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Abstract

This manuscript introduces the concept of generalized integrating factor for one dimen-
sional linear ordinary differential equations of order n. The procedure is used to address
linear second order equations with varying and with constant coefficients, commonly
found in many practical problems. The solutions are analytically derived by means of
double convolutions. Analytical solutions for the constant coefficient case with different
types of continuous and discontinuous excitations are discussed with examples. The con-
cept of Heaviside series is introduced to generalize the solutions for discrete excitations.
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1. Introduction

Linear and non-homogeneous ordinary differential equations are common in many
areas of applied mathematics. In special, second order ordinary differential equations
appear in various practical problems in mathematics, physics and engineering, like for
example the dynamic equilibrium of mechanical systems. Their solution is well known
for constant coefficients and periodic forces [17], but the solution for general problems
usually depends on special transformations.

Integrating factors are used as a tool to modify a general ordinary differential equation
to an exact form. Once in this form, its solution is just a matter of integration. Its use
is well known for first order equations [5] but its use for second order equations is not so
well established in the literature [7, 1, 15, 8, 14, 2, 4, 3, 12].

We propose and discuss a simple but powerful variant of the traditional integrating
factor that presents many benefits. The proposed method can be used for general orders
and results in integrating factors function of the independent variable only, disregarding
the coefficients of the ordinary differential equation.
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The general concept is shown in details and applied to a third-order ODE with varying
coefficients to exemplify the procedure. The method is then used to solve second-order
ODEs with varying coefficients and with constant coefficients. The latter case is used
as starting point to derive many important analytical solutions for different types of
excitations (non-homogeneous term of the ODE). Finally, we discuss an approach to use
the proposed method to solve discrete forms of excitation by means of Heaviside series.

2. The generalized integrating factor method

Consider a linear first order ordinary differential equation

a1(t)ẏ(t) + a0(t)y(t) = f(t), (1)

where y is the dependent variable, t is the independent variable and ẏ(t) is the derivative
of y with respect to t.

The integrating factor for first order differential equations, introduced by Leibniz,
relies on the relation

p(t)ẏ(t) + ṗ(t)y(t) =
.

(p(t)y(t)), (2)

where
.
( ) means the derivative, with respect to t, of all the expression inside the paren-

thesis.
An integrating factor µ(t) is multiplied to Eq. 1 to force the appearance of Eq. 2,

µ(t)a1(t)︸ ︷︷ ︸
p(t)

ẏ(t) + µ(t)a0(t)︸ ︷︷ ︸
ṗ(t)

y(t) =
.

(p(t)y(t)). (3)

It immediately follows that

ṗ(t) = µ(t)a0(t) =
.(

µ(t)a1(t)
)
= µ̇(t)a1(t) + µ(t)ȧ1(t) (4)

such that

µ̇(t)

µ(t)
=

a0(t)− ȧ1(t)

a1(t)
, (5)

with solution
µ(t) = exp

(∫
a0(t)− ȧ1(t)

a1(t)
dt

)
, (6)

allowing the use direct integration to solve
.

(µ(t)a1(t)y(t)) = µ(t)f(t), (7)

such that
y(t) =

1

µ(t)a1(t)

∫
µ(t)f(t) dt+ C1, (8)

where C1 is an integration constant. Relation given by Eq. 2 can be generalized to higher
orders

pj(t)
(j)

y (t) + ṗj(t)
(j−1)

y (t) = (
˙

pj(t)
(j−1)

y (t)), (9)
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where
(j)

y (t) is the j-th derivative of y with respect to t (used for j > 3).
Now consider a linear and non-homogeneous ordinary differential equation of order n

an(t)
(n)

y (t) + an−1(t)
(n−1)

y (t) + · · ·+ a2(t)ÿ(t) + a1(t)ẏ(t) + a0(t)y(t) = f(t). (10)

It can be rewritten in pairs of derivatives of y(t) such that one element is a derivative
higher than the other. This is achieved by partitioning the coefficients multiplying the
intermediate derivatives into two terms

an(t)
(n)

y (t) + fn,n−1,1(t)
(n−1)

y (t)︸ ︷︷ ︸
πn,n

+ fn,n−1,2(t)
(n−1)

y (t) + fn,n−2,1(t)
(n−2)

y (t)︸ ︷︷ ︸
πn,n−1

+ . . .

+ fn,3,2(t)
...
y(t) + fn,2,1(t)ÿ(t)︸ ︷︷ ︸

πn,3

+ fn,2,2(t)ÿ(t) + fn,1,1(t)ẏ(t)︸ ︷︷ ︸
πn,2

+

fn,1,2(t)ẏ(t) + a0(t)y(t)︸ ︷︷ ︸
πn,1

= f(t), (11)

where πn,j is the j-th partition of Eq. 10, which is the key idea for the proposed approach.
Coefficients fn,j,i refer to the order of the differential equation, n, partition j and i = 1
or i = 2 such that

an,j(t) = fn,j,1(t) + fn,j,2(t), (12)

and there are Nπn
= 2n− 2 partitions j.

Multiplying Eq. 11 by a generalized integrating factor µn(t) results in

µn(t)an(t)
(n)

y (t) + µn(t)fn,n−1,1(t)
(n−1)

y (t)︸ ︷︷ ︸.(
pn,n

(n−1)
y (t)

)
+µn(t)fn,n−1,2(t)

(n−1)

y (t) + µn(t)fn,n−2,1(t)
(n−2)

y (t)︸ ︷︷ ︸.(
pn,n−1

(n−2)
y (t)

)
+ . . .

+µn(t)fn,3,2(t)
...
y(t) + µn(t)fn,2,1(t)ÿ(t)︸ ︷︷ ︸.
(pn,3

..
y(t))

+µn(t)fn,2,2(t)ÿ(t) + µn(t)fn,1,1(t)ẏ(t)︸ ︷︷ ︸.
(pn,2

.
y(t))

+

µn(t)fn,1,2(t)ẏ(t) + µn(t)a0(t)y(t)︸ ︷︷ ︸.
(pn,1y(t))

= µn(t)f(t),

(13)

such that
.(

pn,n
(n−1)

y (t)
)
+

.(
pn,n−1

(n−2)

y (t)
)
+ . . .+

.(
pn,1y(t)

)
= µn(t)f(t) (14)

can be exactly integrated to

pn,n
(n−1)

y (t) + pn,n−1
(n−2)

y (t) + . . .+ pn,1y(t) =

∫
µn(t)f(t) dt+ Cn (15)

an ordinary differential equation of order n− 1, where Cn is an integration constant.
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Coefficients fn,j,i can be found by solving(
µ̇n

µn

)
n

=

(
µ̇n

µn

)
n−1

= · · · =
(
µ̇n

µn

)
3

=

(
µ̇n

µn

)
2

=

(
µ̇n

µn

)
1

. (16)

where

πn,j =⇒
(
µ̇n(t)

µn(t)

)
j

=
fn,j−1,1(t)− ḟn,j,2(t)

fn,j,2(t)
; fn,0,1(t) = a0(t), fn,n,2(t) = an(t). (17)

It follows that there are n(n−1)
2 combinations of these pair-wise equations, along with the

n− 1 equations relating each pair of partitions with their coefficient. Thus, the number
of equations available to evaluate coefficients fn,j,i, Neq, is

Neqn =
n(n− 1)

2
+ n− 1 =

n2 + n− 2

2
≥ Nπn

; n ≥ 2, (18)

being always bigger or equal than the number of partitions, Nπn
, such that there are

enough equations to solve the problem (actually, not all equations must be used). After
finding all coefficients fn,j,i, it is possible to find µn(t) by using Eq. 17 for just one
partition ĵ (any partition can be used)(

µ̇n(t)

µn(t)

)
ĵ

=
fn,ĵ−1,1(t)− ḟn,ĵ,2(t)

fn,ĵ,2(t)
, (19)

such that

µn(t) = exp

∫ fn,ĵ−1,1(t)− ḟn,ĵ,2(t)

fn,ĵ,2(t)
dt

 . (20)

The same procedure depicted above can be carried out successively until reaching a
first order equation, where the traditional integrating factor µ1(t) can be used.

The procedure is applied to a linear ordinary differential equation of order three to
exemplify the procedure.

2.1. Example: linear ordinary differential equation of order three
Consider the ODE

a3(t)
...
y(t) + a2(t)ÿ(t) + a1(t)ẏ(t) + a0(t)y(t) = f(t). (21)

The explicit dependency on t is dropped in the following equations to make the notation
more concise. Partitioning coefficients a2 and a1 into a2 = f2,2,1 + f2,2,2 and a1 =
f2,1,1 + f2,1,2 results in

a3
...
y + f2,2,1ÿ︸ ︷︷ ︸

π3,3

+ f2,2,2ÿ + f2,1,1ẏ︸ ︷︷ ︸
π3,2

+ f2,1,2ẏ + a0y︸ ︷︷ ︸
π3,1

= f. (22)

Multiplying Eq. 23 by a generalized integrating factor µ3

µ3a3︸︷︷︸
p3,3

...
y + µ3f2,2,1︸ ︷︷ ︸

ṗ3,3

ÿ + µ3f2,2,2︸ ︷︷ ︸
p3,2

ÿ + µ3f2,1,1︸ ︷︷ ︸
ṗ3,2

ẏ + µ3f2,1,2︸ ︷︷ ︸
p3,1

ẏ + µ3a0︸︷︷︸
ṗ3,1

y = µ3f, (23)
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such that .(
p3,3ÿ

)
+

.(
p3,2ẏ

)
+

.(
p3,1y

)
= µ3f, (24)

can be integrated with respect to t, resulting in

p3,3ÿ + p3,2ẏ + p3,1y =

∫
µ3f dt+ C3︸ ︷︷ ︸

h2

(25)

a second order ordinary differential equation.
The same procedure can be applied to this second order equation. Splitting p3,2 =

f1,1,1 + f1,1,2 results in

p3,2ÿ + f1,1,1ẏ︸ ︷︷ ︸
π2,2

+ f1,1,2ẏ + p3,1y︸ ︷︷ ︸
π2,1

= h2 (26)

and multiplying by a generalized integrating factor µ2

µ2p3,2︸ ︷︷ ︸
p2,2

ÿ + µ2f1,1,1︸ ︷︷ ︸
ṗ2,2

ẏ + µ2f1,1,2︸ ︷︷ ︸
p2,1

ẏ + µ2p3,1︸ ︷︷ ︸
ṗ2,1

y = µ2h2, (27)

such that .(
p2,2ẏ

)
+

.(
p2,1y

)
= µ2h (28)

and integrating w.r.t time results in

p2,2ẏ + p2,1y =

∫
µ2hdt+ C2︸ ︷︷ ︸

h1

, (29)

a first order ODE. Finally, multiplying by an integrating factor µ1 results in

µ1p2,2︸ ︷︷ ︸
p1,1

ẏ + µ1p2,1︸ ︷︷ ︸
ṗ1,1

y = µ1h1 (30)

or .(
p1,1y

)
= µ1h1 (31)

such that
y =

1

p1,1

∫
µ1h1 dt+ C1, (32)

is the solution to Eq. 23.
Solution provided by Eq. 32 depends on µ3, µ2 and µ1. Using Eq. 30, it is possible

to write
ṗ1,1 = µ1p2,1 =

.(
µ1p2,2

)
= µ̇1p2,2 + µ1ṗ2,2 (33)

such that
µ̇1

µ1
=

p2,1 − ṗ2,2
p2,2

(34)
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with solution

µ1 = exp

(∫
p2,1 − ṗ2,2

p2,2
dt

)
. (35)

The same procedure can be applied to Eq. 27. There are two possible combinations:

ṗ2,2 = µ2f1,1,1 =
.(

µ2p3,2
)
= µ̇2p3,2 + µ2ṗ3,2 (36)

and
ṗ2,1 = µ2p3,1 =

.(
µ2f1,1,2

)
= µ̇2f1,1,2 + µ2ḟ1,1,2, (37)

such that
µ̇2

µ2
=

f1,1,1 − ṗ3,2
p3,2

=
p3,1 − ḟ1,1,2

f1,1,2
. (38)

Since p3,2 = f1,1,1 + f1,1,2 it is possible to rewrite previous equation as

f1,1,2(p3,2 − f1,1,2)− f1,1,2ṗ3,2 = p3,2p3,1 − p3,2ḟ1,1,2 (39)

or
f2
1,1,2 = −p3,2p3,1 + p3,2ḟ1,1,2 + (p3,2 − ṗ3,2)f1,1,2 (40)

a Riccati differential Equation.
Finally, there are three possible combinations for Eq. 23:

ṗ3,3 = µ3f2,2,1 =
.

(µ3a3)= µ̇3a3 + µ3ȧ3, (41)

ṗ3,2 = µ3f2,1,1 =
.(

µ3f2,2,2
)
= µ̇3f2,2,2 + µ3ḟ2,2,2, (42)

and
ṗ3,1 = µ3a0 =

.(
µ3f2,1,2

)
= µ̇3f2,1,2 + µ3ḟ2,1,2. (43)

Thus,
µ̇3

µ3
=

f2,2,1 − ȧ3
a3

=
f2,1,1 − ḟ2,2,2

f2,2,2
=

a0 − ḟ2,1,2
f2,1,2

. (44)

Using the splits a1 = f2,1,1 + f2,1,2 and a2 = f2,2,1 + f2,2,2

(a2 − f2,2,2)− ȧ3
a3

=
(a1 − f2,1,2)− ḟ2,2,2

f2,2,2
=

a0 − ḟ2,1,2
f2,1,2

, (45)

such that
f2
2,2,2 = a3ḟ2,2,2 + (a2 − a3)f2,2,2 − a3a1 + a3f2,1,2 (46)

and
f2
2,1,2 = f2,2,2ḟ2,1,2 + (a1 − ḟ2,2,2)f2,1,2 − a0f2,2,2 (47)

form a coupled system of Riccati-like differential equations.
Previous equations are much simpler when the coefficients are constant, since most

of the rates are null. In this case, Eq. 35 simplifies to

µ1 = exp

(∫
p2,1
p2,2

dt

)
, (48)
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the Riccati equation, Eq. 40 turns into a second order algebraic equation

f2
1,1,2 = −p3,2p3,1 + p3,2f1,1,2 (49)

and the system of Riccati-like differential equations, Eqs. 46 and 47 reduces to

f2
2,2,2 = (a2 − a3)f2,2,2 − a3a1 + a3f2,1,2 (50)

and
f2
2,1,2 = a1f2,1,2 − a0f2,2,2, (51)

a coupled system of quadratic algebraic equations.
Thus, the main shortcoming of the proposed procedure is the evaluation of Equations

16. The larger the order of the differential equation, the harder is to find the coefficients
fn,j,i at each step of the procedure to decrease the order. For general coefficients aj(t),
Eqs. 16 result in a system of Riccati-like coupled differential equations and for constant
coefficients a system of coupled quadratic equations.

Nonetheless, for linear second order equations the procedure can lead to very inter-
esting and practical results, as it will be discussed in the rest of this manuscript.

3. Linear second order ordinary differential equations

Consider a linear second order ordinary differential equation (ODE)

m(t)ÿ(t) + c(t)ẏ(t) + k(t)y(t) = f(t), (52)

with initial conditions ẏ(0) = v0 and y(0) = u0, where y(t) and f(t) are functions of
t over R. This equation is of great interest in physical problems, like for example the
vibration of a mass-spring-damper subjected to a force. Thus, independent variable t is
also referred to time in the rest of this manuscript.

For physical reasons, it is assumed that both m(t) and k(t) ∈ R>0 and that c(t) ∈ R+,
∀t. The explicit dependency on t will be suppressed in the following equations to simplify
the notation.

We start by splitting c as

π2,1 =⇒ c = f2,1,1 + f2,1,2, (53)

where f2,1,1 and f2,1,2 are also function of time, but over C, such that

mÿ + f2,1,1ẏ︸ ︷︷ ︸
π2,2

+ f2,1,2ẏ + ky︸ ︷︷ ︸
π2,1

= f. (54)

Multiplying the ODE by integrating factor µ2(t) results in

µ2m︸︷︷︸
p2,2

ÿ + µ2f2,1,1︸ ︷︷ ︸
ṗ2,2

ẏ + µ2f2,1,2︸ ︷︷ ︸
p2,1

ẏ + µ2k︸︷︷︸
ṗ2,1

y = µ2f, (55)

or
p2,2ÿ + ṗ2,2ẏ + p2,1ẏ + ṗ2,1y = µ2f. (56)
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Analysing the term
ṗ2,2 = µ2f2,1,1 =

.
(µ2m) = µ̇2m+ µ2ṁ, (57)

it is possible to state that
µ̇2

µ2
=

f2,1,1 − ṁ

m
. (58)

Following the same procedure,

ṗ2,1 = µ2k =
.(

µ2f2,1,2
)
= µ̇2f2,1,2 + µ2ḟ2,1,2 (59)

such that
µ̇2

µ2
=

k − f2,1,2
f2,1,2

. (60)

Thus, by relating Eqs. 58 and 60, we obtain the particular form of Eq. 16

f2,1,1 − ṁ

m
=

k − f2,1,2
f2,1,2

. (61)

Since c = f2,1,1 + f2,1,2 it is possible to state that f2,1,1 = c− f2,1,2. Using Eq. 61(
c− f2,1,2 − ṁ

)
f2,1,2 =

(
k − ḟ2,1,2

)
m (62)

such that
f2
2,1,2 = ḟ2,1,2m− km+ (c− ṁ)f2,1,2, (63)

is a Riccati differential equation 1.
Equation 60 is a first order ODE with known solution

µ2 = exp

∫
k − ḟ2,1,2
f2,1,2

dt (66)

where f2,1,2 is obtained from Eq. 63. It is important to stress that only the particular
solution of the Riccati equation is needed.

By knowing µ2 it is possible to re-write Eq. 56 as
.(

p2,2ẏ
)
+

.(
p2,1y

)
= µ2f (67)

such that integrating with respect to t results in

(p2,2ẏ) + (p2,1y) =

∫
µ2f dt+ C2︸ ︷︷ ︸

h

(68)

1Conversely, it is also possible to define f2,1,2 = c− f2,1,1 such that

f2,1,1 − ṁ

m
=

k − ċ+ ḟ2,1,1

c− f2,1,1
(64)

or
f2
2,1,1 = −ḟ2,1,1m+ (ṁ+ c)f2,1,1 − ṁc+ (ċ− k)m, (65)

also a Riccati differential equation.
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a first order ODE. Using another integrating factor µ1 such that

µ1p2,2︸ ︷︷ ︸
p1,1

ẏ + µ1p2,1︸ ︷︷ ︸
ṗ1,1

y = µ1h (69)

or
p1,1ẏ + ṗ1,1y = µ1h. (70)

Following the same procedure

ṗ1,1 = µ1p2,1 =
.(

µ1p2,2
)
= µ̇1p2,2 + µ1ṗ2,2, (71)

such that
µ̇1

µ1
=

p2,1 − ṗ2,2
p2,2

, (72)

with known solution
µ1 = exp

∫
p2,1 − ṗ2,2

p2,2
dt. (73)

Equation 70 can be written as .(
p1,1y

)
= µ1h (74)

integrating with respect to time results in

p1,1y =

∫
µ1hdt+ C1 (75)

such that
y =

1

p1,1

∫
µ1hdt+

1

p1,1
C1. (76)

Thus, by using the definition of both p1,1 and h

y(t) =
1

µ1(t)µ2(t)m(t)

∫ t

0

µ1(t)

(∫ t

0

µ2(t)f(t) dt

)
dt+

∫ t

0

µ1(t)C2 dt+ C1

 (77)

is the general solution for the second order ordinary differential equation stated in Eq.
52. This general solution can be split into its particular, yp(t), and homogeneous, yh(t)
parts

yp(t) =
1

µ1(t)µ2(t)m(t)

∫ t

0

µ1(t)

∫ t

0

µ2(t)f(t) dtdt (78)

and

yh(t) =
1

µ1(t)µ2(t)m(t)

(∫ t

0

µ1(t)C2 dt+ C1

)
, (79)

such that y(t) = yp(t) + yh(t). Constants C1 and C2 can be found by considering the
solution at known t/values.

Thus, the proposed solution depends on the solution of a Riccati equation and always
results in integrating factors µ1(t) and µ2(2) function of t only, disregarding the form of
the coefficients m(t), c(t) and k(t).
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Solution of Eq. 63 is fundamental for the success of the proposed formulation. Indeed,
the solution of the Riccati equation is not an easy task if we consider general coefficients
m(t), c(t) and k(t). Nonetheless, only the particular solution is needed. Various analyt-
ical solutions can be found in the literature for specific forms of coefficients [6, 16, 10],
as well as numerical methods [9].

Example I - Cauchy-Euler equation
Consider the second order ODE

t2ÿ(t)− 2tẏ(t) + 2y(t) = 6t2 + 4 ln(t). (80)

The coefficients are m(t) = t2, c(t) = −2t and k(t) = 2 and the excitation is f(t) =
6t2 + 4 ln(t).

The Riccati equation, Eq. 63, can be written as

f2
2,1,2 = t2ḟ2,1,2 − 2t2 − 4tf2,1,2, (81)

with particular solution f2,1,2 = −t. Using Eq. 66

µ2 = exp

∫
2 + 1

−t
dt =

1

t3
. (82)

Thus, p2,2 = µ2m = t−1 and p2,1 = µ2f1,2 = −t−2. Using Eq. 73

µ1 = exp

∫
−t−1 + t−2

t−1
dt = 1. (83)

Complete solution is given by Eq. 77

y(t) =
1

1t−3t2

∫ t

0

1

{∫ t

0

t−3
(
6t2 + 4 ln(t)

)
dt

}
dt+

∫ t

0

1C2 dt+ C1

 (84)

such that
y(t) = (6t2 + 2) ln(t)− 6t2 + 3 + C2t

2 + C1t, (85)

the analytical solution.

Example II - Bessel equation
Consider EDO

t2ÿ(t) + tẏ(t) +

(
t2 − 1

4

)
y(t) = f(t) = t

3
2 , (86)

with known values y(t0) = ẏ(t0) = 0 at t0 = 0.1. It is known that solution to this
equation is singular at t = 0.

The corresponding Riccati equation, Eq. 63, is

f2
2,1,2 = t2ḟ2,1,2 − tf2,1,2 +

t2

4
− t4, (87)

10



whose candidate solution is a second order polynomial

f̃2,1,2 = z0 + z1t+ z2t
2. (88)

Applying this polynomial into Eq. 87 yields

z20+2z0z1t+
(
2z0z2 + z21

)
t2+2z1z2t

3+z22t
4 = z1t

2+2z2t
3−z0t−z1t

2−z2t
3+

t2

4
−t4, (89)

that simplifies to

z20 + 2z0z1t+
(
2z0z2 + z21

)
t2 + 2z1z2t

3 + z22t
4 = −z0t+

t2

4
+ z2t

3 − t4, (90)

whose solution is z0 = 0, z1 = 1
2 and z2 = i.

Thus, the integrating factor, Eq. 66, is

µ2 = exp

(∫
t2 − 1

4 − 1
2 − 2it

t
2 + it2

dt

)
= exp

(∫
t2 − 2it− 3

4
t
2 + it2

dt

)
. (91)

The polynomials in the integrand can be factored and simplified to

µ2 = exp

∫
(
t− i

2

)(
t− 3i

2

)
it
(
t− i

2

) dt

 = exp

(∫
−idt− 3

2

∫
1

t
dt

)
, (92)

such that

µ2 = exp

(
−it− 3

2
ln |t|

)
= t−

3
2 exp (−it) . (93)

The integrating factor to integrate the differential equation from first order to an
algebraic equation is evaluated using Eq. 73,

µ1 = t
1
2 exp (it) . (94)

Solution is then given by Eq. 77

y(t) = t−
1
2 exp (−it)

∫
exp (2it)

∫
t−

3
2 exp (−t) f(t) dtdt+

C1t
− 1

2 exp (it) + C2t
− 1

2 exp (−it) , (95)

and replacing the expression for f(t)

y(t) = t−
1
2 + C1t

− 1
2 exp (it) + C2t

− 1
2 exp (−it) . (96)

Constants, C1 and C2, can be obtained by solving a system of linear equations

11



 t
− 1

2
0 exp (it0) t

− 1
2

0 exp (−it0)(
it

− 1
2

0 − t
− 3

2
0

2

)
exp (it0) −

(
it

− 1
2

0 +
t
− 3

2
0

2

)
exp (−it0)

{C1

C2

}
=

y (t0)− t
− 1

2
0

ẏ (t0) +
t
− 3

2
0

2

 . (97)

Using values at t0 = 0.1 results in

y(t) = t−
1
2 + (−0.4975 + 0.04992i) t−

1
2 exp (it)− (0.4975 + 0.04992i) t−

1
2 exp (−it) . (98)

Figure 1 compares the real part of the solution obtained by the proposed approach,
Eq. 95, with the solution obtained by using the Tsitouras 5/4 Runge-Kutta method [18]
with adaptative time step. The numerical solution starts at t = 0.1 (dotted line) but the
analytical solution captures the singularity at t → 0 (blue curve).

Figure 1: Analytical response y(t) obtained for the Bessel equation (Eq. 86) and the solution obtained
by using a numerical method, yTsit5(t).

3.1. Constant coefficients
Previous equations are much simpler when m, c and k are constant since ṁ, ċ, ḟ2,1,2

and k̇ are zero. As m > 0, it is possible to normalize the equation by m such that

ÿ(t) + c̄ẏ(t) + k̄y(t) = f̄(t), (99)
12



where c̄ = c/m, k̄ = k/m and f̄ = f/m. It follows that Eq. 63 reduces to an algebraic
quadratic equation

f2
2,1,2 = −k̄ + c̄f2,1,2 (100)

with direct solution

f2,1,2 =
c̄±

√
c̄2 − 4k̄

2
, (101)

a complex number when c̄2 − 4k̄ < 0 (under damped problems). Any one of the two
roots can be used. Equation 66 reduces to

µ2 = exp
(
k̂t
)

(102)

where

k̂ =
k̄

f2,1,2
(103)

and Eq. 73 to

µ1 =
exp

(
f2,1,2t

)
exp

(
k̂t
) = exp

((
f2,1,2 − k̂

)
t

)
. (104)

Thus, the complete solution is

y(t) =
1

µ1(t)µ2(t)

∫ t

0

exp

((
f2,1,2 − k̂

)
t

)(∫ t

0

exp
(
k̂t
)
f̄(t) dt+ C2

)
dt+ C1


(105)

where the term
1

µ1(t)µ2(t)
= exp

(
−f2,1,2t

)
(106)

such that

y(t) = exp
(
−f2,1,2t

)∫ t

0

exp

((
f2,1,2 − k̂

)
t

)(∫ t

0

exp
(
k̂t
)
f̄(t) dt+ C2

)
dt+ C1

 ,

(107)
is the complete solution. Additionally, it is possible to split the solution in its particular

yp(t) = exp
(
−f2,1,2t

)∫ t

0

exp

((
f2,1,2 − k̂

)
t

)(∫ t

0

exp
(
k̂t
)
f̄(t) dt

)
dt

 , (108)

and homogeneous parts

yh(t) = exp
(
−f2,1,2t

)(∫ t

0

exp

((
f2,1,2 − k̂

)
t

)
C2 dt+ C1

)
, (109)

which can be further simplified to

13



yh(t) = exp
(
−f2,1,2t

)
C1 + C2 exp

(
−k̂t

)
. (110)

Particular solution for the constant coefficient case, Eq. 108, can be further devel-
oped if we assume some particular form for f̄(t). The following subsections are devoted
to investigate two situations: Continuous excitation (periodic and polynomial) and dis-
continuous (unitary impulse and Heaviside).

3.2. Continuous excitation functions
3.2.1. Periodic excitation

Lets consider a further hypothesis: excitation f(t) is periodic or its Fourier series is
convergent. Thus, normalized excitation f̄(t) can be represented as a series of exponen-
tials

f̄(t) =

nk∑
k=1

ck exp (βkt+ ϕk) , (111)

where nk is the number of terms, ck ∈ R is an amplitude, βk = iωk ∈ C is a complex
angular frequency and ϕk ∈ C is a complex phase.

Previously, it was seen that the integrating factor is an exponential by definition, and
that the particular solution, i.e., the solution corresponding to the excitation function,
naturally appears through the successive integrations. These integrations are convolu-
tions over the integrating factor, thus, if the excitation can be expressed in terms of
exponentials, these convolutions can be trivially calculated. Applying Eq. 111 into Eq.
108 yields

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

exp
(
k̂t
) nk∑

k=1

ck exp (βkt+ ϕk) dt

 dt,

(112)
using the multiplication property between exponentials

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

nk∑
k=1

ck exp

((
βk + k̂

)
t+ ϕk

)
dt

 dt,

(113)
whose inner integral is trivial and results in

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

) nk∑
k=1

ck

βk + k̂
exp

((
βk + k̂

)
t+ ϕk

)
dt.

(114)
Again, rearranging the multiplication of exponentials, yields

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

nk∑
k=1

ck

βk + k̂
exp

((
βk + f2,1,2

)
t+ ϕk

)
dt, (115)

14



which is again trivially integrated to

yp(t) = exp
(
−f2,1,2t

) nk∑
k=1

ck(
βk + k̂

) (
βk + f2,1,2

) exp((βk + f2,1,2
)
t+ ϕk

)
, (116)

such that

yp(t) =

nk∑
k=1

ck exp (βkt+ ϕk)(
βk + k̂

) (
βk + f2,1,2

) . (117)

Equation 117 gives a closed-form and analytic particular solution for any periodic
excitation or an excitation represented through its Fourier series expansion. It is worth
noticing that all constants given by the two integrations at time t0 = 0 were omitted for
they can be coupled to the constants C1 and C2, which are by definition constants of
these very integrations.

Example with periodic excitation
Consider the ODE

ÿ(t) + 2ẏ(t) + 10y(t) = f̄(t), (118)

with initial conditions y (0) = 0.2 and ẏ (0) = 0.0, where

f̄(t) = −cos (0.5t) + sin (t) + cos (1.5t− 1.5)− 2sin (2t) + 2sin (10t) . (119)

For this example, one gets

k̄ = 10, (120)
f2,1,2 = 1 + 3i, (121)

k̂ = 1− 3i, (122)

By using well known relations

sin
(
ωηt+ ϕη

)
= i

e−i(ωηt+ϕη) − ei(ωηt+ϕη)

2
(123)

and

cos
(
ωηt+ ϕη

)
=

e−i(ωηt+ϕη) + ei(ωηt+ϕη)

2
, (124)

one gets the excitation in a complex form as

f̄ = −1

2
e0.5it − 1

2
e−0.5it − i

2
eit +

i

2
e−it +

1

2
e1.5i(t−1) +

1

2
e1.5i(1−t)+

ie2it − ie−2it − ie10it + ie−10it =

10∑
j=1

cje
βjt+ϕj . (125)
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Looking at Eq. 125 and the series explicit in the end, an algorithmic approach may be
derived by writing these coefficients and powers in a tabular manner, as in Tab. 1. Using
such matrix representation, all the parameters needed for each operation of the sum can
be summarized in each column. Thus, the summation can be carried out column by
column, as the row with the index j in Tab. 1 hints.

Table 1: Tabular representation for the excitation.
j 1 2 3 4 5 6 7 8 9 10
c −0.5 −0.5 −0.5i 0.5i 0.5 0.5 i −i −i i
β 0.5i −0.5i i −i 1.5i −1.5i 2i −2i 10i −10i
ϕ 0.0 0.0 0.0 0.0 −1.5i 1.5i 0.0 0.0 0.0 0.0

Following Tab. 1 to evaluate Eq. 117 yields

yp =
−78 + 8i

1537
e0.5it − 78 + 8i

1537
e−0.5it − 2 + 9i

170
eit +

−2 + 9i

170
eit+

62− 24i

1105
e1.5i(t−1) +

62 + 24i

1105
e1.5i(1−t) +

2 + 3i

26
e2it+

2− 3i

26
e−2it +

−2 + 9i

850
e10it − 2 + 9i

850
e−10it, (126)

and for Eq. 110

yh = C2e
− k̄

f1,2
t
+ C1e

−f1,2t, (127)

or

yh = C2e
(−1+3i)t + C1e

−(1+3i)t. (128)

The homogeneous solution, yh, is straightforward. Using Eq. 126 and Eq. 128 at
t = 0, the integration constants came out as complex conjugates, C2 ≈ 0.10564−0.11980i
and C1 ≈ 0.10564 + 0.11980i.

Figure 4 shows the real part of the solution for both the homogeneous and the partic-
ular solutions (top) as well as the complete solution (bottom). The solution was obtained
for a time span of 40s with intervals of 0.1s. It is worth mention that although y(t) is
complex, the maximum amplitude of the complex part of the response was 8.3267×10−17

in the analysed time interval, which is zero when compared to the real part.
Since it is known that the response to this problem is real it is worth showing that

this is indeed just a matter of representation. To this end, Eqs. 126 and 128 can be
transformed to a real-valued form by applying Eq. 123 and Eq. 124 in reverse,

yp = − 156

1537
cos (0.5t)− 16

1537
sin (0.5t)− 2

85
cos (t) +

9

85
sin (t)+

124

1105
cos
(
1.5 (t− 1)

)
+

48

1105
sin
(
1.5 (t− 1)

)
+

2

13
cos (2t)−

3

13
sin (2t)− 2

425
cos (10t)− 9

425
sin (10t) , (129)
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Figure 2: Particular and homogeneous solution (top) and complete solution (bottom).

and
yh = C2e

−tcos (3t) + C1e
−tsin (3t) , (130)

with C2 ≈ 0.2107 and C1 ≈ 0.0702. Complete solution y(t) = yp(t)+ yh(t) is correct and
satisfies Eq. 118 for all t.

3.2.2. Polynomial excitation
Assuming a polynomial excitation in the form

f̄(t) =

np∑
k=0

ck (t− ts)
k
, (131)

where ck ∈ R are coefficients, np is the number of terms and ts ∈ R a time shift.
Applying Eq. 131 into Eq. 108 yields

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

exp
(
k̂t
) np∑

k=0

ck (t− ts)
k
dt

 dt,

(132)
as integration is a linear operator, the summation can be transferred to the whole inte-
gration and the coefficient of each power of t can also be put out of the integral,
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yp(t) = exp
(
−f2,1,2t

) np∑
k=0

ck

∫ t

0

exp

((
f2,1,2 − k̂

)
t

)(∫ t

0

exp
(
k̂t
)
(t− ts)

k
dt

)
dt.

(133)
The convolution of a polynomial over an exponential is recursively evaluated using

integration by parts. For it, let the power of t be a positive integer α. The first integration
by parts is

∫ t

0

exp (βt) (t− ts)
α
dt =

∫ t

0

.(
1

β
exp (βt)

)
(t− ts)

α
dt =

1

β
exp (βt) (t− ts)

α

∣∣∣∣∣
t

0

− 1

β
α

∫
exp (βt) (t− ts)

α−1
dt, (134)

such that another convolution with a smaller power appeares in the RHS of Eq. 134.
This procedure can be used recursively until the null power, where the integral is over
the exponential only,

∫ t

0

exp (βt) (t− ts)
α
dt =

1

β
(t− ts)

α
exp (βt)

∣∣∣∣∣
t

0

−
(
1

β

)2

α (t− ts)
α−1

exp (βt)

∣∣∣∣∣
t

0

+

(
1

β

)3

α (α− 1) (t− ts)
α−2

exp (βt)

∣∣∣∣∣
t

0

−
(
1

β

)4

α (α− 1) (α− 2) (t− ts)
α−3

exp (βt)

∣∣∣∣∣
t

0

. . .

+(−1)
α

(
1

β

)α

α!

∫
exp (βt) (t− ts)

α−α
dt. (135)

Rarranging the terms,

∫ t

0

exp (βt) (t− ts)
α
dt =

α∑
l=1

(−1)
l+1

(
1

β

)l
α!

(α− l + 1)!
(t− ts)

α−l+1
exp (βt)

∣∣∣∣∣
t

0

+(−1)
α

(
1

β

)α

α! exp (βt)

(
1

β

)
, (136)

which can be further simplified to
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∫ t

0

exp (βt) (t− ts)
α
dt =

α+1∑
l=1

(−1)
l+1

(
1

β

)l
α!

(α− l + 1)!
(t− ts)

α−l+1
exp (βt)

∣∣∣∣∣
t

0

. (137)

Applying this result to Eq. 133 and neglecting the evaluation of this integral at t = 0,
since it can be summed with constant C1, yields

yp(t) = exp
(
−f2,1,2t

) np∑
k=0

ck

∫ t

0

exp

((
f2,1,2 − k̂

)
t

) k+1∑
l=1

(−1)
l+1
(
k̂
)−l

k!

(k − l + 1)!
(t− ts)

k−l+1
exp

(
k̂t
)
dt. (138)

Rearranging terms, using the linearity of the integration operator and defining r =
k − l + 1

yp(t) = exp
(
−f2,1,2t

) np∑
k=0

ck

k+1∑
l=1

(−1)
l+1
(
k̂
)−l k!

r!

∫ t

0

exp
(
f2,1,2t

)
(t− ts)

r
dt. (139)

Using the result from Eq. 137,

yp(t) = exp
(
−f2,1,2t

) np∑
k=0

ck

k+1∑
l=1

(−1)
l+1
(
k̂
)−l k!

(r)!

r+1∑
p=1

(−1)
p+1

f−p
2,1,2

r!

(r + 1− p)!
(t− ts)

r+1−p
exp

(
f2,1,2t

)
, (140)

that can be further simplified to

yp(t) =

np∑
k=0

ck

k+1∑
l=1

(−1)
l+1
(
k̂
)−l k!

r!

r+1∑
p=1

(−1)
p+1

f−p
2,1,2

r!

(r + 1− p)!
(t− ts)

r+1−p
, (141)

which is itself another polynomial.

Example with polynomial excitation
A common example of excitation in electric circuitry analysis is the ramp function, a

polynomial of first degree. Consider the ode subjected to

ÿ(t) + 2ẏ(t) + 10y(t) = f̄(t) = t, (142)

with ẏ(0) = y(0) = 0, t ∈ [0, 4]s.
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Steps used to solve Eq. 141, yp(t), are depicted in an algorithm form in Alg. 1,
resulting in yp(t) = 0.1t − 0.02. The homogeneous solution is given by Eq. 110, that
yields a system of equations for its integration constants, C1 and C2,[

exp (0) exp (0)

−f2,1,2 exp (0) −k̂ exp (0)

]{
C1

C2

}
=

{
y (0)− yp(0)
ẏ (0)− ẏp(0)

}
, (143)

which simplifies to

[
1 1

−1− 3i −1 + 3i

]{
C1

C2

}
=

{
0.02
−0.1

}
, (144)

whose solution is C1 = 0.0100− 0.0133i and C2 = 0.0100 + 0.0133i. Thus, the complete
solution is

y(t) = 0.1t− 0.02 + (0.0100− 0.0133i) exp
(
− (1 + 3i) t

)
+

(0.0100 + 0.0133i) exp
(
− (1− 3i) t

)
(145)

Algorithm 1: Evaluation of Eq. 141
k = 0

c0 = 0
k = 1

c1 = 1

l = 1 =⇒ (−1)
l+1
(
k̂
)−l

k!
r! = 0.1 + 0.3i

p = 1 =⇒ (−1)
p+1

f−p
2,1,2

r!
(r+1−p)! (t− ts)

r+1−p
= (0.1− 0.3i) t

p = 2 =⇒ (−1)
p+1

f−p
2,1,2

r!
(r+1−p)! (t− ts)

r+1−p
= 0.08 + 0.06i

l = 2 =⇒ (−1)
l+1
(
k̂
)−l

k!
r! = 0.08− 0.06i

p = 1 =⇒ (−1)
p+1

f−p
2,1,2

r!
(r+1−p)! (t− ts)

r+1−p
= 0.1− 0.3i

yp =
(
1 (0.1 + 0.3i) (0.1− 0.3i) t

)
+
(
1 (0.1 + 0.3i) (0.08 + 0.06i)

)
+(

1 (0.08− 0.06i) (0.1− 0.3i)
)

yp = 0.1t− 0.02

The complete solution, Eq. 145, is then compared to the numerical solution obtained
by using the Tsitouras 5/4 Runge-Kutta method [18], Fig. 3.2.2. Both solutions converge
to the same result.

3.3. Discontinuous excitation functions
3.3.1. Particular solution due to unitary impulses - Dirac’s deltas

Consider that the normalized excitation f̄(t) is given by nδ Dirac’s deltas at times tk

f̄(t) =

nδ∑
k=1

ckδ(t− tk), (146)
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Figure 3: Comparison between ramp solutions using Eq. 145 (green) and using the numerical method
[18] (blue).

with coefficients ck ∈ R. Particular solution given by Eq. 108 can be written as

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

exp
(
k̂t
) nδ∑

k=1

ckδ(t− tk) dt

dt,

(147)
or, using the linearity of the integral

yp(t) =

nδ∑
k=1

ck exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)(∫ t

0

exp
(
k̂t
)
δ(t− tk) dt

)
dt.

(148)
The inner integral can be found by using the Filtering property of the Dirac’s delta

( Appendix, Eq. 214), such that∫ t

0

exp
(
k̂t
)
δ(t− tk) dt = exp

(
k̂tk

)
H(t− tk) (149)

where H(t− tk) is the Heaviside function at tk. Thus,

yp(t) =

nδ∑
k=1

ck exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)
exp

(
k̂tk

)
H(t− tk) dt, (150)
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or

yp(t) =

nδ∑
k=1

ck exp
(
−f2,1,2t

)
exp

(
k̂tk

)∫ t

0

exp

((
f2,1,2 − k̂

)
t

)
H(t− tk) dt. (151)

This convolution over a function multiplied by the Heaviside function can be evaluated
splitting the integration domain according to the step function, thus, resulting in a change
of integration limits,

∫ t

0

exp (βt) fk(t)H(t−tk) dt =

∫ tk

0

exp (βt) fk(t)H(t− tk) dt︸ ︷︷ ︸
=0

+

∫ t

tk

exp (βt) fk(t)H(t−tk) dt,

(152)
where β is a generic exponent, such that∫ t

0

exp (βt) fk(t)H(t− tk) dt =

(∫ t

tk

exp (βt) fk(t) dt

)
H(t− tk). (153)

Thus, Eq. 151 can be written as

yp(t) =

nδ∑
k=1

ck exp
(
−f2,1,2t

)
exp

(
k̂tk

)∫ t

tk

exp

((
f2,1,2 − k̂

)
t

)
dt H(t− tk), (154)

or

yp(t) =

nδ∑
k=1

ck

f2,1,2 − k̂

(
exp

(
k̂(tk − t)

)
− exp

(
f2,1,2(tk − t)

))
H(t− tk). (155)

Additionally, for under damped problems, f2,1,2 is complex and k̂ = k̄
f2,1,2

= f∗
2,1,2

(where ∗ stands for complex-conjugate). Thus

yp(t) =

nδ∑
k=1

ck
2iℑ(f2,1,2)

(
ef

∗
2,1,2(tk−t) − ef2,1,2(tk−t)

)
H(t− tk), (156)

or

yp(t) =

nδ∑
k=1

ck
2iℑ(f2,1,2)

eℜ(f2,1,2)(tk−t)
(
e−iℑ(f2,1,2)(tk−t) − eiℑ(f2,1,2)(tk−t)

)
H(t− tk)

(157)
and user Euler’s identity for sin

yp(t) =

nδ∑
k=1

ck
2ℑ(f2,1,2)

eℜ(f2,1,2)(tk−t) sin
(
ℑ(f2,1,2)(t− tk)

)
H(t− tk). (158)

Example with unitary impulse
Consider the problem
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2ÿ(t) + ẏ(t) + 2y(t) = δ(t− 5), (159)

with y(0) = ẏ(0) = 0. The analytical solution is [5]

yp(t) =

{
0 t < 5

2√
15
e

5−t
4 sin

(√
15
4 (t− 5)

)
t ≥ 5

. (160)

From the data, c̄ = 1/2, k̄ = 1, nδ = 1 and t1 = 5. Constant f2,1,2 can be found by
solving Eq. 101 such that f2,1,2 = 0.25 + 0.96824i. Equation 155 reduces to

yp(t) =
1

2(0.96824)i

(
e(0.25−0.9682i)(5−t) − e(0.25+0.96824i)(5−t)

)
H(t− 5) (161)

and, although complex, has negligible complex values, matching the analytical solution.
Alternatively, using Eq. 158

yp(t) =
1

2(0.96824)
e0.25(5−t) sin

(
0.96824(t− 5)

)
H(t− 5) (162)

which is also identical to the analytical solution provided by [5].

3.3.2. Particular solution due to step functions - Heaviside
Let the excitation be defined as a sum of functions fk(t) multiplied by a step functions,

f̄(t) =

nk∑
k=1

fk(t)H(t− tk). (163)

Inserting Eq. 163 into Eq. 108 yields

yp(t) = exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

exp
(
k̂t
) nk∑

k=1

fk(t)H(t− tk) dtdt,

(164)
as integration is a linear operator,

yp(t) =

nk∑
k=1

exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

0

exp
(
k̂t
)
fk(t)H(t− tk) dtdt.

(165)
Using Eq. 153 in Eq. 165 for the inner integral results in

yp(t) =

nk∑
k=1

exp
(
−f2,1,2t

) ∫ t

0

exp

((
f2,1,2 − k̂

)
t

)∫ t

tk

exp
(
k̂t
)
fk(t) dtH(t− tk) dt,

(166)
and for the outer integral
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yp(t) =

nk∑
k=1

exp
(
−f2,1,2t

) ∫ t

tk

exp

((
f2,1,2 − k̂

)
t

)∫ t

tk

exp
(
k̂t
)
fk(t) dtdtH(t− tk).

(167)

Example with Heaviside function
Consider the problem from [5]

ÿ(t) + 4y(t) = f̄(t) =


0, 0 ≤ t < 5
t−5
5 , 5 ≤ t < 10

1, t ≥ 10

ẏ(0) = y(0) = 0, (168)

such that the excitation function can be written as

f̄(t) =
t− 5

5
H(t− 5)− t− 10

5
H(t− 10). (169)

Using Eq. 101

f2,1,2 =
0 +

√
0− 16

2
= 2i (170)

and Eq. 167

yp(t) = e−2it

(∫ t

t

e4it
∫ t

5

e−2it

(
t− 5

5

)
dtdtH(t− 5)+

∫ t

t

e4it
∫ t

5

e−2it

(
10− t

5

)
dtdtH(t− 10)

)
(171)

such that

yp(t) =

(
ie4it +

(
4e10it− 20e10i

)
e2it − ie20i

)
e−2it−10i

80
H(t− 5)+

−

(
ie4it +

(
4e20it− 40e20i

)
e2it − ie40i

)
e−2it−20i

80
H(t− 10). (172)

Figure 4 shows the real part of the solution given by Eq. 172 (the maximum complex
part has a magnitude of 1× 10−18 when Eq. 172 was evaluated). This solution matches
the result given by [5].
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Figure 4: Real part of the solution, Eq. 172, for problem defined in Eq. 168.

4. Further extensions - discrete or hard to convolute excitations

The general solution, Eq. 108, can be used for general as well as some particular
continuous forms of excitation f(t). Nonetheless, sometimes we are interested in using
excitations only known at discrete time steps tk or using some f(t) hard to evaluate
by convolution, although the integral of f(t) itself can be easy to evaluate (at least
numerically). These cases can be addressed by using Heaviside series.

4.1. Heaviside series
Let a function f(t) be approximated as a series of polynomials ck,mtm up to power

nm multiplied by Heaviside step functions at nk discrete time steps tk,

f(t) ≈ f̃(t) =

nk∑
k=0

nm∑
m=0

ck,mtmH (t− tk) . (173)

As the function is essentially approximated by a polynomial of order nm, it is fair to
say that Eq. 173 provides an approximation of order nm for f(t), much like using Taylor
series. Nonetheless, the coefficients of the polynomials are updated according to t, such
that there is no need to center the approximation around a point like in Taylor series.
Thus, the calculation of coefficients ck,m is carried out differently.

The main idea for evaluating the coefficients ck,m is to preserve the integral of the
original function, f(t) and its derivatives at each point tk. Examples with zero, fist
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and second order approximations are presented in the following and provide a glance
at the niche of application of this series representation. The application and advantage
of representing the excitation function as a series of Heaviside steps is shown in Fig.
5, where the use of the integrating factor (and its convolution) is straightforward even
beyond the subspace of excitation functions whose convolution is simply calculated.

Application of
Heaviside series

Ease to
integrate

Discrete
domain

Ease to
convolute

Space of functions 
ℝ  → ℝ
  

Figure 5: Diagram of the extension of the function space covered by the use of Heaviside series rep-
resentation as excitation function, despite the simple convolution of the original excitation with the
exponential function.

The Heaviside series extends the viability of the integrating factor technique to exci-
tation functions that are easy to integrate (inner integration in Eq. 108) but are hard to
convolute. These series also allow the consideration of excitation functions (or distribu-
tions) defined on discrete domains, as summarized in Fig. 5.

4.1.1. Zero order approximation
For zero order approximation, nm = 0, Eq. 173 reduces to

f̃(t) =

nk∑
k=0

ckH (t− tk) . (174)

Using the preservation of the integral of f(t) at each interval t ∈ [tl, tl+1] and the mean
value theorem for integrals

f̃(t) =

l∑
k=0

ck =
1

∆tl

∫ tl+1

tl

f(t) dt, tl ≤ t ≤ tl+1, (175)

where ∆tl = tl+1 − tl. Thus, the l-th coefficient, cl, is evaluated by

cl =
1

∆tl

∫ tl+1

tl

f(t) dt−
l−1∑
k=0

ck. (176)
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4.1.2. First order approximation
For first order approximation, nm = 1, Eq. 173 reduces to

f̃ =

nk∑
k=0

(
ck,0 + ck,1t

)
H (t− tk) . (177)

The approximation at interval t ∈ [tl, tl+1] is given by

f̃(t) =

l∑
k=0

ck,0 +

l∑
k=0

ck,1t = a0,l + a1,lt, tl ≤ t ≤ tl+1. (178)

The slope of this polynomial, a1,l, can be tailored to be equal to

a1,l =
f (tl+1)− f (tl)

∆tl
, (179)

which, by the mean value theorem for derivatives, guarantees that the derivative of
f(t) coincides with the derivative of f̃ at one point within the given interval, at least.
Coefficient a0,l is obtained by∫ tl+1

tl

f̃(t) dt = a0,l∆tl +
a1,l
2

(
t2l+1 − t2l

)
=

∫ tl+1

tl

f(t) dt, (180)

such that,

a0,l =
1

∆tl

∫ tl+1

tl

f(t) dt− a1,l
2∆tl

(
t2l+1 − t2l

)
. (181)

Thus, using Eq. 178, the coefficients are evaluated as

cl,0 =
1

∆tl

∫ tl+1

tl

f(t) dt− a1,l
2∆tl

(
t2l+1 − t2l

)
−

l−1∑
k=0

ck,0 (182)

and

cl,1 =
f (tl+1)− f (tl)

∆tl
−

l−1∑
k=0

ck,1. (183)

4.1.3. Second order approximation
For second order approximation, nm = 2, Eq. 173 reduces to

f̃(t) =

nk∑
k=0

(
ck,0 + ck,1t+ ck,2t

2
)
H (t− tk) . (184)

At interval t ∈ [tl, tl+1] the approximation function is given by

f̃(t) =

l∑
k=0

ck,0 +

l∑
k=0

ck,1t+

l∑
k=0

ck,2t
2 = a0,l + a1,lt+ a2,lt

2, tl ≤ t ≤ tl+1. (185)
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For this order of approximation, the first derivative of the Heaviside series represen-
tation is set to be equal to the derivative of f(t) at the vicinity of each time point tk,
what gives the advantage that the first derivative is smooth, although not defined at
points tk. Thus, the derivative of the representation, f̃ , is continuous in the domain
Ω : (−∞,∞)−{tl}, l ∈ 0, 1, . . . , nk. It is straightforward to observe that, if f is differen-
tiable at tl, tl is an accumulation point and the limit of the derivative of f̃ converges from
both the left and the right sides. These conditions yield a linear system of equations

2a2,ltl+1 + a1,l = ḟ (tl+1) , (186)

and
2a2,ltl + a1,l = ḟ (tl) (187)

whose solutions are the coefficients a1,l and a2,l,

a2,l =
ḟ (tl+1)− ḟ (tl)

2∆tl
, (188)

and
a1,l = ḟ (tl+1)− 2a2,ltl+1. (189)

Using the mean value theorem for integrals, one gets the coefficient a3 to make the
integral of the representation equal to the integral of the represented function at each
point tk. Hence, the integral of the representation is

∫ tl+1

tl

a2t
2 + a1t+ a0 dt =

a2
3

(
t3l+1 − t3l

)
+

a1
2

(
t2l+1 − t2l

)
+ a0 (tl+1 − tl) , (190)

which, comparing to the integral of the represented function, reduces to

a0 =
1

∆tl

∫ tl+1

tl

f(t) dt− 1

∆tl

a2
3

(
t3l+1 − t3l

)
− 1

∆tl

a1
2

(
t2l+1 − t2l

)
. (191)

Turning these equations in terms of ck,j yields

cl,2 =
ḟ (tl+1)− ḟ (tl)

2∆tl
−

l−1∑
k=0

ck,2, (192)

cl,1 = ḟ (tl+1)− 2a2,ltl+1 −
l−1∑
k=0

ck,1 (193)

and

cl,0 =
1

∆tl

∫ tl+1

tl

f(t) dt− 1

∆tl

a2
3

(
t3l+1 − t3l

)
− 1

∆tl

a1
2

(
t2l+1 − t2l

)
−

l−1∑
k=0

ck,0. (194)
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4.2. Heaviside series as excitation function
Let the approximation function, f̃ , of Subsec. 4.1.1, 4.1.2 and 4.1.3, be used as

excitation functions for for ordinary second order differential equations with constant
coefficients. Let the order of the approximation be equal to nlk,

f̃ =

nk∑
k=0

nlk∑
l=0

ck,lt
lH (t− tk) . (195)

Thus, applying Eq. 195 in Eq. 167 and using the linearity of the integration operator
yields

yp(t) =

nk∑
k=1

nlk∑
l=0

exp
(
−f2,1,2t

) ∫ t

tk

exp

((
f2,1,2 − k̂

)
t

)∫ t

tk

exp
(
k̂t
)
ck,lt

l dtdtH(t− tk).

(196)
The inner convolution is evaluated by using Eq. 137

yp(t) =

nk∑
k=1

nlk∑
l=0

ck,l exp
(
−f2,1,2t

) ∫ t

tk

exp

((
f2,1,2 − k̂

)
t

) l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
ts exp

(
k̂t
)

−
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk exp

(
k̂tk

) dtH(t− tk),(197)

where s = l − p+ 1. The integral of the outer convolution is split among its integrands,

yp(t) =

nk∑
k=1

nlk∑
l=0

ck,l exp
(
−f2,1,2t

)∫ t

tk

exp
(
f2,1,2t

) l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
ts dt

−
∫ t

tk

exp
(
f2,1,2t− k̂ (tk − t)

) l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk dt

 H(t− tk). (198)

Taking the constant terms out of the integrals

yp(t) =

nk∑
k=1

nlk∑
l=0

ck,l exp
(
−f2,1,2t

) l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!

∫ t

tk

exp
(
f2,1,2t

)
ts dt

−
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk

∫ t

tk

exp
(
f2,1,2t− k̂ (tk − t)

)
dt

 H(t− tk), (199)

which has, then, the first convolution evaluated again using Eq. 137, and the second
convolution evaluated by simple integration,
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yp(t) =

nk∑
k=1

H(t− tk)

nlk∑
l=0

ck,l exp
(
−f2,1,2t

)
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!


s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q

(s)!

(s+ 1− q)!
ts+1−q exp

(
f2,1,2t

)
−

s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q
s!

(s+ 1− q)!
ts+1−q
k exp

(
f2,1,2tk

)−

l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk

exp
(
f2,1,2t+ k̂ (tk − t)

)
− exp

f2,1,2tk + k̂ (tk − tk)︸ ︷︷ ︸
0


 1

f2,1,2 − k̂

 .(200)

Rearranging the terms

yp(t) =

nk∑
k=1

H(t− tk)

nlk∑
l=0

ck,l




l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!

s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q

s!

(s+ 1− q)!
ts+1−q

}
+ exp

(
f2,1,2 (tk − t)

) 1

f2,1,2 − k̂

l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk

−
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!

s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q
s!

(s+ 1− q)!
ts+1−q
k


− exp

(
k̂ (tk − t)

)( 1

f2,1,2 − k̂

)
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk

 , (201)

which, with further simplification, can be written as

yp(t) =

nk∑
k=1

H(t− tk)

nlk∑
l=0

ck,l




l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!

s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q

s!

(s+ 1− q)!
ts+1−q

}
+ exp

(
f2,1,2 (tk − t)

)
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!

{
tsk

f2,1,2 − k̂

−
s+1∑
q=1

(−1)q+1

(
1

f2,1,2

)q
s!

(s+ 1− q)!
ts+1−q
k




− exp
(
k̂ (tk − t)

)( 1

f2,1,2 − k̂

)
l+1∑
p=1

(−1)p+1
(
k̂
)−p l!

s!
tsk

 . (202)
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4.2.1. Initial conditions and the Heaviside series
Let a second order ordinary differential equation have a function f̄(t) multiplied by

a Heaviside step as excitation function,

ÿ(t) + c̄ẏ(t) + k̄y(t) = f̄(t)H (t− t0) , (203)

which is the same as solving two differential equations,{
ÿ1(t) + c̄ẏ1(t) + k̄y1(t) = 0, if t ≤ t0

ÿ2(t) + c̄ẏ2(t) + k̄y2(t) = f̄(t). otherwise
, (204)

At t0, the initial conditions of y2 must be equal to the values of y1 and its derivative at
this point, i.e., y1 (t0) = y2 (t0) and ẏ1 (t0) = ẏ2 (t0). As there is no excitation before t0
and a purely particular solution is sought after, the solution between t = 0 and t = t0 is
y1(t) = 0 and, consequently ẏ1(t) = 0. Thus, it follows that y2(t0) = 0 and ẏ2(t0) = 0.
This phenomenon is illustrated in Fig. 6.

Figure 6: Solution of a linear second order differential equation with constant coefficients due to unitary
Heaviside step at t0 as excitation function (under damped case).

It is straightforward that this holds true even when t0 → 0. Therefore, all solutions
given by Eq. 202, i.e. using Heaviside series as excitation function, have yp(t) = 0 and
ẏp(t) = 0 as fixed initial conditions. Thus, the imposition of non-homogeneous initial
conditions, y (tin) and ẏ (tin), at tin ≤ t0 gets even simpler, through the following system
of linear equations,
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 exp
(
−f2,1,2tin

)
exp

(
−k̂tin

)
−f2,1,2 exp

(
−f2,1,2tin

)
−k̂ exp

(
−k̂tin

)
{C1

C2

}
=

{
y (tin)
ẏ (tin)

}
, (205)

which, particularized for tin = 0, simplifies to

[
1 1

−f2,1,2 −k̂

]{
C1

C2

}
=

{
y (0)
ẏ (0)

}
, (206)

whose solution is

C2 =
ẏ(0) + f2,1,2y(0)

f2,1,2 − k̂
, (207)

C1 = y(0)− C2. (208)

Thus, the constants C1 and C2 can be evaluated without any knowledge about the
derivative of the particular response.

4.2.2. Examples
The following second order differential equation with constant coefficients is used to

show the use of Heaviside series as excitation function

ÿ(t) + 2ẏ(t) + 10y(t) = f(t). (209)

The periodic excitation was first addressed to compare the analytical solution (Subsub-
sec. 3.2.1) with a solution using Heaviside series representation as excitation function.
Then, an example using a random (Gaussian-distribution) was evaluated. The objective
of the first example, beside comparing the representation with a purely analytical solu-
tion, is to show a common case of excitation in Engineering and Applied Mathematics,
but without representing the periodic signal as Fourier series. The objective of the second
example is to show the usage of Heaviside series representation when there is no explicit
formula for the excitation function.

Example I: Let the excitation function f(t) = sin(4t) be represented by Heaviside
series with four fixed ∆t: 0.2s, 0.4s, 0.6s and 0.8s. Figure 7 shows the original excitation
function with blue cross symbols and four different zero order approximations, one for
each ∆t. Figures 8 and 9 do the same but for first and second order approximations,
respectively.

One may observe that the zero order approximation represents the function rather
poorly and, thus, needs even smaller steps of time. Quadratic approximation takes the
best shape, with smoother corners, but gets out of phase and reduces its amplitude
prematurely, much like what happens with zero order approximation. The odd behavior
observed in the second order approximation is due to Eq. 188, since for large ∆t the
approximation enforces two very different slopes in the same interval. The amplitude
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of the linear approximation proved to be less vulnerable to the increase of ∆t in this
example.

Figure 10 shows the solution obtained with Eq. 202 due to excitation of zero order
approximation of the sine function. Again, the same four different ∆t were tested, and
the solution using Eq. 202 was compared to the solution due to harmonic (Eq. 117)
excitation with initial conditions of y(0) = ẏ(0) = 0. Figure 11 and Figure 12 show the
same procedure with first and second order approximations, respectively.

It is straightforward to see that the zero order approximation performed worst, losing
amplitude even for small ∆t. The second order approximation yielded slightly better
results, but out of phase for ∆t = 0.8, as expected. Solutions obtained by using the first
order for ∆t 0.2s and 0.4s matches the result given by Eq. 117. It is also perceptible
that the loss of amplitude is not linearly dependent to the increase of ∆t, as the rate of
decay of amplitude grows with the increase in ∆t.

It is worth noticing that the analytical solutions obtained herein are not dependent
on ∆t. The dependence only appears when using the Heaviside series representation for
f̄(t). In this case, one can compare the dependence of the solution with respect to ∆t
with traditional numerical integration methods, like the Newmark-Beta, for example. In
such case, even when using an unconditionally stable integration methods, there are some
constraints on ∆t to avoid aliasing. In the example studied in this section, the smaller
period associated to the loading is π/2 seconds, such that ∆t < 0.15s (preferable less)
are to be used to obtain a good representation of the response [11].

Figure 7: Comparison between the original excitation function (blue) and the representations using
Heaviside series, f̃(t), using zero order approximation with different discretizations.
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Figure 8: Comparison between the original excitation function (blue) and the representations using
Heaviside series, f̃(t), using first order approximation.

Example II
A set of randomly generated points, obtained by using a Gaussian distribution, is

used as the excitation function in this example. Figure 13 shows the random points as
blue crosses and the zero order approximation. Figure 14 also shows the random points
and the linear approximation.

The second order approximation cannot be used in this example, since there is no
information about the derivative of the original excitation function. Constants a for the
approximations are evaluated by using the mean value theorem for integrals. Thereby,
the integral for a discrete set of points is taken using trapezoid rule between each adjacent
pair of points. Consequently, the step ∆t is equal to the time between two subsequent
points.

Figure 13 shows the comparison of the solution obtained by using first order approxi-
mation by Heaviside series, ỹH1(t), by using zero first order approximation by Heaviside
series, ỹH0(t) and by using the Tsitouras 5/4 Runge-Kutta method [18] with linear in-
terpolation for f(t). A total of 91 time steps were needed for the Tsitouras method to
match the solution obtained by using the first order Heaviside series (50 points). Solution
obtained with the zero order Heaviside series (red) show some discrepancies with respect
to the amplitude at most of the peaks.
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Figure 9: Comparison between the original excitation function (blue) and the representations using
Heaviside series, f̃(t), using second order approximation.
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Figure 10: Comparison between the solutions of the differential equation using the original excitation
function (blue), and the solutions with Heaviside series as excitation function, ỹ, using zero order ap-
proximation.
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Figure 11: Comparison between the solutions of the differential equation using the original excitation
function (blue), and the solutions with Heaviside series as excitation function, ỹ, using first order ap-
proximation.
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Figure 12: Comparison between the solutions of the differential equation using the original excitation
function (blue), and the solutions with Heaviside series as excitation function, ỹ, using second order
approximation.
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Figure 13: Comparison between the original excitation function (blue) and the representations using
Heaviside series, f̃(t), using zero order approximation with ∆t = 0.2s.
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Figure 14: Comparison between the original excitation function (blue) and the representations using
Heaviside series, f̃(t), using first order approximation with ∆t = 0.2s.
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Figure 15: Solution of the differential equation using first order approximation Heaviside series excitation,
ỹH1(t) (green line), using zero order approximation Heaviside series excitation, ỹH0(t) (red line), and
using a numerical solver, yTsit5(t) (blue dotted line).
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5. Conclusion

This work proposes a new technique to solve one dimensional linear ordinary differ-
ential equations of order n ≥ 2 by a generalization of the Leibniz integrating factor for
first order linear differential equations.

The methodology was applied to second-order ordinary differential equation, since
this type of ODE is of great importance in Applied Mathematics, Physics and Engi-
neering. Special care was devoted to the constant coefficient case for different types of
excitations. Various analytical excitation functions yielded analytical solutions in closed
form, like periodic and polynomial functions. Closed form solutions were also obtained
for discontinuous excitation, as for Dirac’s delta impulse and Heaviside step function.
The Heaviside case was particularized for steps multiplied by polynomials, enlarging the
range of applications with analytical solutions. In contrast to previous and well estab-
lished methods, like undetermined coefficients and Laplace transform, no knowledge of
a candidate solution nor the calculation of a inverse transformation was needed. The
solution was instead analytically derived by means of double convolutions.

The Heaviside series representation was derived by using the closed form solution
obtained for Heaviside excitation multiplied by polynomials. Examples showed the ef-
fectiveness of representing a function as a series of Heaviside steps, thus, augmenting the
set of excitation functions solved within the generalized integrating factor method. A
discussion about the discretization of the series was performed and shed light about the
advantages of the proposed methodology compared to numerical alternatives, due to size
of discretization, representation capability and the use of analytical solutions.

For differential equations with general coefficients, the integrating factor depends on
a particular solution of a Riccati differential equation. It was shown that the coefficients
themselves might help finding a particular solution rather easily. Thus, the Riccati
differential equation poses no strictly direct barrier to the wide application of the method,
capable of giving accurate results and requiring no assumptions of solution candidates.
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Appendix - Convolution over Dirac’s delta distribution

The convolution of a function over a delta of Dirac is usually defined as [13]∫ ∞

−∞
f(t)δ (t− tk) dt = f (tk) . (210)

The integration limits can be split as

∫ ∞

−∞
f(t)δ (t− tk) dt =

∫ 0

−∞
f(t)δ (t− tk) dt+

∫ t

0

f(t)δ (t− tk) dt+

∫ ∞

t

f(t)δ (t− tk) dt,

(211)
for tk strictly positive, the integral from −∞ to 0 is 0 by definition, thus, the integral
from 0 to t can be rewritten as∫ t

0

f(t)δ (t− tk) dt =

∫ ∞

−∞
f(t)δ (t− tk) dt−

∫ ∞

t

f(t)δ (t− tk) dt. (212)

The filter or sifting property of the delta of Dirac is due to the shape of this dis-
tribution, i.e., it is null everywhere except in its discontinuity, thus, the function that
multiplies the Dirac’s delta is constant at this point, for the discontinuity of the delta
distribution is infinitely close to the tk point. Therefore, the value of the function can
be taken out of the integral and the definition of the Dirac’s delta is used to show that

∫ ∞

−∞
f(t)δ (t− tk) dt =

∫ tk+τ

tk−τ

f(t)δ (t− tk) dt = f(tk)

∫ tk+τ

tk−τ

δ (t− tk) dt = f(tk),

(213)
hence, Equation 212 can be rewritten to∫ t

0

f(t)δ (t− tk) dt = f(tk)− f(tk)

{
0, t ≥ tk

1, t < tk
= f(tk)H(t− tk). (214)

References

[1] Exactness of second order ordinary differential equations and integrating factors. Jordan Journal
of Mathematics and Statistic, 8(2):155–167, 2015.

[2] Barbara Abraham-Shrauner. Hidden symmetries, first integrals and reduction of order of nonlinear
ordinary differential equations. Journal of Nonlinear Mathematical Physics, 9(sup2):1–9, 2002.

[3] SC Anco and G Bluman. Erratum: Integrating factors and first integrals for ordinary differential
equations. European Journal of Applied Mathematics, 10(2):223–223, 1999.

[4] Stephen C Anco and George Bluman. Integrating factors and first integrals for ordinary differential
equations. European Journal of Applied Mathematics, 9(3):245–259, 1998.

[5] W.E. Boyce and R.C. Diprima. Elementary Differential Equations and Boundary Value Problems.
7th Edition. John Wiley & Sons, New York, 2001.

[6] J. G. Campbell and Michael Golomb. On the polynomial solutions of a riccati equation. The
American Mathematical Monthly, 61(6):402–404, 1954.

[7] E.S. Cheb-Terrab and A.D. Roche. Integrating factors for second-order odes. Journal of Symbolic
Computation, 27(5):501–519, 1999.

[8] Luís Henrique De Santana and José Rafael Santos Furlanetto. Pólya’s looking back: An example
with leibniz’s integrating factor and second order linear differential equations. SBMAC, February
2018.

43



[9] Gemechis File and Tesfaye Aga. Numerical solution of quadratic riccati differential equations.
Egyptian Journal of Basic and Applied Sciences, 3(4):392–397, 2016.

[10] Tiberiu Harko, Francisco S. N. Lobo, and M K Mak. Analytical solutions of the riccati equation
with coefficients satisfying integral or differential conditions with arbitrary functions. Univers. J.
Appl. Math., 2(2):109–118, February 2014.

[11] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover Civil and Mechanical Engineering. Dover Publications, 2000.

[12] Nail H Ibragimov. Integrating factors, adjoint equations and lagrangians. Journal of Mathematical
Analysis and Applications, 318(2):742–757, 2006.

[13] R.P. Kanwal. Generalized Functions: Theory and Applications. Birkhäuser Boston, 2011.
[14] C Muriel and J L Romero. First integrals, integrating factors and -symmetries of second-order

differential equations. Journal of Physics A: Mathematical and Theoretical, 42(36):365207, aug
2009.

[15] C. MURIEL and J. L. ROMERO. Second-order ordinary differential equations and first integrals
of the form a(t, x) + b(t, x). Journal of Nonlinear Mathematical Physics, 16(sup1):209–222, 2009.

[16] Z. Navickas, M. Ragulskis, R. Marcinkevicius, and T. Telksnys. Kink solitary solutions to generalized
riccati equations with polynomial coefficients. Journal of Mathematical Analysis and Applications,
448(1):156–170, 2017.

[17] S.S. Rao. Mechanical Vibrations. Pearson Education, Incorporated, 2017.
[18] Ch. Tsitouras. Runge–kutta pairs of order 5(4) satisfying only the first column simplifying assump-

tion. Computers & Mathematics with Applications, 62(2):770–775, 2011.

44


