i u j v

i j

i u j v

K

K





  
   
  

 


   
   
  
 

x x
x x

x x

x μ x μ
x x

x μ x μ

, (24)

 

 

2

MPC 2

2

MPT 2

1
, exp

2

1
, exp

2

ji

i j

i j

j vi u

i j

i u j v

K

K





  
    
   
  


      
   
 

xx
x x

x x

x μx μ
x x

x μ x μ

, (25)

and

 
 

 
 

M

2 2
1

2 2

P

P

1

M C

T

1

!

!

1
,

1
,

1

ji

i j

i j

j vi u

i j

u j v

D

i

D

K

K











  

  






 



 
 

 
 
 
 

 


 
 
 

 






xx
x x

x x

x μx μ
x x

x μ x μ

 (26)

where σ2 is the variance, D signifies the kernel order, and τ

denotes the index of components.

The upper parts of (24)–(26) rely on no centroids, whereas

the lowers parts require centroids for imputation. These two

versions affect the result of fault-tolerant network segmentation,

detailed in the following section.

III. PROPOSED FAULT-TOLERANT NETWORK SEGMENTATION

With kernel matrix estimation and kernelized centroid-free

clustering in the previously mentioned sections, fault-tolerant

network segmentation is applicable.

Two versions of fault-tolerant network segmentation are

discussed below. Their difference is computation of kernel

matrices. Kernelized centroid-free clustering is the same. The

first one repeatedly fills in missing-value entries with centroids.

The second one directly ignores missing-value entries.

A. Iterative Pursuit

The iterative pursuit algorithm consists of two steps. These

steps are iterated until clusters are stabilized by checking (6).

The first step is kernel matrix estimation with centroid-based

imputation. The second step uses clustering to update centroids,

so that changes can be reflected in kernel matrix estimation.

Algorithm I: MPT-Based Iterative Pursuit

Input: X = [x1,x2,…,xN] with missing values

Output: 1,2,…,S

1. Randomly initialize μs ∈ M, where s = 1,2,...,S

2. Choose an MPT cosine kernel

3. for limited iterations

4. Estimate the kernel matrix, K

5. while xn migrates between clusters (n= 1,2,...,N)

6. Compute Δ of the squared norm based on (14) and (15)

7. Compute ΔR based on (16) and (17)

8. end

9. Compute μs

10. end

Let  represent the number of iterations and (M2N3) denote

the complexity of kernel matrix estimation. Then, the

complexity of this algorithm is (M2N3).

B. Rapid Computation

Unlike the above algorithm, this method does not require

imputation. Besides, no iteration is performed for kernel matrix

estimation. This algorithm saves more computational time than

the above algorithm.

Algorithm II: MPC-Based Rapid Computation

Input: X = [x1,x2,…,xN] with missing values

Output: 1,2,…,S

1. Randomly initialize μs ∈ M, where s = 1,2,...,S

2. Choose an MPC kernel

3. Estimate the kernel matrix, K

4. while xn migrates between clusters (n= 1,2,...,N)

5. Compute Δ of the squared norm based on (14) and (15)

6. Compute ΔR based on (16) and (17)

7. end

As no iteration is used, this algorithm has complexity of

(M2N3).

APPENDIX

The appendix shows the drawback of centroid-based clustering

and intrinsic kernel space. Consider the case of complete data X.

Given an M-by-N matrix X without missing values, where M

specifies the number of dimensions, and N denotes the number

of observed samples. In our case, observed samples refer to IoT

devices. Besides, X = [x1, x2,…, xN]. The objective of matrix

completion is to minimize the difference between X and its

approximate matrix formed by UV. That is, X ≈ UV. One of

the implementation for matrix completion, i.e., ridge

alternating least squares [14], is shown as follows

   2 2 2

rALS U Vmin , minE     U V X UV U V

 (27)

where U and V are respectively M-by-H and H-by-N unknown

matrices, H is the intermediate dimension, and ||∙|| represents

the Frobenius norm. Ridge ALS uses ridge parameters, ρU and

ρV, to regularize and prevent U and V from overfitting,

respectively. Differentiating ErALS and zeroing the equations

yield

 
1

V


 V U U I U X (28)

and

 
1

U


 U VV I VX (29)

where I is an identity matrix. The system can iteratively update

U and V based on (28) and (29) to generate a solution.

For matrix X with missing values, the procedure is still the

same, as shown in (30) and (31). The difference is that an

element-wise mask G is imposed on X. If an element of X is

missing, then such an entry is temporally substituted with a zero

first.

   
1

V G


  V U U I U X (30)

and

   
1

U G


  U VV I V X . (31)

Finally, the missing elements of X are replaced with the

corresponding elements of the generated matrix, i.e., UV. This

completes the matrix approximation.

For centroid-based clustering, it requires mapping a sample

from feature space into intrinsic space. Assume the size of the

dimension in feature space is M, and then that of intrinsic space

is

   !1 1

! !

M DM D
J

M DD

   
  
 

. (32)

Let dm represent the power of xm, where m = 1,2,…,M+1.

After kernel mapping, the new variable in each dimension

follows the form

     1 1

1

1 1

1 1

1 1

!

!, , !

0 , ,
s.t.

M Md d d

M M

M

M

M

D
x x x

d d

d d D

d d D













 
 
 

 


  

 (33)

if polynomial kernels are used. When truncated RBFs (TRBFs)

are employed,

     1 1

2

1 12

1 1

1 1

exp
2

0 , ,
s.t. .

M Md d d

M M

M

M

x x x

d d D

d d D











  
 
  

 


  

x

 (34)

In intrinsic space, an M-by-1 vector is converted to a J-by-1 one.

There are several drawbacks if centroid-based clustering and

intrinsic space are used. Firstly, typical RBFs are inapplicable

due to infinite dimensions in intrinsic space. This is

inconvenient as centroids cannot be represented in intrinsic

space when RBFs are used. Instead, TRBFs should be adopted.

Second, kernel mapping requires the missing values in feature

space to be imputed beforehand.

REFERENCES

[1] S. Dama, V. Sathya, K. Kuchi, and T. V. Pasca, “A feasible cellular

Internet of Things: Enabling edge computing and the IoT in dense

futuristic cellular networks,” IEEE Consumer Electronics Magazine, vol.

6, no. 1, pp. 66–72, Dec. 2017.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Future

Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[3] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of

cloud computing and Internet of Things: A survey,” Future Generation

Computer Systems, vol. 56, pp. 684–700, Mar. 2016.

[4] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and

future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.

32–39, Nov. 2011.

[5] U. Aguilera and D. López-de-Ipiña, “An architecture for automatic

service composition in MANET using a distributed service graph,”

Future Generation Computer Systems, vol. 34, pp. 176–189, May 2014.

[6] J. DeFranco, M. Kassab, and J. Voas, “How do you create an internet of

things workforce?,” IEEE IT Professional, vol. 20, no. 4, pp. 8–12, Jul.–

Aug. 2018.

[7] C.-D. Wang, J.-H. Lai, D. Huang, and W.-S. Zheng, “SVStream: A

support vector-based algorithm for clustering data streams,” IEEE

Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp.

1410–1424, Jun. 2013.

[8] C. Tsirmpas, A. Anastasiou, P. Bountris, and D. Koutsouris, “A new

method for profile generation in an Internet of Things environment: An

application in ambient-assisted living,” IEEE Internet of Things Journal,

vol. 2, no. 6, pp. 471–478, Dec. 2015.

[9] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine

learning techniques for cooperative spectrum sensing in cognitive radio

networks,” IEEE Journal on Selected Areas in Communications, vol. 31,

no. 11, pp. 2209–2221, Nov. 2013.

[10] M. Hajjar, G. Aldabbagh, N. Dimitriou, and M. Z. Win, “Hybrid

clustering scheme for relaying in multi-cell LTE high user density

networks,” IEEE Access, vol. 5, pp. 4431–4438, Mar. 2017.

[11] Y. C. Yuan, “Multiple imputation for missing data: Concepts and new

development,” SAS Institute Incorporation, Rockville, MD, Technical,

2000.

[12] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R.

Tibshirani, D. Botstein, and R. B. Altman, “Missing value estimation

methods for DNA microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–

525, 2001.

[13] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys. New York,

NY: Wiley, 1987.

[14] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel

collaborative filtering for the Netflix prize,” in Proc. 4th International

Conference on Algorithmic Applications in Management, Shanghai,

China, 2008, Jun. 23–25, pp. 337–348.

[15] A. Paterek, “Improving regularized singular value decomposition for

collaborative filtering,” in Proc. 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD 2007),

San Jose, California, United States, 2007, Aug. 12–15, pp. 39–42.

[16] M. Eirinaki, J. Gao, I. Varlamis, and K. Tserpes, “Recommender

systems for large-scale social networks: A review of challenges and

solutions,” Future Generation Computer Systems, vol. 78, pp. 413–418,

Jan. 2018.

[17] B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, “Probabilistic recovery

of incomplete sensed data in IoT,” IEEE Internet of Things Journal, vol.

5, no. 4, pp. 2282–2292, Aug. 2018.

[18] J. T. Chi, E. C. Chi, and R. G. Baraniuk, “k-POD: A method for k-means

clustering of missing data,” The American Statistician, vol. 70, no. 1, pp.

91–99, Jan. 2016.

[19] K. Wagstaff, “Clustering with missing values: No imputation required,”

in Proc. Meeting of the International Federation of Classification

Societies, Chicago, Illinois, United States, 2004, Jul. 15–18, pp. 649–

658.

[20] S.-Y. Kung, Kernel Methods and Machine Learning. Cambridge, UK:

Cambridge University Press, Jun. 2014.

[21] B.-W. Chen, S. Rho, L. T. Yang, and Y. Gu, “Privacy-preserved big data

analysis based on asymmetric imputation kernels and multiside

similarities,” Future Generation Computer Systems, vol. 78, no. 2, pp.

859–866, Jan. 2018.

[22] S.-Y. Kung and P.-Y. Wu, “Kernel approach to incomplete data analysis

(KAIDA),” in Proc. 1st International Conference on Advances in Big

Data Analytics, Las Vegas, NV, 2015, Jul. 21–24, pp. 95–101.

