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Abstract: We present both an overview and a perspective of recent experimental advances and
proposed new approaches to performing computation using memristors. A memristor is a 2-port
passive resistive component and in which its resistance evolves dynamically and depends on an
internal parameter. This review is meant to guide nonpractitioners in the field of memristive circuits
and their connection to machine learning and neural computation.
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1. Introduction

The present review aims at providing a structured view over the many ares in which memristor
technology is becoming popular. As many other hyped topics, there is a risk that most of the activity
we see today will disipate into smoke in the coming years. Hence we have carefully slected a set of
topics in which we have experience and we believe will remina relevant when memristors move out of
the spotlight. After a general overview on memristors, we provde a historical overview of the topic.
Next, we present an intuitive and a mathematical view on the topic, which we bleieve is needed to
understand why anybody would consider alternative forms of computation. Thus, experts in the fields
might find this article slow-paced.

A memristor is a resistive component in which the resistance depends on the history of the
applied inputs: voltage or current. Different curves of the applied input elicit a different dnyamic
response and final resistance of the memristor. In addition, if we remove the input after certain time,
thne leave the component alone, and come back to use it, the device will resume its operation from a
resistance very simoilar to the one in which we left it; that is, they act as non-volatiel memories. The
interplay between the response behavior and the non-volatility of the device defines its usability either
as a storage device or for more involved purposes such as neuromorphic computing. The article will
gravitate around the fact that memristors are electronic components which behave similarly to human
neuronal cells, and are an alternative building block for neuromorphic chips. Memristors, unlike other
proposed components with neural behavior, can perform computation without requiring CMOS if not
for readout reasons.

After the experimental realization of a memristor by Strukov et al., which brought them to
their current popularity, Leon Chua wrote a article titled "If it’s pinched it’s a memristor" [2]. The
title refers to the fact that the voltage drop across the device is proportional to the current flowing
through it, but that shows an hysteresis loop when controlled with a sinusoidal voltage. That is, the
proportionality forces the hysteresis loop to be pinched when the current is zero. The claim in Chua is
that a device which satisfies these two properties (plus a third one described in section 3), then the
device must necessarily be a memristor. Chua also proved that such a device cannot be obtained from
the combination of nonlinear capacitors, inductors and resistors [2–4]. It has been shown, however,
that this property is a modeling deficiency for redox-based resistive switches [5].

Resistive switching was of interest even before the 2008 article. For instance the review of Waser
and Aono shows that Titanium Dioxide had been in the radar for non-volatile memories for decades.
Nevertheless one can identify a clear explosion of interest after the 2008 publication. In Table 1 we
mentioned a list of established and new companies working to develop memristors technology using
a variety of compounds. The table also contains two recent companies working on Resistive memory
(ReRAM, RRAM) and Phase-Change-Material (PCM) type of materials.

Table 1. A non-exhaustive list of companies using oxide materials to produce resistive switches.

HP, Hynix TiOx
IBM SrTiOx

IMEC, Fujitsu, Samsung NiOx
SMIC CuSiOx

Sharp, TSMC TiOn
NEC, Panasonic TaOx

Macromix WOx
Crossbar Inc. ReRam

Qimonda, Ovonyx, Samsung, IBM, Intel, Hynix, KnowM PCM type

Going into the many physical mechanisms that make a memristive device work does require a
deep knowledge of material properties. For example, the histeretic behavior can be cause by Joule
heating, as shown in an example taken from macroscopic granular materials [7]. Also, hysteresis is
a phenomenon which is common in nanoscale devices and it can be derived using Kubo response
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theory [8]. Kubo response theory allows calculating the correction to the resistance induced by a time
dependent perturbation: this is the formal framework to address resistive switching due to either
electrical, thermal or mechanical stresses in the material. We can classify physical mechanisms that
lead to memristive behavior in electronic components in four main types:

• Structural changes in the material (PCM like): in these material the current or the applied voltage
trigger a phase transition between two different resistive states;

• Resistance changes due to thermal or electric excitation of electrons in the conduction bands
(anionic): in these devices the resistive switching is due to either thermally or electrically induced
hopping of the charge carriers in the conducting band;

• Electrochemical filament growth mechanism: in these materials the applied voltage induces
filament growth from the anode to the catode of the device, thur reducing or increasing the
resistance;

• Spin-torque: the resistance change is induced via the giant magnetoresistance switching due to
a change in alignment of the spins at the interface between two differently polarized magnetic
materials.

These mechanisms above are truly different in nature, and whilst not the only ones considered in the
literature, are the most common ones. We provide a technical introduction to these mechanisms in
Appendix A for completeness. We also suggest the reviews of the subject of resistive switching given
in [9–12].

The primary application of memristors, as we will shown in this article, is towards neuromorphic
computing. The word neuromorphic was coined by Carver Mead [13] to describe analog circuits which
can mimic the behavior of biological neurons. In the past years the field has experienced an explosive
development in terms of manufacturing neuromorphic novel chip architectures, which can reproduce
the behavior of certain parts of the brain circuitry. Among the components used in neuromorphic
circuits we consider the memristor whose behavior resembles the one of a certain type of neurons.
The analogies between biological neuronal systems and electronic circuits are manifold: conservation
of charge, thresholding behavior, integration to mention jus a few. For instance, diffusion of calcium
across the membrane can be mapped to diffusion in electronic components, and a computational role
associated to the circuit design. Also, it is known that the brain is power efficient: roughly twenty
percent of an individual’s energy is spent on brain activity, and this is roughly around 10 watts. Besides
their role in biological neural models (section 6), we also discuss theoretical approaches to memristive
circuits and their connection to machine learning (section 4 and 5).

The connection to machine learning is complemented with an overview on analog computation
(section 5.1). Historically, the very first (known) computer was analog. It dates (approximately) 2100
years old, and it has been found in a shipwreck off the cost of the island of Antikythera at the beginning
of the past century [14] (only recently it has been understood as a model of planet motion). Despite
our roots in analog computation, our era is dominated by digital computers. Digital computers have
been extremely useful at performing several important tasks in computation. We foresee that future
computers will likely be a combination of analog (or quantum analog) and digital (or quantum digital)
computing chips. At the classical level, several analog computing systems have been proposed. Insofar,
most of the proposed architectures are based on biological systems, whose integration with CMOS
can be challenging, and this is the reason why analog electronic components are seen as promising
alternatives [15,16].

Digital computation has been dominated by the von Neumann architecture in combination with
CMOS technology. Within this architecture we find two types of memory: Random Access Memory
(RAM), a volatile and quick memory in which computation is performed, and non-volatile Hard-Disk
(HD) for storage of long term information. The neat separation between memory (RAM and HD) and
computing (the processors or CPU) is a key features of computation using von Neumann architecture.
It requieres that the data is split into packets, transfer to the CPU where computation is performed,
and then repeat until the full computation task has been completed. As far as our understading goes,
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this separation is not present in the brain, in which memeory and processing happen within the same
units. Several proposed architectures that mimic this have been proposed, most of them based on
memristors [17]. This type of computation is referred to as memcomputing.

This article is organized as follows. We first provide a historical introduction to memristors, as it
is understood by the authors (sec. 2). We then provide the key ideas behind the technology with simple
mathematical models (sec. 3). Albeit separated from the main text, we have provided an introduction
to the main technology and physical principles underlying memristors in the Appendices A. We
then focus our gaze on the description and use of memristors both for data storage (sec. 4) and data
processing (sec. 5): the former is the current target for marketing the technology, the second is believed
to be the main application of memristors in the long run. The similarity between memristors and
neurons allows the implementation of machine learning on chip via Memristor/FPGA interfaces using
crossbar arrays, we cover this topic in section 4.1. We have dedicated section 5.1 to overview the
fundamental topic of analog computation, followed by a brief recapitulation of machine learning
techniques that can be seamlessly used with memeristors (sec. 5.2- 5.3). We close the article with some
remarks that should help in the discussion of the topics covered.

2. Brief history of memristors

The earliest known occurrence of a “memristive" behavior in circuit components is in the study,
by Sir Humprey Davy’s, of arc (carbon) lamps [18], dated to the late 19th century. Another example,
which was key to the discovery of the radio, is the coherer [19,20]. The coherer was invented by
Branly [21] after the studies of Calzecchi-Onesti, and inspired Marconi’s radio receiver [22]. Branly’s
coherer serves as perfect homemade memristor [7], as it simply requires either a (fine) metallic filling or
some metallic beads, and it falls within the Physics discipline of electrical properties of granular media.
Coherers are very sensitive to magnetic fields, and thus can act as a radio receiver and as we describe
in the Appendix A, they do posses a typical hysteric behavior which is associated with memristive
components. At the simplest level of abstraction, a memristor is a very peculiar type of nonlinear
resistance with an hysteresis (e.g. they possess an internal memory). Currently, the discussion is
focused not only on the application of this technology to novel computation and memory storage, but
also on the fundamental role of memristors in circuit theory [23]. While this discussion is important,
let us see first discuss why memristive behavior is not uncommon in analog computation. We thus use
the analog of hydraulic computers.

Hydraulic computers were built in Russia during the 1930s before valves and semiconductor
were invented. The hydraulic computers designed by the Russian scientist Vladimir Lukyanov were
used to solve differential equations (Fig. 1); other models like MONIAC [24], would be later employed
by the Bank of England to perform economic forecasts.

Figure 1. Lukyanov’s hydraulic computer or water integrator. Picture from Moscow Polytechnical
Museum.
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The idea behind these computers was to use hyrdraulics to solve differential equations. As
Kirchhoff laws can be stated for any conservative field, we have that the pressure drop in a loop is
equal to the actions of pumps in that loop. The conservation of mass is equivalent to conservation of
charge, and to Kirchhoff’s second law: in the steady state, the the mass of water entering a node must
be equal to the mass flowing out. Ohm’s law is equivalent to Poiseuille’s law in the pipes: a porous
material in the pipes, or a constriction, is equivalent to a resistance. A material that expands when
wet, like a sponge, will increase the resistance to the flow as it absorbs the water. This is equivalent
to a higher resistance which depends on the amount of water that flowed thought the system, i.e.
memristor-like. The sponge, however, does not have a polarity, while memristor do depending on
the physical mechanism which induces the switching. Other memristor-like systems can be built with
other mechanical analogs [25,26], plants and potato tubes [27] or slime moulds [28,29] just to name a
few.

The modern history of memristors is tied to the work of Leon Chua. The first time the word
memristor (as an abbreviation for memory resistor) appeared was in the now celebrated Chua 1971
article [3]. During the 1960’s, Leon Chua worked extensively on the mathematical foundations of
nonlinear circuits. When he moved to Berkeley, where he currently is a Professor, he had already won
several awards such as the IEEE Kirchhoff Award. The definition of memristor was made clearer in
a second paper with his student at the time, Sung Mo Kang [4]. The second work was an important
generalization of the notion of memristor and is the one we used in the present paper. Chua and
Kang introduced the notion of ’memristive device’: a resistance which depends on a state variable (or
variables), which is sufficient to describe the physical state (resistance) of the device at any time. The
component defined by Chua, and then Chua and Kang, is a resistance whose value depends on some
internal parameter, which in turn has to evolve dynamically according either to current and voltage.
Implicitly, one needs to also define the relationship between the resistance and the state variable, which
characterizes the device resistance. In the analogy above with hydraulic computers, the state variable
represents by the density of holes in the sponge as a function of time, while the resistance is the amount
of traversable area. The 1976 and the 1971 papers were mostly mathematical and formal, without any
connection to the physical properties of a real device. The 1976 paper also introduced the fact that if
one controls the device with a sinusoidal voltage, then one should observe Lissajous figures in the
current-voltage (I-V) diagram of the device. It also established that any electronic component that
displayed a pinched hysteresis in the I-V diagram has to be a memristor. The eager reader will find
more details on the devices in the rest of the paper.

Over 30 years after the work by Chua and Kang, the field of memristors was basically non-existent.
Strukov, Williams and collaborators, working at Hewlett-Packard Labs were studying on oxide
materials and resistive switching. The physics of resistive switching was known since the early
’70s, with the introduction of Phase-Change Materials. The physical origin of resistive switching was
well studied, albeit not fully understood [6,30,31]. The idea that memristors could be experimentally
realized became popular with the article of Strukov et al. at HP Labs. Before, the word memristor was
confined to the theoretical predictions put forward by Chua, and by Chua and Sung Mo Kang, and
the subject remained basically a mathematical exercise for almost 40 years, until the HP group realized
that Titanium Dioxide components could fit the definition of memristors.

3. Mathematical models of memristors

In this section, we provide a general mathematical description of memristive systems followed
by the details of the memristor model with linear memroy dynamics proposed by Strukov et al.. The
latter is one of the simples memristors models that captures the behaviors relevant for technological
applications of memristive systems.

The fundamental 2-port passive electric components are the resistors, capacitors and inductors.
These components couple the voltage difference v applied between their ports with the current i
flowing through, with the following differential relationships:
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Resistor: dv = R di;

Capacitor: dq = C dv, dq = i dt;

Inductor: dΦ = L dv, dΦ = v dt.

(1)

These relations introduce the resistance R, the capacitance C, and the inductance L. The memristor
was initially and abstractly formulated as the relationship:

dΦ = M dq, (2)

which, in order to be invertible, must have M defined either in terms of Φ, or q, or it must be a
constant. The latter case coincides with the resistor, while if M is defined in terms of Φ, then we have a
voltage-controlled memristor; if it is defined in terms of q it is a current-controlled memristor. The units
of the coupling M are Ohms, as can be seen by the units of the quantities it relates. This latter fact and
its definition, justify the qualifier of nonlinear resistor. However, accoridng to Chua [2], only nonlinear
resistor fullfiling three specific requirements are classified as memristors. The three requirements are
stated as properties of the current-voltage (I −V) diagram that is observed experimentally when the
device is controlled with a sinuisoidal voltage at a certain frequency. As mentioned in the introduction,
the first is a pinched hysteris loop, i.e. V = 0 → I = 0. The second is that as the frequency of the
driving signal increases then correlation coefficient of the I−V curve decreases. The third requirement
is the recovery of pure resistance (no hysteresis) for high frequencies. If we plot I(t) vs V(t), the
diagram is the celebrated pinched hysteresis loop which only memristor satisfy. An example is shown
in Fig. 2.

Many systems, not necessarily electric ones, can fulfill all these properties. Physical systems with
memristor-like behavior are denominated memristive systems, and are described by the following
nonautonomous (input-driven) dynamical system,

dx
dt

= F(x, u),

y = H(x, u)u,
(3)

where x is a vector of internal states, y a measured scalar quantity and u a scalar magnitude controlling
the system. The pair (y, u) is usually voltage-current or current-voltage, hence the second equation is
simply Ohm’s law for the voltage-current relationship. In the first case (current controlled system) the
function H(x, u) is the called memristance, and it is called memductance in the second case (voltage
controlled). The function H(x, u) is assumed to be continuous, bounded and of constant sign, leading
to the zero-crossing property or pinched hysteresis: u = 0⇒ y = 0. The states x can be many physical
states other than charge, e.g. the internal temperature of a granular material. The minimum number of
internal states on which H(x, u) depends is called the order of the memristive system.

Among the class of memristive systems the model proposed by Strukov et al. is appealing due to
its simplicity. This model, shown in eqns. (4)-(5) captures the basic properties of memristors that are
relevant for understanding of the device and for its technological applications. Eqns. (4)-(5) model the
behavior of a current-controlled Titanium Dioxide memristor [1], also known as the HP-memristor:

dw(t)
dt

= αw(t)− 1
β

I(t), (4)

V(t)
I(t)

= R (w(t)) := Ron [1− w(t)] + Roffw(t) (5)

w(0) = w0 → R(w0) = R0, 0 ≤ w(t) ≤ 1, (6)
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Figure 2. Pinched hysteresis loop of a HP-memristor. The parameters of the model are α = 0,
β = 0.3 mA, Ron = 1 kΩ and Roff = 6 kΩ. The driving voltage is V(t) = sin(2π f t) with f taking
several values. We see that for increasing frequencies the hysteresis is reduced, eventually converging
to a line (resistor). The loop slope (dashed lines) decreases with increasing frequency.

where I(t) is the current flowing in the device at time t. The quantities Ron ≤ Roff in the parametrization
of the resistance R in terms of the adimensional variable w(t) (called memory), define the two limiting
resistances. The parameters α and β, adimensional and dimensional respectively, define the dynamic
properties of the memristor. The parameter α ≥ 0, sometimes called volatility, indicates how fast the
resistance drifts towards Roff in the absence of currents. Since the resistance function depends on a
single state w the model is of first order. Albeit this model has several drawbacks when it comes to
its connection to the physical behavior of ion migration in the conductor [8,23,25,32–35], it will be the
reference for most derivations and discussions in this article.

We begin with the case with α = 0, i.e. a non-volatile memristor. We solve the system of equations
above using a driving voltage V(t) which is such that for all times 0 < w(t) < 1, i.e. the memristor
should not saturate at any time, e.g. with a zero mean small amplitude V(t) [36]:

R (w(t))
d
dt

w(t) =
d
dt

(
(Roff − Ron)

1
2

w2(t) + Ronw(t)
)
= −V(t), (7)

from which we derive, if we define ξ = Roff−Ron
Ron

and integrate over time:(
ξ

2
w2(t) + w(t)

)
=

(
ξ

2
w2(t0) + w(t0)

)
+
∫ t

0
V(τ)dτ, , (8)

which solution is given by

w(t) =

√
2
(

ξ
2 w2(t0) + w(t0) +

∫ t
0 V(τ)dτ

)
ξ + 1− 1

ξ
. (9)

This equation fulfills the three properties defining a memristor: it has the zero crossing property,
the loop tilts to the right when we increase the frequency of the driving signal, and the loop becomes a
line for high frequencies. To see the latter consider V(t) = V0 cos (ωt), as the frequency ω → ∞. For
this voltage the integral in eq. (8) goes to 0, and w(t)→ w(t0). This implies a constant resistance, i.e.
the memristor becomes a resistor for high frequencies.

In this model, we have that w(t) ∼ q(t), where q(t) is the charge in the conductor. For a titanium
dioxide thin film, it was shown in [1] that
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β−1 ∼ µeRon

D
, (10)

and thus

R(q) ≈ Roff

(
1− µeRon

D2 q
)

. (11)

Where µe is the electron mobility in the film, Roff is the resistance of the undoped material (for instance
titanium oxides, ∼ 100 Ω), and D is a characteristic length of the film. From the micrometer to the
nanometer the value of β grows by a factor of 106, which is why the memristance in this material is a
nanoscale effect.

Memristors are also referred to as resistive switches, because if Roff
Ron
� 1, and β is small enough,

the memristor can be quickly driven from one state to the other via a current inversion. The operation
is often referred to a SET or RESET in the technical literature, depending on the operation one is
interested in, and it allows the use of memristors as bits.

In the volatile case, i.e. α > 0, the memristor does not retain its memory state. When a volatile
memristor is not activated via an external forcing, the memristor drifts to its insulating phase, R(t =
∞) = Roff. That is, if I(t) = 0, then the internal memory is simply given by w(t) = w0eαt. This
behavior was first experimentally observed in [37]. Volatility is discussed again in Section 5.4.

The numerical model of the memristor allows us to study their theoretical capabilities as well
as simulating large networks of these devices. From the point of view of numerical simulations, the
dynamics at the boundaries of w need to be stable, or alternatively, w be constrained in [0, 1]. In general
the latter does not scale well in terms of runtime, and for this reason it is often useful to bound the
internal states of the memristor model via the introduction of window functions [1,38–43]. Since we are
not aware of systematic validations of windowing functions with real devices, we believe they should
be considered tricks useful for large simulations. We mention here common windowing techniques
based on polynomials, for a extensive review we refer the reader to [41]. Polynomial windowing
functions are inspired by non-linear dopants drift can be introduced via the so-called Jogeklar window
function F(x) [39,43], such that F(1) = F(0) = 0, which generalized the evolution of w(t) as

dw(t)
dt

= αw(t)− F(w)
1
β

I(t), (12)

where the window function can take the form F(w) = 1 − (2w − 1)2p with p positive integer.
Depending on the type of memristor model different window functions might provide a better
approximation of the nonlinear effects near the boundaries of the memory. For an overview of the
various mechanisms that can be involved we refer the reader to the Appendix A.

4. Memristors for storage

A memristor can be used as a digital memory of at least one bit. The simplest way to achieve this,
is to use the memristor as a switch. If the memristor is non-volatile we can set its memristance to the
value Ron or Roff using a voltage or current pulse, and associate these resistances with the state of a
bit. We stress that non-volatility is essential for memory applications, because a volatile memristor,
i.e. one that drifts back to a high resistance state autonomously, would require a permanent source
of current/voltage to keep it in the low resistance state. Volatility will, in general, render memristive
memory worthless in terms of energy consumption. This is one of the reasons why volatility is
engineered out of the devices meant for storage applications, e.g. ReRAM.

In order to illustrate the mechanism of flipping a bit, consider the non-volatile memristor model
described by eqn. (4) (i.e. α = 0) connected to a constant voltage source Vwrite. Solving the differential
equation gives:
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Figure 3. Reset and set for TiO2, from [44], with pulse within the hundred of microseconds.

w(t) =
√

a + bVwritet, (13)

where the coefficients a, b depend on the parameters, but not on the input voltage. Thus, by controlling
the sign of the input voltage Vwrite we can switch the resistance from Roff to Ron and viceversa (the flip
of a bit). The switching happens within a characteristic time τ:

√
a + bVwriteτ = 1→ τ ≤ 1

bVwrite
. (14)

Hence, to flip the bit we need to apply Vwrite for at least this amount of time. To read the bit, we apply
a voltage Vread � Vwrite (and optionally for period of time shorter than τ) and compute the resistance
from current measurements.

Eqn. (13) applies only to the idealized memristor described by the model in eqns. (4)-(5). This
model might not be valid for real devices which will show a different dynamic response to input
voltages or currents. However, the idea of controlling and reading a memristor bit with pulsed inputs
remains the same. Fig. 3 shows the response of a real TiO2 memristor to write voltages (SET and
RESET).

The fact that we can write and read the state via signal pulses allows for advantageous scaling
of power consumption and bit density [see 45, for details]. As we discuss below, it is possible to use
crossbar arrays with memristors to increase the density of components. The density of components in
crossbar arrays scales as 1

4`2 , where ` is set by the length scale of optical litography (a few nanometers).
The reported state of the art as we write this article is roughly 7 GB/mm2, and with writing currents of
0.1 nA [46].

Another challenge for storage based applications, besides volatility, is device variability, e.g. the
variation of properties like the switching time τ for devices built under similar conditions. Current
research in oxides focuses on these variability aspects, how to standardize the production of memristors,
and the optimization of properties like the switching and retention time, and the durability of each
singular device. The status of the technology for memory storage for different type of devices is
presented in Tab. 2.
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Table 2. Characteristics of various storage devices (for details see [47]). The table compares to memristor
technology to competitors like PCM and more standard devices based on STT, DRam, Flash and HD.

Memristor PCM STT-RAM DRAM Flash HD
Chip area per bit (F2) 4 10 14-64 6-8 4-8 n/a

Energy per bit (pJ) 0.1-3 101−2 0.1-1 100 103 104

Read time (ns) <10 20-70 10-30 10-50 104−5 104

Write time (ns) 20-30 101−2 101−2 101 105 106

Retention (yrs) 10 10 10−1 10−5 10 10
Cycles endurance 1012 107−8 1015 1017 105− 8 1015

3D capability yes no no no yes n/a

Figure 4. Learning matrix, introduced by Steinbuch [48] and reproduced from [49].

4.1. Crossbar arrays

In this section we briefly review the crossbar array architecture used in memristor based storage
and its application in artificial neural networks.

Crossbar arrays are based on the architecture depicted in Fig. 4. The figure shows an array
composed of horizontal (e-lines) and vertical (b-lines) lines that are initially electrically isolated from
each other. A 2-port component, e.g. a memristor, is connected across each pair of vertical and
horizontal lines.

To use crossbar arrays, a voltage ξ j is applied to the j-th e-line, and an another voltage ηi to the i-th
b-line. A memristance wj,i, placed across j-th e-line and the the i-th b-line, is controlled by the voltage
ξ j − ηi. This arrangement allows for simple indexing of the memristances, and is the mechanism
behind a Content-Addressable-Memory (CAM) which is used in crossbar arrays. The idea of this
construction dates back to Steinbuch’s "Die Lernmatrix" [48,50].

Crossbar arrays can be used for matrix-vector multiplication using the voltages
{

ξ j
}

as inputs
and the voltages

{
ηi
}

as outputs. For a resistance independent of the input voltage or current, the
relation between them is given by ~η = A~ξ, where the elements of the matrix A are:

Aij =
M−1

ij

R̃−1
i + ∑s=1 M−1

is

. (15)

R̃i are the resistances on the output b-lines ~η, and Mij is the memristance of the memristor between
the i-th b-line and j-th e-line. An algorithm for setting the (mem)resistances given a matrix can be
found in [51]. To apply this method with memristors, the voltages differences need to be small/short,
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Figure 5. Memristors used for synaptic weights in ANNs. Reproduced from Fig. 2 of [54]

to avoid changing their memristance, or all memristors need to be in one of their limiting states Ron or
Roff.

The component density of crossbar arrays can be increased by stacking [52,53]. The stacking of L
crossbar layers on top of each other scales the density of components by the factor L, i.e. a theoretical
scaling of L

4`2 . In multilayered arrays memristors are controlled using the corresponding horizontal
and vertical lines of each layer.

Memristive crossbar arrays can be used to encode the synaptic weights of feed-forward or
recurrent artificial neural networks (ANNs) [54]. In ANNs the input to neurons in a given layer
(post-synaptic) is computed as the multiplication of the outputs of neurons in the previous layer
(pre-synaptic) and the matrix of synaptic weights connecting the two layers (Fig. 5). Then, the
multiplication is carried over using the multiplication algorithm previously described. The output
of pre-synaptic neurons is encoded in the voltages of e-lines of the crossbar array, and the input to
post-synaptic neurons is decoded from the currents on the b-lines. Applications go beyond this direct
implementation of the multiplication algorithm. For example in [54] the synaptic weights are encoded
as the difference of the conductance between two memristors. Similar ideas have been exploited to
design other computational models based on stateful logic [55] and differential pair synapses (called
“kT-RAM") [56].

The potential benefits of utilizing memristor based ANNs are speed and energy efficiency. The
computation and storage use the same location in the network, and analog inputs are directly feed to
the neurons. This minimizes the reading-writing costs incurred by the conventional von Neumann
architecture, and the energy losses of analog-to-digital conversion.

4.2. Synaptic plasticity

Synaptic plasticity can be broadly defined as the modification of the synaptic conductance as a
function of the activity of the neurons connected to it. This definition rules out autonomous plasticity,
which is the slow synaptic conductance decay of inactive synapses (volatility). Autonomous plasticity
is fundamental for data processing applications and will be considered in section 5.

Non-autonomous synaptic plasticity can be classified in several types, e.g. spike rate-dependent
plasticity, spike timing-dependent plasticity, short-term plasticity, long-term plasticity, etc. In the study
of synaptic plasticity of the human cortex, Hebbian or Anti-Hebbian (related to the simultaneous
firing of two neurons) [49,57,58] are often underpinning the learning mechanism. Our aim here is not
to describe the types of plasticity, their biological underpinnings, or how difficult is to isolate each
class in biological and experimental systems, but to illustrate how memristors, used as memories, can
implement the change in weights based on pre- and/or post-synaptic activity.
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For an overview of the different types of synaptic plasticity and references to further reading, we
refer the reader to the book chapter by La Barbera and Alibart [59].

Synaptic plasticity is modeled by choosing the plasticity inducing variables x ∈ X (e.g. relative
arrival times of spikes, relative neural activity, etc.) and a mapping from these to the change of the
synaptic weight

fX : X →W∆ ⊂ R. (16)

This mapping is based on biological models, or simplified adaptation mechanisms. For example in
Spike Timing-Dependent Plasticity (STDP), the inducing variable is the relative timing of two or more
activity spikes in the connected neurons. Plasticity is then defined with a mapping fSTDP : Tn−1 →W∆,
taking the relative timing of n spikes ∈ Tn−1 (typically 2 or 3) to a weight change ∈ W∆ (usually
represented as relative change). In Spike Rate-Dependent Plasticity, we replace the timing domain
with a relative rate domain.

To implement plasticity in memristors as synaptic weights, we need a writing voltage that
represents the synaptic change. That is, we need a further mapping

fV : W∆ → V, (17)

where V is the set of valid writing voltages. The composed mapping fV ◦ fX : X → V gives the
final implementation of synaptic plasticity. The mapping fV depends on all the characteristics of the
technology used, e.g. the physical mechanisms of memristance (see Appendix A), the neural network
architecture (e.g. crossbar array), the controlling electronics, etc. Obtaining the function fV in the
mapping above is the main challenge in synaptic plasticity applications, and thus requires considerable
effort. A survey of complete and partial implementations of synaptic plasticity in nanoscale devices is
summarized in [59, sec. 4.1]. For example [60] uses STDP to implement unsupervised learning with
ReRAM synapses.

STDP receives a lot of attention in the neuromorphic field as exemplified by the latter reference
and the review of Serrano-Gotarredona et al. in which we base the following setences. The reader
interested in hardware impelentations of STDP shold consult that resource. STDP is among the most
developed memristors implementation of in-silico plasticity, it can be implemented in very large and
very dense arrays of memristors without global synchronization, and learning occurs on-line in a
single integrated phase (as opposed to off-line learning). The impact of the dynamical model of the
memristor has been studied in the implementation of STDP, and the learning rules can be adapted
to the different behaviors. As in most application of memristors as non-volatile storage of (synaptic)
weights, it suffers from the intrinsic varibality of the units, which more general neuroimorphic circuits
are able to exploit [62].

5. Memristors for data processing

Device variability (sec. 4) and volatility (sec. 4.2) were mentioned as current challenges for most
applications based on memristive memories. This is in contrast with biological systems, which are
not built in clean rooms and it is hard to think of evolution exploiting ideal systems as a reference
for design. Biological systems perform despite noise, nonlinearity, variability, lack of robustness, and
volatility. Whether these ingredients hinder the performance of biological systems or are actually a
building block for it, it is still unknown. Sometimes they are avoided, not because it would have an
undesired effect in practice, but simply because its effect cannot be easily modeled or studied (e.g.
we have but a few tools to deal with nonlinear systems intrinsically, beyond the iteration of linear
methods). Hence, there is no reasons to believe that eliminating naturally occurring properties is the
path to success in achieving artificial systems that perform comparably to biological ones.

This section overviews some applications that embrace device volatility [63], nonlinear transients,
and variability [64, sec. 7.5], to implement learning methods with memristors. To put these methods
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within an unifiying framwework, we first review the concept of analog computation, and discuss its
relation to the physical substrate on which it is implemented.

5.1. Analog computation

To pin down the concept of analog computation we compare analog and digital computers,
assuming that the latter is familiar to most readers. The principal distinction between analog and
digital computers is that digital operates on discrete representations in discrete steps, while analog
operates on continuous representations, i.e. discrete vs. continuous computation [refer to 65, for a
complete discussion and historical overview] [66,67].

In all kinds of computation the abstract mathematical structure of the problem and the algorithm
are instantiated in the states and processes of the physical system used as computer [68]. For example,
in the current digital computer, computation is carried on using strings of symbols that bare no physical
relationship to the quantities of interest; while in analog computers the latter are proportional to the
physical quantities used in the computation. Figure 6 illustrates the relation between representation of
the problem in the designers mind and instantiation in the computers states.

U

V W

X

W ′

decode or
represent R

COMPUTATION

encode or
instantiate E

real world

D(x, u)

Figure 6. Computing with dynamical systems adapted from [68]. Conceptual depiction of the sets
and transformations involved in a typical computation using a dynamical system D. In this case,
the computation is defined by its action on the input-output set V, W. The inputs u(t) ∈ U to D are
encoded or instantiated versions of V through the transformation E . The output of the dynamical
system x(t) ∈ X is decoded or represented back into the set W ′ via the readout transformationR. When
W and W ′ are similar, the composed transformationR ◦D ◦ E is a proxy for the sought computation.

We can decompose computation in three stages: i) encoding, ii) processing, iii) decoding. To
program a computer, we need to design a suitable process to encode the input and to decode the
result of the computation. The three stages require an advanced understanding of the behavior of the
physical substrate, how it reacts to inputs and how it transforms its states. This is true if the computer
is meant to implement an universal model of computation, or if it is specialized hardware optimized
to solve a particular subclass of problems.

The encoding and decoding maps relate the states of the computer to our understanding of the
problem, and their definition is a recurring challenge in the design of computers. We mentioned this
difficulty when building memristive synaptic arrays with plasticity (sec. 4.2); data representation in
biological systems is still an open research field, and natural systems tend to smear out our pristine
categorizations of encodings. There is yet another difficulty to attend when defining encoding and
decoding maps. To avoid confounding, the class of maps needs to be restricted, because ill-defined
maps (e.g. encryption) will complicate computation, while too sophisticated maps could render
the contribution of the computing device negligible. The former will deteriorate the computing
performance, while the latter is just bad design. In other words, the problem needs to be specified
using the "language" of the computing device. Using the wrong language increases the difficulty of the
problem, and consequently decreases performance. To understand the language of the device we need
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the equivalent of Shannon’s analysis of the differential analyzer [69]. The encoding-decoding pair is
also linked to the "natural basis of computation" [70] of a device, which refers to the description of the
device behavior suited for the computation purposes.

The success of digital computers is in part given by the efficiency to instantiate and process an
universal model of computation able to solve all kinds of computation problems, as conjectured by
the Church-Turing(-Deutch) thesis. This is achieved by a precise control on each step of computation
and the way the computer transforms its states. Another advantage of current digital computers
over analog prototypes is the very high precision they provide for the instantiation and solution of a
problem’s quantities. This high precision, however, is unnecessary in many engineering applications,
in which the input data are known to only a few digits, the equations may be approximate or derived
from experiments, and the results are not sensitive to round-off errors [see 71, for an overview].
Therefore, research into specialized hardware (analog of digital) is a worthy activity.

Since analog computers escape the frame of relevance of the Church-Turing thesis, it has been
argued that they can be more powerful than digital computers[65, sec. "Analog Computation and
the Turing Limit"]. Besides this hypothetical benefit, it is worth exploring the efficiency of analog
computers to solve subclasses of problems, i.e. specialized analog hardware, and to understand their
pervasiveness in natural systems, perhaps linked to the precision attained by systems built from many
imprecise cheap modules. This is not a simple task, since many of these analog computers outsource
some of the process control present in digital computers to the natural dynamics of the physical
substrate, elevating the bar on the level of understanding required to build and program them.

As an example of an analog computer let us consider an hydrostatic polynomial root finder [72].
Consider the following polynomial equation:

n

∑
i=1

xici + c0 = 0, (18)

The aim is to find a real value x for which the equality holds, i.e. we want one root of the polynomial
p(x) = ∑n

i=1 xici + c0. For the sake of this illustration, lets consider the case n = 2. In Fig. 7 we show
the design of an hydrostatic root solver. In one side of a pivoting lever, a shape is set to represent each
term in the derivative of the polynomial (e.g. flat for the derivative of c1x, linear for the derivative
of c2x2). In the other side of the lever we set a weight for the constant term. When the device is
submerged into water, the depth at the device equilibrates is a solution of the polynomial equation.

Figure 7. The hydrostatic root solver. Shapes encode the polynomial coefficients. A weight encodes the
constant term. The depth at which torque is zero, is a solution of the polynomial equation.

The example above illustrate the major role played by the understanding of the physical device,
and how it allows us to encode and solve the specific problem we are interested in. As mentioned before
this is common to all sort of computers; we proceed to mention a few. The electronic digital computer
exploits the behavior of transistors to encode the symbols of the computational model (essentially
Boolean logic) it uses for computation. Quantum annealers, considered for efficiently solving Mixed
Integer quadratic Programming [73, sec. 2.7], use the spins of a physical system and the computation
of a quantum Ising model to solve the optimization [74]. DNA computing exploits the self-assembly
and preferential attachment of DNA strands to encode tiling systems with Wang tiles [75,76]. Slime
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molds [29] computation exploits the behavior of these protists to implement distributed optimization,
e.g. shortest path, using the position of nutrients on the Petri dish to encode problems, and chemotatic
behavior of the mold to solve them; the solution is read out from the distirbution of mold cells in the
Petri dish. Ant colony optimization [77] is inspired by the behavior of their natural counterpart and
uses digital models of pheromone dynamics for computation (see also stigmergy [78]).

In the subsequent sections we describe in some technical details algorithms meant to realize
computers using memristive systems.

5.2. Generalized linear regression, Extreme Learning Machines, and Reservoir computing

Arguably the most used method to relate a set of values X (inputs) to another set of values y
(outputs) via an algebraic relation is linear regression: y = X>β. However, in many realistic situations
we believe that the relation between these sets of values is unlikely to be linear. Hence a nonlinear
counterpart is needed. The simplest way to generalized a scalar linear regression model between inputs
and outputs, is to apply a nonlinear transform to the inputs to obtain a new linear model y = G(X)>γ,
where only the coefficient vector γ (or matrix when the output is not scalar) is learned from the data.
This nonlinear method is linear regression in a space generated by nonlinear transformations of the
input (see kernel methods [79,80]). In neuromorphic computation the transform is commonly given a
particular structure by choosing a set of Ng nonlinear functions and apply it to each input vector:

G(X)>ij = gj(x(i)), i = 1, . . . , N j = 1, . . . , Ng. (19)

This method is known as Extreme Learning Machines (ELM) [81] and has been implemented in
hardware exploiting the variability of fabricated devices to generate the nonlinear transformations [82,
83].

This formulation resembles two other mathematical methods that are worth mentioning:
generalized Fourier series and generalized linear methods. The relation with generalized Fourier series
is made evident when the samples have a natural ordering (e.g. not i.i.d. time samples i↔ ti), then we
can write the regression model as

y(t) =
Ng

∑
k=1

γkgk(x(t)), (20)

which has the structure of a truncated generalized Fourier series (but not all the ingredients).
The resemblance with generalized linear models is made evident by considering the function

g(x) = `−1(x>η) (` is the link function) and Ng = 1; we obtain:

yi = γ1`
−1(x(i)>η). (21)

However generalized linear models require that we learn the vector of coefficients η from the data,
rendering the problem nonlinear. This breaks the analogy with ELM in which the η vector should be
fixed a priori. The analogy is somehow rescued if we are given a distribution p(η) for the η vector
encoding prior knowledge or beliefs about the solution to the generalized linear model. In this case we
can build an ELM with Ng � 1

yi =
Ng

∑
k=1

γk`
−1(x(i)>ηk) ≈

∫
H
`−1(x(i)>η)p(η)dη, (22)

where the set of
{

ηk
}

coefficient vectors are sampled from the prior distribution, expecting that model
averaging [84] will approximate the generalized linear model.

Summarizing, ELM uses a linear combination of a predefined dictionary of functions to
approximate input-output relations. The next step of generalization is Reservoir Computing
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(RC) [85–87], in which the Ng functions are the solution of a differential or difference equations
using the data as inputs, e.g.

u(t) = E(x)(t) ∈ Rdim u, (23)

Dλq = Bu(t), B ∈ Rdim q×dim u, (24)

g = Hq , H ∈ RNg×dim q, (25)

y(t) = γ>g =
Ng

∑
k=1

γkgk(t, u(t), λ) (26)

where the differential or difference equations are denoted with Dλ (operator notation) with λ a vector
of parameters that includes physical properties and the boundary (initial) conditions, and dim q ≥ Ng.
The connectivity matrices B and H are typically random, the latter mixes the dim q states to obtain Ng

signals (these could also be nonlinear mappings). As explained in section 5.1, the input data is encoded
by the transformation E (or B ◦ E ) to properly drive the system. This encoding, the operator Dλ, and
the connectivity matrices are defined a priori, and only the coefficients γ combining the g functions
are learned from the data, as in ELM. These coefficient (or γ>H) define the readout transformationR
(see Fig. 6).

The generalization proposed by RC is made obvious with the choice of arguments for the
component functions

{
gk
}

in eq. (26): they can have i) an intrinsic dependence on time, e.g.
autonomous behavior of the dynamical system; ii) they depend on the inputs, and iii) they depend on
the properties of the dynamical system. Property ii) says that these functions are not fixed as in ELM,
they are shaped by the data signal. Stated like this, the problem of implementing computation with
reservoirs is strongly related to a nonlinear control problem.

RC allows for machine learning applications using natural or random dynamical systems, as
opposed to carefully engineered ones. The only strong requirement is that we are able to stimulate
states of the system independently with signals encoding the input data, a classical example is the
perceptron in a water bucket [88]. Hence, RC implementations using memristive networks has received
considerable attention (software [see 63, and references therein] and hardware [89]).

The case of memristor based RC using the HP-memristor, eqns. (4)-(5), is fairly well understood:
a differential equation to simulate the propagation of signals across the circuit and the interaction
between memristors has been derived in [90] (see also eqn. (34)). In those equations the role of the
circuit topology is extremely important in the collective dynamics of the circuit and in processing the
input information. When working with RC and memristors, it is important to prevent the saturation of
all devices, since a saturated memristor becomes a linear resistor that only scales the input.

5.3. Neural engineering framework

The Neural engineering Framework [64] exploits our current understanding of neural data
processing to implement desired computations. It confines linear models to a particular class of
basis functions, inspired by biologically plausible neuron models but not restricted to them. Here
we describe this framework in the case of function representation, the structure of the framework is
analogous to other representation instances (scalar, vector, etc.). The reader is referred to the original
work [64] for a comprehensive description.

The framework entails the characterization of an admissible set of functions that can be
represented by a population of N neurons. In particular, the functions and their domain need to
be bounded: f : (xmin, xmax) → ( fmin, fmax). These functions are then encoded by a population of
neurons with a predefined set of encoders of the form:
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ai( f (x)) = Gi (Ii( f (x))) , (27)

Ii( f (x)) = αi〈 f (x)φ̃i(x)〉+ Ibias
i , (28)

where Ii represents the total input current to the i-th neuron soma. The functions ai and Gi are the
tuning curves observed by neurophysiologists and the response function of the i-th neuron, respectively.
Gi is a biologically inspired model of the firing rate, e.g. integrate-and-fire (LIF) neuron. The encoding
generators

{
φ̃i
}

(analogous to preferred directions) are defined a priori, and 〈 f (x)φ̃i(x)〉 is a functional
defined on the space of functions to be represented, e.g. in the original description this is the mean
over x. These encoders convert the function f (x) into firing rates (or actual spike counts for the case of
temporal encoding).

The encoding is matched with a corresponding decoding procedure that brings firing rates (spike
counts) back to the function space. The decoder takes the generic form:

f̂ (x) =
N

∑
i

ai( f (x))φi(x), (29)

where φ(x) are the unknowns of the framework. That is, given some input x and neural population’s
firing rates (spike counts) we can build functions of the input using the decoders

{
φi
}

. In the original
formulation the decoders are obtained via minimization of least square errors (with regularization in
the case of noisy encodings), but other methods could be used, e.g. optimal L2 dictionaries [91].

The framework defined in eqns. (27)-(29) can realize arithmetic on functions of the input as well
as nonlinear transformations. It has also been use to represent linear time-independent systems with
neuromorphic hardware [92].

NEF, RC, and ELM use the same form of decoding: the output is the scalar product of a
input-independent vector with a input-dependent one. The input-dependent vector is given by intrinsic
properties of the computing device, it is the results of internal mechanisms. The decoders are learned
from data, and different decoders implement different computations (on the same input-dependent
vectors). However, RC and ELM learn a finite dimensional vector γ ∈ RNg while NEF, in the functional
form shown here, needs to learn N infinite dimensional decoders. The latter is mildly relaxed if the
input domain is discretized with Nx points, rendering the functional decoders Nx-dimensional vectors.
In General it is expected that Ng � Nx N, that is the degrees of freedom of NEF, is higher that the one
of RC and ELM. Hence NEF has the risk to transfer all the computation to the decoders making the
contribution of the neural population marginal (or even an obstacle). Extra regularity assumption on
the decoders

{
φi(x)

}
(eq. (29)) are needed to match decoders effective capacity to the capacity of the

dynamic responses
{

gi(x)
}

(eq. (26)).
Memristor networks can be used to implement NEF, by implementing the response functions Gi

of neural models. The Gi functions corresponding to LIF neuron model is

G[I(z)] =


1

τ0−τRC log
(

1− IF
I(z)

) I(z) > IF,

0 otherwise
(30)

where I(z) is given by eqn. (28). And a similar functional form can be achieved by a non-volatile
memritor with parasitic capacitance, as shown in eq. (33) (see next section). However other response
functions, which might be easier to implement with memristors, can be used with NEF. Other aspects
of neural networks, such as critical behavior [93–95] can be observed in networks of memristors [96],
although a theoretical understanding of their collective behavior is still poor for both systems [97–99].
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5.4. Volatility: autonomous plasticity

Volatility is a key feature when processing information with memristors (in contrast to memory
applications). RC needs volatility to avoid trivial linear input-output mappings and NEF requires
it to model the forgetting behavior of neurons. There are many physical processes that can lead to
a memristive volatile device, hence the source of volatility should be discussed in the context of a
given technology. In what follows we show how volatility, can be linked with a capacitance in parallel
(parasitic) to a non-volatile device. Consider an ideal series memristor-capacitor circuit [43] feed with
a controlled current. The memristor is modelled with eqns. (4), with α = 0, Kirchhoff’s voltage law for
this circuit gives:

R(w)

I(t)︷︸︸︷
dq
dt

= − 1
C

∫
I(t)dt︷︸︸︷
q(t) → dq

dt
(t) = − q(t)

R(q(t))C
, (31)

R(q(t)) = Ron

(
1 +

q(t)
β

)
+ Roff, (32)

from which we obtain a limiting solution for t� 1

q(t) =
β

ξ
W
(

ξ

β
e−

t
RonC e−

c1
βRon

)
, (33)

where W is the product-log (Lambert) function [100], c1 is an integration constant, and as before
ξ = Roff−Ron

Ron
. Eqn. (33) shows that for large times the system has a typical exponential RC decay, which

is shown in Fig. 8 (left). This behavior is observed in experiments [101] where after an external stimuli
an exponential-like decay is observed (see Fig. 8 (right)).

Figure 8. Left: theoretical profile of eqn. (33), taken from [43]. Right: Experimental profile of short
term plasticity with TiO2, taken from [101].

The limit of a normal RC circuit can be obtained from the above in the limit β → ∞, in which
limβ→∞ βW(β−1G(t)) = G(t). We thus see that the response of a memristor-capacitor and a RC circuit
differs, with the first obtaining a longer retention than the first. Also, the Lambert W has several
properties of the logarithm function, and thus the response is similar to the one suggested in eqn.
(33). In the case α 6= 0 for the model we described here, one has that w(t) = etα

(
c0 +

1
β

∫ t
0 dτe−tτ I(t)

)
.

Thus, the correspondence between the parameter w and the charge is not exact. In addition, the
parameter α constant is only an approximation. The conductance of memristive devices decays when
there is no input, and the rate of decay depends on the state of the memristor. This is compatible with
a state-dependent parameter α, rather than a constant [see Fig. 1 of 37]. A survey of recent hardware
designs for temporal memory is provided in [102].
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5.5. Basis of computation

As mentioned before, to design computers with memristors we need to understand and harness
their natural computational power. This is no simple task in general, but for a networks of memristors
linear in an internal parameter and current controlled, we can write down the differential equation
describing the evolution of the memory states and obeying Kirchhoff voltage and current laws [90]:

d~w
dt

(t) = α~w(t)− 1
β
(I +

Roff − Ron

Ron
ΩW)−1Ω~S(t), (34)

where α and β are the parameters in eqns. (4)-(5), Ω is a projector operator which depends on the circuit
topology, Wij(t) = δijwi(t) and ~S(t) is vector of applied voltages. For arbitrary memristor components
the generalization of eqn. (34) is not known. In the approximation Roff = pRon, with p of order
one, the equation above can be recast in the form of a (constrained) gradient descent [103], which is
reminiscent of the fact that the dynamics of a purely memristive circuit has an approximate Lyapunov
function [104,105]. In the simplified setting of purely memristive circuit without any other components
it can be shown that these circuits execute Quadratically Unconstrained Binary Optimization [106].
This idea is in general not recent, and it can be traced back to Hopfield [107–109] for continuous
neurons.

6. Memristive galore!

6.1. Memristive computing

In this section we review some works developing computation algorithms networks of memristors
and external contorl hardware based in crossbar arrays and FPGA.

In [110,111] it has been shown that memristive circuits can be used to solve mazes: connecting
the entrance and exit of a maze, the memristive circuit as in Fig. 9 will re-organize (when controlled in
DC) to allow the majority of the current to flow along the shortest path. Although this phenomenon
already occurs with regular resistances, it is enhanced with memristors. Memristors outside the
shortest path go to their OFF state (high resistance) and the current difference (the contrast) to the
active shortest path is augmented. This example shows that the wiring between memristors and the
asymptotic resistance value are deeply connected, and is reminiscent of the ant-colony optimization
algorithms [77], molecular computation [112], and other cellular automata models [113].

Figure 9. The maze-memristor mapping suggested in [110].

Ideas along these lines can be pushed further in order to explore memristors as complex adaptive
systems [114] able to self-organize with the guidance of the circuit topology and the control of external
voltages. Using eqn. (34) it is possible to obtain approximate solutions, for instance, of the combinatorial
Markowitz problem [105]. Hybrid CMOS/Memristive circuits can, in principle, tackle harder problems
via a combination of external control and self-organization [115].

In the literature several models of memristor-based architectures have been proposed. Several of
these proposals are based on the attractor dynamics of volatile dissipative electronics and inspired
by biological systems. For instance, a general theory of computing architecture based on memory
components (memcapacitors, meminductors and memristors [116]) has been introduced recently
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in [117], called Universal Memory Machines (UMM), and shown to be Turing complete. Similarly, an
architecture based on memristors which includes Anti-Hebbian and Hebbian learning (AHaH) has
been proposed in [56,118] for the purpose of building logic gates and for machine learning. In both
cases of UMM and AHaH the solutions of the problems under scrutiny are theoretically embedded in
the attractors structure of the proposed dynamical systems, and have not been tested experimentally.

One way to show that a memristive system composed of memristors is a universal computing
architecture is to break the system modularly into logic gates based on memristor, and show that the
set of obtained gates is universal (which includes NOT and at least one of an AND or OR gates, as
in DeMorgan’s law [119]). Turing completeness follows from an infinite random access memory (the
infinite tape). Experimentally, it has been shown that it is possible to build logic gates with memristors
(we mention for instance [120]). An improvement upon this basic idea is to build input-output agnostic
logic gates using memristors. Any port of an agnositc gate can be used as input or output, and the
remaining states of the gate will converge to the states of a logic gate, regardless of whether the binary
variable is at the output or at the input of the gate. For example, if the output of an agnostic AND gate
is set to TRUE, the input variables will rearrange to be both TRUE; but if the output is FALSE, the
inputs will re-arrange such as to contain at least one FALSE. These are called Self-Organizing Logic
Gates (SOLG) and it is suggested to use these to solve the max-SAT problem [121,122] [see also 123,
and references therein].

The two example above show that memristors can be used both for analog computation, as in the
case of shortest path problems, or to reproduce and extend the properties of digital logic gates.

6.2. Natural memristive information processing systems: Squids, Plants, and Amoebae

In recent years, and with the participation of L. Chua, there have been several reports
re-interpreting models of natural information processing systems (neural networks, chemical signaling,
etc.) in terms of memristors units. Herein in we mention three examples: giant axon of squids [124],
electrical networks of some plants [125], and Amoeba adaptation.

Giant squids are model organisms big enough that they can be analyzed in detail at the singular
cell level, and for which we posses a mechanistic model of the dynamics of their axons: the
Hudgkin-Huxley model. The model describes the voltage at the interface between synapses and
dendrites, which is regulated by the flow of calcium and potassium. The electrical circuit associated
with this model is shown in Fig. 10. It entails the introduction of a nonlinear variable resistor for the
calcium channel, and a linear variable resistance for the potassium channel and a capacitance [126].
The equations of this model, when put in memristive form, are given by:

iK =

R−1
K︷ ︸︸ ︷

gKw4
1 VK, (35)

iNa =

R−1
Na︷ ︸︸ ︷

gNaw3
2w3 VNa, (36)

dw1

dt
= (K1 VK + K2)

[
e K1 VK+K2 − 1

]−1
(1− w1) , (37)

dw2

dt
= (Na1 VNa + Na2)

(
e Na1 VNa+Na2 − 1

)−1
(1− w2) + Na3 e Na4 VNa+Na5 w2, (38)

dw3

dt
= Na6 e Na7 VNa+Na8 (1− w3)−

(
e Na1 VNa+Na9 + 1

)−1
w3, (39)

where we see that a first order (RK) and second order (RNa) memristors are involved. The parameters{
Ki
}

and
{

Nai
}

characterize the dynamics of the channels [see 124, for details].
The model above is a fit of the observed voltage data for the giant axon, and is useful in the

analytical study of brain cell dynamics. The proposed model allows the interpretation of synapses
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as circuits composed of rather nonlinear and non-ideal memristors. That is, that memristors can be
central in providing an alternative interpretation of a established model and further the understanding
of biological neural information processing.

Figure 10. The Hodgkin-Huxley model, with the variable resistances of the Sodium and Potassium
channels interpreted as memristors.

In [125] three types of memristors models are developed and compared with the responses of
some plants to periodic electrical stimulation. The authors observed that in the studied plants the
pinched hysteresis loop did not collapsed into a line for very high frequencies, as required for ideal
memristors. To recover this non-ideal behavior a parasitic resistor-capacitor pair was added in parallel
to the ideal memristor model. The general solution for their models is:

im(t) =
eβtV(t)

βRo
∫ t

0 h(V(x))eβxdx + A
, (40)

I = im + iRC, (41)

where β is a parameter related to the time constant of the memristor, V(t) is the driving periodic
voltage, and Roh(V) is the memristance of a voltage controlled memristor. Depending on the model
of the memristor considered h and the constant A take different forms. The total current I is the
observed magnitude, and iRC is the current through a series resistor-capacitor circuit in parallel with
the memristor. The study hints that memristive behavior is intrinsic to plants electrical signaling and
that plant physiology could be better understood if memristors are considered as "essential model
building blocks".

A memristive model of amoeba adaptation was introduced in the form of the simple circuit shown
in Fig. 11 [127,128], and the model is simple enough that we can report it here. Albeit the original
article points to the concept of amoeba learning, we believe it is more appropriate to be addressed as a
model of amoeba adaptation. The memristor considered is a voltage controlled memristor introduced
in [129]:

dM
dt

= f (VM) (θ(VM)θ(M− R1) + θ(−VM)θ(R2 −M)) , (42)

f (V) =
β− α

2
(|V + VT | − |V −VT |)− βV, (43)

where θ(·) is the Heaviside step function.
Because the inductance and the resistor in the circuit are in series, the same current I flows through

them. The capacitor and the memristor are in parallel, hance their voltage drop are equal: VC = VM.
The conservation of voltage on the mesh implies VC +VL +VR = V(t). We have VR = RI and VL = LI.
The memristance M(t) affects the voltage drop on the capacitor,



Technologies 2018, xx, 1 23 of 42

Figure 11. The amoeba memristive learning model of [127]. (a) The circuit with capacitance C and
memristor M in parallel (with resistance R(t)), and in series to a resistance R and an inductance L. (b)
The function f (V) for the memristor response in voltage.

CVC +
VC

M(t)
= I. (44)

We thus obtain the three coupled differential equations:

dI
dt

= −R
L

I +
V −VC

L
, (45)

dVC
dt

= − 1
MC

VC +
I
C

, (46)

dM
dt

= f (VM) (θ(VM)θ(M− R1) + θ(−VM)θ(R2 − R)) . (47)

The stationary state requires that all time derivatives are zero. The circuit is adaptive to new stimuli.
For instance, in Fig. 12 we see the response of the system to new inputs, and new stationary states are
obtained. Albeit amoeba’s adaptation is not as developed as in higher mammals, more general models
entailing Pavloviav “conditioning" have also been proposed in the literature using memristors [130,
131].

6.3. Self-organized critically in networks of memristors

We now consider the interaction between a high number of components with memory. A
common feature of large systems of interacting units with thresholds or discontinuous dynamics
is critical behavior. For example, self-organized criticality (SOC) is evinced when a dynamical system
self-tunes into a state for which a qualitative change in the systems’ behavior is imminent (e.g. a
bifurcation). These critical states are characterized by power law cross-correlation functions. The
current characterization of the sufficient ingredients for SOC, however, is phenomenological: a system
of interacting particles or agents in which thresholds are present and whose dynamics is dominated by
their mutual interaction. One of the main motivations of SOC is the explanation of power spectra of
the functional form P ∼ ωα, with −1 < α < −3, in physical systems and in nature [132]. The typical
example is for instance the Gutenberg-Richter law of earthquakes, whose distribution of magnitude
is Richter’s law [133,134]. SOC has been suggested to be the underlying mechanism in the observed
critical behavior of the brain [94]. In this case, neurons can be interpreted as thresholding functions
(logical gates) and it is thus tempting to interpret the criticality of the brain as a SOC phenomenon.
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Figure 12. Simulation of eqn. (47) and adaptation of the circuit to different stimuli. We consider the
parameters β = 100, α = 0.1, R1 = 3, R2 = 20, C = 1, R = 1, L = 2, Vt = 2.5 as in [127]. We stimulate
the circuit with a square input V(t) = 0.5 and frequency ω = 10 and then with reduce by a half the
frequency, with V(t) = −2. We see that the circuits “adapts" to the new stimulus after a transient.
Initial conditions were I0 = 1, V0

c = 1, R(0) = 7 and used an Euler integration scheme with step
dt = 0.1.

SOC can be produced using large networks of memristors: atomic switch networks are dominated
by the interaction due to Kirchhoff laws [96], and thus the observed criticality seems intuitively (power
law distribution of the power spectra, for instance) to be connected to a SOC-type [99] phenomenon
because of the rather nonlinear and threshold-like behavior of memristors. It is however easy to
observe that power law distributions in power spectra can be obtained in a rather simple way as
follows [90]. Consider a system of linearly interacting memristors, whose linearized dynamics close to
a fixed point obtained with DC voltage stimulation (i.e. saturated memristors: resistors) is written as:

d
dt
~w(t) = A~w(t). (48)

The matrix A is a non-trivial combination of voltage sources and projectors on the subspace of
the circuit’s graph [103]. We divide the spectrum of A in positive and negative eigenvalues, and the
distribution ρ+(A) and ρ−(A). Since 0 ≤ wi(t) ≤ 1, we look at the average relaxation 〈w(t)〉 = ∑i

wi(t)
N ,

which can be written as

〈w(t)〉 = 1
N ∑

i

(
∑

j
(eAt)ijw0

j

)
=

1
N

trace
(

eAtW0

)
=

1
N

trace
(

eλ+tW̃0 + eλ−tW̃0
)

, (49)

The positive part of the spectrum will push memristors to the w = 1 state, while the negative part to
the w = 0 state. We can write the trace on each positive and negative state as:

1
N

trace(e−λ−i tw̃i) =
∫

dλρ−(λ)e−λt〈w0
i 〉 =

1
2

∫
dλρ−(λ)e−λt, (50)

if the memristors are randomly initialized. As it turns out, if ρ−(λ) is power law distributed, then
〈w(t)〉 ≈ tγ. From this, we observe that the power spectrum distribution is of the form P(ω) ≈
ω−(1−γ), from which a “critical state" is obtained. It was shown in [90] that if the circuit is random
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enough, numerical simulations produce γ ≈ −1. A similar argument can be obtained for ρ+(γ) with
the transformation w → 1− w. This result, when using netowkrs of HP-memristors, is in line with
what is experimentally observed in [96].

The mechanism above is not classified as SOC, and it is only required a certain matrix A to obtain
it. This implies that unless thresholding is present, the criticality observed is not self-tuned, but it might
be due to the complex interconnections. This is not the case if, however, the memristors themselves
have voltage induced switching [99]. In this case, the criticality is due to the a SOC-like phenomenon
which had been already observed in random fuse networks [135], which is described by a percolation
transition.

6.4. Memristors and CMOS

The idea of using variable resistances in order to implement learning algorithms is not new.
As we have seen, crossbar arrays were introduced already as early as 1961 [48]. The idea of using
instead variables resistances precedes the paper of Steinbuch by one year, and was introduced by
Widrow [136] in order to implement the Adaline algorithm explained below. The “memistor", a name
extremely similar to the one of “memristor" introduced ten years later, was a variable resistance
controlled in current. This implies that, differently from a memristor, a memistor is a 3-port device
that is current-controlled externally [137]. This factor limits the ability to package a huge number of
synapses. For (modern) machine learning applications, however, it is necessary to implement learning
rules with a large number of neurons and synapses. As we have seen, memristors are the equivalent
component for a synapse [138]. The neuron is instead the biological equivalent of a N-port logic gate
(threshold function). For more general applications a crossbar-array like packing is desirable. There
are many ways of using memristors for applications in neural networks. To get a sense of the type
of circuits involved. For instance, the circuit proposed in Fig. 13 provides a simple circuit which
has a linear output neuron controlled by a resistance R, without threshold. The threshold can be
however easily introduce via a Zener diode. In order to understand why memristors do not have
necessarily an advantage over digital implementations of neural networks, we follow the argument
of [139] to understand the energy efficiency. Using Landauer theory, the energy of a digital gate is
Egate ≈ −2 log(perr)kT, where perr is the probability of an error. For the analog implementation above,
the only dissipation is due to Johnson-Nyquist noise in the amplifier, which is of the order 4kT f , with
f the amplifier’s bandwidth and N the number of synapses. Keeping track of error and number of bit
precision L, one reaches the conclusion that

Edig ≈ 24 log(
1

perr
) log2

2(L)NkT, (51)

Ememr ≈
1
24

log(
1

perr
)L2N2kT, (52)

which scales in the number of artificial neurons in favor of digital implementations. This surprising
result thus confirms that the devil is in the detail, and that not necessarily analog implementations of
analog systems are better.

The architecture of Fig. 13 however does not take advantage of the scalability of crossbar arrays
which we have mentioned earlier, in terms of number of neurons, and other implementations might
be more energy efficient. For instance, in [140] first experimental results of memristive technology
for pattern classification on a 3x3 image matrix was studied using crossbars and TiO2 memristors. In
general, learning using crossbars follows a general weight update strategy. For regressions, current
controlled memristors can be used with a simple serial architecture [63] while unsupervised learning
can be performed by implementing the K-means algorithm [141–143].

Next, we focus on applications of memristor technology for Machine Learning (ML). Algorithms
like backpropagation on conventional general-purpose digital hardware (i.e., von Neumann
architecture) is highly inefficient: one reason for this is the physical separation between the memory
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Figure 13. Memristor equivalent of a neural network with three neurons and two synapses, with an
output amplifier.

Figure 14. Feedback loop and learning in crossbar arrays.
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storage (RAM) of synaptic weights and the arithmetic module (CPU), which is used to compute the
update rules. The bus between CPU and RAM acts as a bottleneck, commonly called von Neumann
bottleneck. The idea is thus to use memristive based technology to introduce computation and storage
on the same platform. One way to introduce learning into crossbars is by introducing feedback into
the system, as in Fig. 14.

Let us consider a discretized dynamics, and call Wk the weight matrix in the crossbar array at
time step k. A general update is of the form

Wk+1 = Wk + f (Wk, Q), (53)

where f (Wk) is a certain function of the weights and some ancillary variables Q (which could be
training data, inputs, outputs, etc). For instance, in the case of neural networks training (gradient
descent type), f (Wk) = −η∇Wk‖~t−~o‖2 where~t is the output we aim to obtain (given the inputs),
and ~o is the output. For resistive crossbars, we have seen that ~o = G(Wk)~v is linear in the inputs
and G is the conductance, while η is a time scale parameter. If f (W)mn = ηxk

mxk
n, where xk

n is the
teacher inputs (patterns) indexed by the index k = 1, · · · , K, then the Hebbian learning rule called
adaline algorithm [57,144]. From the point of view of circuit theory, the feedback can be introduced
via CMOS-Memristor integration. For instance, in [145] one way to perform online learning with an
adaline algorithm using metal-oxide-semiconductor field-effect transistors (MOSFETs).

Models like the one just described can, for instance, be used for sparse coding [146]. Sparse coding
can be mathematically formulated as a problem in linear algebra. Let us consider a vector which
describes a certain quantity of interest ~x (for instance, an image), and a dictionary which is available as
~φi, i = 1, · · · , M. Let us assume that φi and ~x belong to RN . If M > N and the vectors are independent,
we can always find the coefficients ai such that ∑i ai~φ

i = ~x, and there is an infinite number of ways to
do this expansion. The goal of sparse coding is solving the following optimization problem:

~x =
M

∑
i=1

ai~φ
i, (54)

min~a‖~a‖0, ‖ · ‖ 0-norm, (55)

and which is notoriously NP-hard. The problem above can be relaxed by replacing the 0-norm with the
1-norm, and a system of differential equations for continuous neurons can be implemented in crossbar
arrays. In general, equations of the type

d
dt
~u(t) = F(~u(t),~q(t)), (56)

where ui(t) and q(t) are some control functions and F(·) represents a generic continuous function.
Some details are provided in the Appendix B. The variables ui(t) are intented as the memory elements
in a memristor: in a crossbar array system, the equations above have been implemented by combining
a field programmable gate array (FPGA) with a crossbar in [147], where using a threshold function
Tλ(x) = x if x > λ and zero otherwise. Another update rule used in experiments is Sanger’s update
rule [148], defined as

Wk+1 = Wk + 2η~ot(~x− (2Wk − I)~o), (57)

where~o is the output of the crossbar array, and ~x the input, and used in [149] in order to perform PCA,
again with the use of FPGA.

We have already discussed reservoir computation [63,89] as another way of using memristors
within the framework of machine learning whilst taking advantage of their temporal dynamics.
Reservoir computation is usually divided into two main parts: a network (called reservoir) in which
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the connectivity is fixed and connected to the input, and a second network (which is being trained)
which is squeezed between the reservoir and the output. This framework was implemented with a
trivial memristor reservoir and one layer output with 32x32 crossbar of memristors and trained using
an external FPGA. The model was then used to classify the MNIST dataset (5x4 images) as a proof
of principle application. The advantage of using reservoir computing is that it can be implemented
both for online learning (for instance via logistic regressions) and for classification in a teacher-signal
framework, and with relatively little computational effort.

Concluding, CMOS provides an advantage for controlling memristive circuits, but it is possible to
use just the inner dynamics of memristors to perform learning [103].

The main question that remains unanswered is whether analog system have an advantage over
digital ones at all. A strong argument is provided by Vergis et al., where it is shown that analog devices
can be simulated with polynomial resources on a digital machine with enough resources. We pointed
out the importance of the collective properties of memristive circuits. The dynamics of a collection
of memristors interacting on a circuit can, in principle, derived from the implementation of circuit
voltage and current constraints, and strongly depends on the dynamics of a single unit. Understanding
the interaction of memristors via Kirchhoff laws can in principle enable the application of memristors
to a variety of computational tasks. Below, we make this more precise using a general mapping from
digital to analog computation. We consider a differential equation of the form:

d~y
dt

(t) = f (~y(t), t), y(t0) = y0, (58)

which describes a physical system. In [150], a constructive proof based on Euler integration method
is provided, and it is shown that the amount of resources needed to simulate the system above on a
digital machine is polynomial in the quantities R and ε:

R = max
t0≤t≤t f

||d
2~y

dt2 (t)||, ε = ||~y(t f )−~y∗||, (59)

where ~y∗ is the simulated system, and thus ε is our required precision. Since for quantum systems
R ∝ 2Nr∗, and r∗ is a constant, classical computers require an exponential amount of resources to
simulate a quantum physical systems. This does not mean that classical systems can always be
simulated: if the second derivative is large, our system requires a lot of computational power to be
simulated on a digital machine. A similar argument applies also to quantum computers, on which
there has been a huge effort in the past decades. In the case of a quantum system with N qubits, the
vector ~y(t) is 2N dimensional according to the Schrödinger equation. In a typical (analog) electronic
computer, d2

dt~y is the derivative of the voltage. Thus, if our circuit presents instability, it is generically
hard to simulate the system. This is specially striking in the case of chaotic behavior, which is known
to emerges when a dynamical system is connected to a hard optimization problem [151]. These are
also arguments against the simulation of memristive system on a digital computers, which do not
apply to the actual physical system performing the analog computation.

7. Closing remarks

In the present paper we have provided an introduction and overview of both the applications as
memory, and the appealing features of memristors beyond the purpose of memory storage. We have
discussed the history of memristors, with the purpose of helping the reader understand their role in
modern electronic circuitry and why memory is a normal feature at the nanoscale. The perspective
which we have tried to provide is that despite current applications focus on the implementation of
standard machine learning algorithms on chips, memristors can be used to perform analog computation
which goes beyond the standard framework of crossbars.

In magnetic materials which are commonly used for memory purposes, the interaction between
the magnetic spins (which represent the bits) is purposely avoided in order to guarantees the spin
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to flip, and memory be lost. Via the interaction between the spins however, logic gates can be
constructed. Similarly, memristors can be used as memories trying to be avoid their interaction in
the circuit via Kirchhoff laws, or one can try to harness this interaction to perform computation.
At the most basic level, memristors can be interpreted as synapses, and the introduction of hybrid
CMOS-memristor technology can allow the implementation of supervised and unsupervised machine
learning algorithms that make use these features. This resonates with the fact that memristors have
been proposed to play an important role in biology, as for instance in the case of the amoeba adaptation
and the Hudkin-Huxley model. In electronics, there is an ongoing debate which focuses on the
fundamental nature of the memristor [23,25]: shall the memristor be considered as a purely passive
and fundamental device, along resistance, capacitance and inductance? Independently from the answer
to this question or not, memristive type switching is a realistic phenomenon observed experimentally
and fully deserves the attention of scientists and technologists.

Building on these ideas, it make sense to pursue the complex dynamical features of memristors,
interacting via Kirchhoff laws, for self-organizing computational devices. Before the dynamical features
of memristors can be fully harnessed, it is imperative to be able to understand the single memristor
physical principle in order to implement reliable memory units, in particular using the crossbar array
framework we have described. This task requires a deep knowledge of the dynamics of a single
memristor component, via models which accurately describes the relevant behavior of the device.

We have also tried to emphasize that there are several mechanisms which enable resistive
switching, and different components will follow different mechanisms to change state. Despite
their difference, the dynamics of components share a common feature: the competition between
two phenomena. These phenomena can be cast as “forgetting" (decay to an off state when voltage
is not applied) and “reinforcement" (tendency to state change which depends on the current). As
discussed by Kohonen, this competition is an important feature among several analog computing
paradigms. As examples we take ant-colony optimization [77] and experimental results with
memristive devices [37,152].

We also pointed out the importance of the collective properties of memristive circuits for
computation. In particular how we can harness the intrinsic variability of memristors to different
computational problems. However, analog machines are good at specific computational tasks, while
digital ones excel in their generality. Thus the integration of CMOS and analog systems in future
computers is favorable in the long term. Memristors are one of many technologies which are able to
encode computational tasks and simultaneously be used as memory; which can be easily integrated
in modern computers. However, in certain instances the von Neumann architecture is not the best
architecture for performing calculations, and we mentioned the case of quadratic optimization and
generic combinatorial problems.

Due to our focus in memristives devices for computation, and the models of computation that are
compatible with their properties, we have omitted reviewing the role that memristive system can have
in biological cognitive systems, and their relation to stochastic resonance [153–160]. This decision was
taken to keep the presentation focused and consistent.

In conclusion, we have provided an overview of the current research questions and applications
of memristive technology. We have provided also a rather long, but far from exhaustive bibliography
on the subject which might help the interested reader in learning the subject.
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Appendix A Physical mechanisms for resistive change materials

In the main text we have mentioned that Branly’s coherer can be interpreted as a granular material
induced memristor. Before we discuss some more modern memristors, we believe it makes sense to
give a sense why granularity is important for nonlinear resistive behavior. Branly’s coherer serves as
perfect homemade memristor, as it simply requires either a (fine) metallic filling or some metallic beads,
and it falls within the Physics discipline of electrical properties of granular media. The qualitative and
qualitative behavior of the case of the metallic beads contained in (and constrained to) an insulating
medium of PVC is presented below [7,20]. The metallic beads are assumed to be in mutual contact,
and a force F applied at the two extremities enforces it. We assume that there are two temperatures
in the system one at the microcontact between the beads at an equilibrium temperature T [20] and a
room temperature T0 which is the one of the beads. Without going into the details, it is possible to
show a non-linear behavior in the resistivity of N beads via the study of the contact between the beads.
The metallic beads contacts can be though of as Metal-Oxide-Oxide-Metal contact, reminishent of the
memristor we will discuss below. Kohlrausch’s equation establishes the voltage drop at the contact.
Given the current I flowing in the beads, one has that

V = NL
∫ Tc

T0

λ(T)ρel(T)dT, (A1)

where λ(T) is the thermal conductivity of the material and ρel(T) the density of electrons, while T0

is the beads room temperature and Tc the maximum temperature at the contact when the current is
flowing. If R0 is the resistance when the contact is cold, clearly we can rewrite (using Ohm’s law) the
equation above as the following effective equation:

IR0 = V(T). (A2)

where R0 depends on the geometry of the contact. It can be shown however that the maximum
temperature Tc depends on the voltage as T2

m = T2
0 + U2

4L where L is the Lorentz constant, by noticing
that via the Wiedemann-Franz that ρelλ = LT. Also Mathiesen’s rule for the electron mobility shows
that the electron mobility is linear in T, with a proportionality constant that is material dependent.
Putting all these facts together, it is not hard to see the hysteretic behavior of the system. This effective
model reproduces well the controlled experiments. Since the voltage drop is zero when the current
is zero, this also implies a pinched hysteresis, or resistive behavior. These “mechanical" nonlinear
resistors are prototypes for the more complicated case shown below [see 20, for more details].

Appendix A.1 Phase change materials

Phase change materials (PCM) are glassy materials: this implies that usually these materials
can have different phases in which the material can be either ordered (crystalline-like) or disordered
(amorphous, as in a liquid). In these two phases we associate two different resistances. If the structural
change can be associated to the values of an applied voltage, then when the transition occurs one has a
rather quick transition from one resistive state to another [161–163] due to an electrical instability. These
materials are considered memristors by some, but not by all researchers, and were discovered as early
as the late ’60s [164] in amorphous chalcogenides. This is the most mature of the emerging memory
technologies. Since we have used various analogies befores, the reader in need of a visual way to
understand these type of materials might find some ideas on the shelves of a pharmacy. Phase-change
materials are being used for instant freeze packages normally used in case of injuries, and are also
called “gel packs". In order to initiate the cooling, users typically need either to mix two materials, or
the quickly apply a certain force on the package. The material will use the “kick" to initiate a phase
transition, absorb the heat and thus lower the temperature of the package. PCM memory devices work
in a similar manner, but on a much lower scale (∼ 20 nm), and the “kick" is provided by the electric
field. These materials were not commercial for years due to the rapid advancement of silicon-based
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Figure A1. Current-Voltage diagram typical of a PCM memory storage. The sharp transition at low
currents and at a typical “Critical voltage" is clearly visible.

technology. The typical I-V diagram is shown in Fig. A1. One generically has two type of materials
squeezed between two electrodes: on one side one has an insulating material with a small conducting
channel, directly connected to the phase change material. As the channel heats up, the phase change
material locally changes phase starting from point of contact at the conduction channel, until it reaches
the other electrode.

In some chalcogenides-based memristors (called Self-Directed channel memristors, or SDC),
ions are constrained to follow certain channels, and their operation is similar in many ways to both
PCM-components and atomic switches [165].

Appendix A.2 Oxide based materials

The oxide and anionic materials based on transition metal work instead differently. In order to
understand why a memristor might be different from a normal conductor it is useful to understand
what happens when two materials with different properties are “merged" together: those of charge
donor (excess of electrons) and charge receiver (excess of electron “holes"), which are also called doped
and undoped materials. In oxide materials the carrier of the charge is typically the oxygen. It should
be mentioned that whilst various mechanisms have been suggested, very likely all of these coexist in a
typical oxide material, including filament formation [166]. In general, whether the resistive switching
is thermally or electrically driven, the typical understanding is that a chemical transition occurs in
the material, and that the hysteresis is due to vacancy movements in the materials. The transition is
either directly driven by the direct application of the electric field, or as a byproduct of the heating of
the material due to the current. In semiconductors, the key quantity of interest is the energy gap Eg

between the valence and the conduction channels. If the gap is of the order of Ep ≈ kT, then thermal
effects which might let a charge carrier jump into the conduction channel become important. If the
gap is too large, electric effects are the dominant ones. One example is provided by the bipolar and
non-volatile switching, described by Fig. A2.

The shape of I-V curve generically shows what type of mechanism is underlying the switching. As
the field effects become more prominent (for instance, the effect of Schottky barriers at the junctions),
the I-V diagram becomes non-linear. There can be other non-volatile and non-volatile switching
in which we are not discussing here, and due to thermal excitations only. A simplified model of
vacancy-charge movement in the dielectric has been proposed in [167]. When non-linearities are
present in non-volatile materials, it means that the switching is dominated by the electrical switching.
In many ways, some of the physical phenomena happening in memristors can be intuitively understood
in terms of the simplest semiconductor: the diode, represented in Fig. A3 (a).

The diode can be thought of as a dramatically nonlinear resistance, made by merging two material,
a doped (filled with defects) and undoped one, with a thin interstitial when charges exchange. We
can characterize the diode by the two voltages Vbreak < 0 < Vcrit. For voltages above Vcrit, the diode
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Figure A2. Bipolar and non-volatile switching pinched hysteresis.

Figure A3. The pn-junction. (a) The pink region is the charge exchange region for the doped and
undoped region. (b) A stylized response in voltage of a diode. In many ways, the shape resembles the
nonlinearity which occur in nonlinear memristors in which field effects become dominant.
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will have a very low resistance, and for voltages lower than Vbreak, the diode will breakdown. In
many ways, the shape of Fig. A3 (b) is what is usually seen in memristive oxide components, with the
difference that the memristor will exhibit a hysteresis. At the interfaces (pink zone in Fig. A3 (a)), the
charge carriers will have to overcome a barrier (Schottky barrier) (characterized by Vcrit) to continue
their flow into the material. When this barrier is overcome, the flow is almost free. On the other hand,
when the flow is inverted, the undoped material will act as a very high barrier to the flow into the
dielectric region. However, the charge carriers can still penetrate the material and damage it in an
irreversible manner. These are usually called Zener cascades, and are often observed in memristors.
Albeit cartoonish, this picture can help understand some of the nonlinear phenomena happening in
memristors, and not captured by the linear resistance model we discussed above. As a final comment,
endurance in oxide materials is one of the key problems in the technological competitiveness of
memristors [168]. When the number of cycles becomes comparable with the lifetime of the component,
also some exotic phenomena as multiple pinchpoints (tri- or four-lobes hysteresis loops) in the V-I
diagram can occur. These can be modelled via the introduction of fractal derivatives [169].

Appendix A.3 Atomic switches

The third mechanism described in this paper (albeit not the last!), and maybe the most visually
appealing, is the filament growth memristor. The materials, often called atomic switch networks in the
literature, work in a slightly different manner than the previously described memristors [96,170–173].
The idea behind these components is that the two electrodes work, when the electrical field is applied,
as an electrode and a catod. The applied electric field induces an electrochemical reaction which
triggers the growth of filaments. From a highly resistive state, these filaments reduce the resistivity by
introducing new channels for the charge carriers to flow. The closest physical growth model which can
describe the growth of the filaments is provided by Diffusion-Limited-Aggregation (as in Fig. A4b).
Each colored filament represents one possible channel. The typical charge carriers are either silver ions
or some silver compounds. There are not many experiments focused instead on the collective behavior
of memristive networks. It is worth mentioning however what are the observed features for Ag+, or
Atomic Switch Networks, whose collective dynamics is interesting for the emergence of seemingly
critical states [174]. In fact, whilst the dynamic of a single filament is simpler to describe, the system
exhibits collective power law power spectrum with an exponent close to 2. Albeit this exponent can be
explained via the superposition of wide range of relaxation timescales for each memristor [90], the
critical behavior is the accepted one because of their intrinsic nonlinearity [96].

(a) Dendritic growth in silver ion at the micro meter scale,
from [175]. (b) Diffusion-Limited-Aggregation simulated using

NetLogo.

Figure A4. Comparison between dendritic growth in silver ion materials and
Diffusion-Limited-Aggregation simulated using NetLogo.

In order to see the variety of memristive behavior, ere we consider two models suggested in the
literature which are different than the simple TiO2 linear model memristor.
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The first, suggested in [176] as a phenomenological switching model between two off and on
states in TiO2, is of the form:

R(w) = Roff(1− w) + Ronw, (A3)

dw
dt

=

 foff sinh( i
ioff

)e−e
w−aoff

wc − |i|b − w
wc i > 0,

fon sinh( i
ion

)e−e−
w−aon

wc − |i|b − w
wc i < 0,

(A4)

where the parameters fon/off, ion/off and aon/off are state dependent, while wc and b are not. Also, the
model above shows that the energy depends exponentially on the current.

Another metal oxide of interest is WOx, studied in [177]. The model equations for a single
component are given by:

I = α(1− w)
(

1− eβV
)
+ wγ sinh(δV), (A5)

dw
dt

= λ
(

eη1V − e−η2V
)

. (A6)

The model above, it is interesting to note, is controlled in voltage rather than current, and the
parameters α, β, γ, δ and η1 and η2 are positive. For V = 0, I = 0, which implies a pinched hysteresis
(however, the hysteresis is different from TiO2 devices). The parameter w is physically interpreted
as the portion of the device in which oxygen charges tunnel through the device. For w = 1 one has
tunneling dominated device, while at w = 0 one has a Schottky-dominated conduction.

One question which might be relevant to mention at this point is: what is the advantage of using
memristors rather than other memory devices? The perpective of the present paper is that there are
two different reasons why these devices can turn useful [178]. The first advantages is the density
compared to standard memory. For instance, compared to DRAM and SRAM, memristors (or PCM)
retain memory for years rather than less than seconds. Compared to SRAM however, whose read-write
time is less than a nanosecond, memristors with current technology are one order of magnite slower.
Also, in terms of read-write cycles, the technology of memristors and PCM is between 3− 5 order of
magnitude less, but still much more durable than HDD. The picture is that memristors and PCM are
not uniquely better than the current standard in computing.

Appendix A.4 Spin torque

Spin-torque memory materials have an advantage in terms of durability Grollier et al. over other
materials such as transition metal oxides. These are often considered as second-order memristive
devices but a simplified model of spin-torque induced resistance is provided in [180]. The starting
point is the Landau-Ginzburg-Gilbert (LGG) equation with a spin-torque interaction [181]. We consider
two magnetic layers perpendicular to the flow of the current, and in which one is fully polarized: its
magnetic orientation is fixed in a direction perpendicular to the current, while the second layer is free.
Via the LGG equation with rotational symmetry, the dynamics of the angle between the pinned and
free layer is given by

d
dt

θ(t) = αγHk sin (θ(t)) (p− cos (θ(t))) , (A7)

where γ is called gyromagnetic ratio, α is the damping parameter, Hk is the perpendicular anysotropy in
th free layer and p = f h̄I is a current dependent which represents the effect of the current-polarization
interaction. We have emphasized the presence of h̄ to imply that this is a purely quantum correction.
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In order to see how this device is a memristor, we see that in the simpler case with full rotational
symmetry one has an induced magneto-resistance R(θ), which depends on the angle θ in the case of
full rotational symmetry as:

R (θ(t)) =
1

a + b cos (θ(t))
, (A8)

where a and b are constants which depend on the resistance in the free layer and on the ration between
the highest and lowest achievable resistances. We thus see that in the case with full rotational symmetry,
spin-torque materials are first order memristors.

Appendix B Sparse coding example

Sparse coding is the solution of the following optimization problem:

~x =
M

∑
i=1

ai~φ
i, (A9)

min~a‖~a‖0, ‖ · ‖ 0-norm, (A10)

and which is notoriously NP-hard. Given some technical conditions which we do not discuss, the
problem above can be approximated in certain situations by replacing the 0-norm with the 1-norm,
and the minimization replaced with

min~a‖~x−
M

∑
i=1

ai~φ
i‖2

2 + λ‖~a‖1, (A11)

where ‖ · ‖2 is the two norm and λ a Lagrange multiplier. The problem above can be encoded in a
neural system via a locally competitive algorithm (LCA), which is formulated as follows. Given the
coefficients ai(t), consider a “neuron" variable ui(t) such that ai(t) = Tλ (ai(t)) and where Tλ(·) is a
threshold function. We consider an energy function of the form

E =
1
2
‖~x− x̂‖+ λ ∑

m
C(am), (A12)

with ~x defined as above and x̂ = ∑M
i=1 ai~φ

i, and C(·) a certain unspecified cost function. One then
looks at a dynamics for the neuron state ui(t) of the form

u̇i(t) =
1
τ

δ

δai
E, (A13)

for a certain relaxation constant τ, which it can be easily seen to be defined (given ~b(t) = Φ~x(t),
Φ = [~φ1, · · · ,~φM], as

u̇m(t) =
1
τ

(
bm(t)− um(t)− ∑

n 6=m
Gmnan(t)

)
, (A14)

with Gmn = ~φm ·~φn. The correspondence between the threshold function and the cost function is given
by the equation:

λ
d

dam
C(am) = um − am = (um − Tλ(um)) (A15)

The equations above are suitable to be implemented on a memristive circuit, as besides a forcing
term and a leaky integration term, there is a nonlinear integration term and are implentable via
Hopfield continuous networks [182,183]. The equations above would be linear if the thresholding
function Tλ were trivial.



Technologies 2018, xx, 1 36 of 42

1. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008,
453, 80–83.

2. Chua, L. If it’s pinched it’s a memristor. Semiconductor Science and Technology 2014, 29, 104001.
3. Chua, L. Memristor-The missing circuit element. IEEE Transactions on Circuit Theory 1971, 18, 507–519.
4. Chua, L.; Sung Mo Kang. Memristive devices and systems. Proceedings of the IEEE 1976, 64, 209–223.
5. Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in

redox-based resistive switches require extension of memristor theory. Nature Communications 2013, 4, 1771.
6. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nature Materials 2007, 6, 833–840.
7. Béquin, P.; Tournat, V. Electrical conduction and Joule effect in one-dimensional chains of metallic beads:

hysteresis under cycling DC currents and influence of electromagnetic pulses. Granular Matter 2010,
12, 375–385.

8. Di Ventra, M.; Pershin, Y.V. On the physical properties of memristive, memcapacitive and meminductive
systems. Nanotechnology 2013, 24, 255201.

9. Di Ventra, M.; Pershin, Y.V. Memory materials: a unifying description. Materials Today 2011, 14, 584–591.
10. Kuzum, D.; Yu, S.; Wong, H.S.P. Synaptic electronics: materials, devices and applications. Nanotechnology

2013, 24, 382001.
11. Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nature Nanotechnology 2013,

8, 13–24.
12. Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum,

D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.;
Agudov, N.V.; Dubkov, A.A.; Rosário, C.M.M.; Sobolev, N.A.; Spagnolo, B. Field- and irradiation-induced
phenomena in memristive nanomaterials. physica status solidi (c) 2016, 13, 870–881.

13. Mead, C. Neuromorphic electronic systems. Proceedings of the IEEE 1990, 78, 1629–1636.
14. Freeth, T.; Bitsakis, Y.; Moussas, X.; Seiradakis, J.H.; Tselikas, A.; Mangou, H.; Zafeiropoulou, M.; Hadland,

R.; Bate, D.; Ramsey, A.; Allen, M.; Crawley, A.; Hockley, P.; Malzbender, T.; Gelb, D.; Ambrisco, W.;
Edmunds, M.G. Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism.
Nature, 444, 587–591.

15. Adamatzky, A., Ed. Advances in Physarum Machines; Vol. 21, Emergence, Complexity and Computation,
Springer International Publishing: Cham, 2016.

16. Dalchau, N.; Szép, G.; Hernansaiz-Ballesteros, R.; Barnes, C.P.; Cardelli, L.; Phillips, A.; Csikász-Nagy, A.
Computing with biological switches and clocks. Natural Computing.

17. Di Ventra, M.; Pershin, Y.V. The parallel approach. Nature Physics 2013, 9, 200–202.
18. Davy, H. Nicholson’s Journal of Natural Philosophy. Chemistry, and the Arts 1801, 4, 326.
19. Falcon, E.; Castaing, B.; Creyssels, M. Nonlinear electrical conductivity in a 1D granular medium. The

European Physical Journal B 2004, 38, 475–483.
20. Falcon, E.; Castaing, B. Electrical conductivity in granular media and Branly’s coherer: A simple experiment.

American Journal of Physics 2005, 73, 302–307.
21. Branly, E. Variations de conductibilite sous diverse influences electriques. R. Acad. Sci 1890, 111, 785–787.
22. Marconi, G. Wireless Telegraphic Communication: Nobel Lecture 11 December 1909, Nobel Lectures. In

Physics; Elsevier Publishing Company 196–222. p. 198: Amsterdam, 1967; pp. 1901–1921.
23. Abraham, I. The case for rejecting the memristor as a fundamental circuit element. Scientific Reports 2018,

8, 10972.
24. Strogatz, S. Like Water for Money. https://opinionator.blogs.nytimes.com/2009/06/02/guest-column-

like-water-for-money/, 2009. Last accessed on 2018-08-06.
25. Vongehr, S.; Meng, X. The Missing Memristor has Not been Found. Scientific Reports 2015, 5, 11657.
26. Vongehr, S. Purely Mechanical Memristors: Perfect Massless Memory Resistors, the Missing Perfect

Mass-Involving Memristor, and Massive Memristive Systems, [1504.00300].
27. Volkov, V.; et al. Memristors in plants. Plant Signal Behav. 2014, 9.
28. Gale, E.; Adamatzky, A.; de Lacy Costello, B. Slime Mould Memristors. BioNanoScience 2015, 5, 1–8.
29. Gale, E.; Adamatzky, A.; de Lacy Costello, B. Erratum to: Slime Mould Memristors. BioNanoScience 2015,

5, 9–9.

https://opinionator.blogs.nytimes.com/2009/06/02/guest-column-like-water-for-money/
https://opinionator.blogs.nytimes.com/2009/06/02/guest-column-like-water-for-money/
http://xxx.lanl.gov/abs/1504.00300


Technologies 2018, xx, 1 37 of 42

30. Szot, K.; Dittmann, R.; Speier, W.; Waser, R. Nanoscale resistive switching. Phys. Status Solidi 2007,
1, 10076–10092.

31. Tsuruoka, T.; K., T.; Hasegawa, T.; Aono, M. Forming and switching mechanisms of a
cation-migration-based oxide resistive memory. Nanotechnology 2010, 21.

32. Abraham, I. Quasi-Linear Vacancy Dynamics Modeling and Circuit Analysis of the Bipolar Memristor.
PLoS ONE 2014, 9, e111607.

33. Abraham, I. An Advection-Diffusion Model for the Vacancy Migration Memristor. IEEE Access 2016,
4, 7747–7757.

34. Abraham, I. Memristor - The fictional circuit element. Scientific Reports 2018, 8, 10972, [1808.05982].
35. Tang, S.; Tesler, F.; Marlasca, F.G.; Levy, P.; Dobrosavljević, V.; Rozenberg, M. Shock Waves and

Commutation Speed of Memristors. Physical Review X 2016, 6, 011028.
36. Wang, F. Memristor for Introductory Physics, [0808.0286].
37. Ohno, T.; Hasegawa, T.; Nayak, A.; Tsuruoka, T.; Gimzewski, J.K.; Aono, M. Sensory and short-term

memory formations observed in a Ag2S gap-type atomic switch. Appl. Phys. Lett. 2011, 203108, 1–3.
38. Pershin, Y.V.; Ventra, M.D. Spice model of memristive devices with threshold. Radioengineering 2013, pp.

485–489.
39. Biolek, Z.; Biolek, D.; Biolková, V. Spice Model of Memristor With Nonlinear Dopant Drift. Radioengineering

2009, pp. 210–214.
40. Biolek, D.; Di Ventra, M.; Pershin, Y.V. Reliable SPICE Simulations of Memristors, Memcapacitors and

Meminductors. Radioengineering 2013, 22.
41. Biolek, D.; Biolek, Z.; Biolkova, V.; Kolka, Z. Reliable modeling of ideal generic memristors via state-space

transformation. Radioengineering 2015, 24, 393–407.
42. Nedaaee Oskoee, E.; Sahimi, M. Electric currents in networks of interconnected memristors. Physical

Review E 2011, 83, 031105.
43. Joglekar, Y.N.; Wolf, S.J. The elusive memristor: properties of basic electrical circuits. European Journal of

Physics 2009, 30, 661–675.
44. Mostafa, H.; Khiat, A.; Serb, A.; Mayr, C.G.; Indiveri, G.; Prodromakis, T. Implementation of a spike-based

perceptron learning rule using TiO2-x memristors. Frontiers in Neuroscience 2015, 9.
45. Linn, E.; Di Ventra, M.; Pershin, Y.V. ReRAM Cells in the Framework of Two-Terminal Devices. In Resistive

Switching; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 31–48.
46. Pi, S.; Li, C.; Jiang, H.; Xia, W.; Xin, H.; Yang, J.J.; Xia, Q. Memristor Crossbars with 4.5

Terabits-per-Inch-Square Density and Two Nanometer Dimension, [1804.09848].
47. Meena, J.; Sze, S.; Chand, U.; Tseng, T.Y. Overview of emerging nonvolatile memory technologies. Nanoscale

Research Letters 2014, 9, 526.
48. Steinbuch, K. Die Lernmatrix. Kybernetik 1961, 1, 36–45.
49. Kohonen, T. Self-Organization and Associative Memory; Vol. 8, Springer Series in Information Sciences, Springer

Berlin Heidelberg: Berlin, Heidelberg, 1989.
50. Steinbuch, K. Adaptive networks using learning matrices. Kybernetik 1964, 2.
51. Xia, L.; Gu, P.; Li, B.; Tang, T.; Yin, X.; Huangfu, W.; Yu, S.; Cao, Y.; Wang, Y.; Yang, H. Technological

Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication. Journal of Computer Science and
Technology 2016, 31, 3–19.

52. Strukov, D.B.; Williams, R.S. Four-dimensional address topology for circuits with stacked multilayer
crossbar arrays. Proceedings of the National Academy of Sciences 2009, 106, 20155–20158.

53. Li, C.; Han, L.; Jiang, H.; Jang, M.H.; Lin, P.; Wu, Q.; Barnell, M.; Yang, J.J.; Xin, H.L.; Xia, Q.
Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nature Communications
2017, 8, 15666.

54. Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; Song, W.;
Strachan, J.P.; Barnell, M.; Wu, Q.; Williams, R.S.; Yang, J.J.; Xia, Q. Efficient and self-adaptive in-situ
learning in multilayer memristor neural networks. Nature Communications 2018, 9, 2385.

55. Itoh, M.; Chua, L. Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks.
In Memristor Networks; Springer International Publishing: Cham, 2014; pp. 649–713.

56. Nugent, M.A.; Molter, T.W. Thermodynamic-RAM technology stack. International Journal of Parallel,
Emergent and Distributed Systems 2018, 33, 430–444, [https://doi.org/10.1080/17445760.2017.1314472].

http://xxx.lanl.gov/abs/1808.05982
http://xxx.lanl.gov/abs/0808.0286
http://xxx.lanl.gov/abs/1804.09848
http://xxx.lanl.gov/abs/https://doi.org/10.1080/17445760.2017.1314472


Technologies 2018, xx, 1 38 of 42

57. Hebb, D. The Organization of Behavior; Wiley & Sons, 1949.
58. Koch, G.; Ponzo, V.; Di Lorenzo, F.; Caltagirone, C.; Veniero, D. Hebbian and Anti-Hebbian

Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections. Journal of Neuroscience
2013, 33, 9725–9733, [http://www.jneurosci.org/content/33/23/9725.full.pdf].

59. La Barbera, S.; Alibart, F. Synaptic Plasticity with Memristive Nanodevices. In Advances in Neuromorphic
Hardware Exploiting Emerging Nanoscale Devices; Suri, M., Ed.; Springer: New Delhi, 2017; chapter 2, pp.
17–43.

60. Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and
neural networks. Microelectronic Engineering 2018, 190, 44–53.

61. Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G.; Linares-Barranco, B. STDP and
STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience
2013, 7.

62. Payvand, M.; Nair, M.; Müller, L.; Indiveri, G. A neuromorphic systems approach to in-memory computing
with non-ideal memristive devices: From mitigation to exploitation. Faraday Discussions 2018.

63. Carbajal, J.P.; Dambre, J.; Hermans, M.; Schrauwen, B. Memristor models for machine learning. Neural
Computation 2015, 27, [1406.2210].

64. Eliasmith, C.; Anderson, C.H. Neural Engineering: Computational, Representation, and Dynamics in
Neurobiological Systems; MIT Press: Cambridge, MA, USA, 2002.

65. MacLennan, B.J. Analog computation. In Computational Complexity: Theory, Techniques, and Applications;
Meyers, R.A., Ed.; Springer: New York, 2012; pp. 161–184.

66. MacLennan, B. The promise of analog computation. International Journal of General Systems 2014,
43, 682–696.

67. MacLennan, B.J. Physical and Formal Aspects of Computation: Exploiting Physics for Computation and
Exploiting Computation for Physical Purposes. In Advances in Unconventional Computing; A., A., Ed.;
Springer: Cham, 2017; pp. 117–140.

68. Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 2014, 470, 20140182–20140182.

69. Shannon, C.E. Mathematical Theory of the Differential Analyzer. Journal of Mathematics and Physics 1941,
20, 337–354.

70. Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’ switches enable
‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876.

71. Moreau, T.; San Miguel, J.; Wyse, M.; Bornholt, J.; Alaghi, A.; Ceze, L.; Enright Jerger, N.; Sampson, A. A
Taxonomy of General Purpose Approximate Computing Techniques. IEEE Embedded Systems Letters 2018,
10, 2–5.

72. Levi, M. A Water-based Solution of Polynomial Equations. https://sinews.siam.org/Details-Page/a-
water-based-solution-of-polynomial-equations-2, 2017. Last accessed on 2018-06-20.

73. Axehill, D. Integer quadratic programming for control and communication. PhD thesis, Institute of
Technology. Department of Electrical Engineering and Automatic Control. Linköping University, 2008.

74. Venegas-Andraca, S.E.; Cruz-Santos, W.; McGeoch, C.; Lanzagorta, M. A cross-disciplinary introduction to
quantum annealing-based algorithms. Contemporary Physics 2018, 59, 174–197.

75. Rothemund, P.W.K.; Papadakis, N.; Winfree, E. Algorithmic Self-Assembly of DNA Sierpinski Triangles.
PLoS Biology 2004, 2, e424.

76. Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades.
Nature 2011, 475, 368–372.

77. Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81.
78. Bonabeau, E. Editor’s Introduction: Stigmergy. Artificial Life 1999, 5, 95–96.
79. Muller, K.R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning

algorithms. IEEE Transactions on Neural Networks 2001, 12, 181–201.
80. Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. The Annals of Statistics 2008,

36, 1171–1220.
81. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: a new learning scheme of feedforward

neural networks. Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. IEEE,
2004, Vol. 2, pp. 985–990.

http://xxx.lanl.gov/abs/http://www.jneurosci.org/content/33/23/9725.full.pdf
http://xxx.lanl.gov/abs/1406.2210
https://sinews.siam.org/Details-Page/a-water-based-solution-of-polynomial-equations-2
https://sinews.siam.org/Details-Page/a-water-based-solution-of-polynomial-equations-2


Technologies 2018, xx, 1 39 of 42

82. Patil, A.; Shen, S.; Yao, E.; Basu, A. Hardware architecture for large parallel array of Random Feature
Extractors applied to image recognition. Neurocomputing 2017, 261, 193–203.

83. Parmar, V.; Suri, M. Exploiting Variability in Resistive Memory Devices for Cognitive Systems. In Advances
in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices; M., S., Ed.; Springer: New Delhi, 2017;
chapter 9, pp. 175–195.

84. Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Statistical
Science 1999, 14, 382–401.

85. Jaeger, H. The "echo state" approach to analysing and training recurrent neural networks-with an erratum
note. Technical report, German National Research Institute for Computer Science, Bonn, Germany, 2001.

86. Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: a new framework for
neural computation based on perturbations. Neural computation 2002, 14, 2531–60.

87. Verstraeten, D. Reservoir Computing: computation with dynamical systems. Phd dissertation, Ghent
University, 2009.

88. Fernando, C.; Sojakka, S. Pattern Recognition in a Bucket. In Advances in Artificial Life; Banzhaf, W.; Ziegler,
J.; Christaller, T.; Dittrich, P.; Kim, J.T., Eds.; Springer Berlin Heidelberg, 2003; pp. 588–597.

89. Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors
for temporal information processing. Nature Communications 2017, 8, 2204.

90. Caravelli, F.; Traversa, F.L.; Di Ventra, M. Complex dynamics of memristive circuits: Analytical results and
universal slow relaxation. Physical Review E 2017, 95, 022140.

91. Sheriff, M.R.; Chatterjee, D. Optimal Dictionary for Least Squares Representation. Journal of Machine
Learning Research 2017, 18, 1–28, [1603.02074].

92. Corradi, F.; Eliasmith, C.; Indiveri, G. Mapping arbitrary mathematical functions and dynamical systems
to neuromorphic VLSI circuits for spike-based neural computation. 2014 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2014, pp. 269–272.

93. Benna, M.K.; Fusi, S. Computational principles of synaptic memory consolidation. Nature Neuroscience
2016, 19, 1697–1706.

94. Chialvo, D. Are our senses critical? Nat. Phys. 2006, 2, 301–302.
95. Hesse, J.; Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst.

Neurosci. 2014, 23.
96. Avizienis, A.; et al.. Neuromorphic Atomic Switch Networks. PLoS ONE 2012, 7.
97. Caravelli, F.; Hamma, A.; Di Ventra, M. Scale-free networks as an epiphenomenon of memory. EPL

(Europhysics Letters) 2015, 109, 28006.
98. Caravelli, F. Trajectories Entropy in Dynamical Graphs with Memory. Frontiers in Robotics and AI 2016, 3.
99. Sheldon, F.C.; Di Ventra, M. Conducting-insulating transition in adiabatic memristive networks. Physical

Review E 2017, 95, 012305.
100. Veberic, D. Having Fun with Lambert W(x) Function, [1003.1628].
101. Berdan, R.; Vasilaki, E.; Khiat, A.; Indiveri, G.; Serb, A.; Prodromakis, T. Emulating short-term synaptic

dynamics with memristive devices. Scientific Reports 2016, 6, 18639.
102. Krestinskaya, O.; Dolzhikova, I.; James, A.P. Hierarchical Temporal Memory using Memristor Networks: a

survey, [1805.0292].
103. Caravelli, F. The mise en scéne of memristive networks: effective memory, dynamics and learning.

International Journal of Parallel, Emergent and Distributed Systems 2018, 33, 350–366.
104. Caravelli, F.; Barucca, P. A mean-field model of memristive circuit interaction. EPL (Europhysics Letters)

2018, 122, 40008.
105. Caravelli, F. Asymptotic behavior of memristive circuits and combinatorial optimization, [1706.03001].
106. Boros, E.; Hammer, P.L.; Tavares, G. Local search heuristics for Quadratic Unconstrained Binary

Optimization (QUBO). Journal of Heuristics 2007, 13, 99–132.
107. Hu, S.; et al.. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat.

Comm. 2015, 6.
108. Kumar, S.; et al.. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature

2017, 548, 318–321.
109. Tarkov, M. Hopfield Network with Interneuronal Connections Based on Memristor Bridges. Advances in

Neural Networks 2016, pp. 196–203.

http://xxx.lanl.gov/abs/1603.02074
http://xxx.lanl.gov/abs/1003.1628
http://xxx.lanl.gov/abs/1805.0292
http://xxx.lanl.gov/abs/1706.03001


Technologies 2018, xx, 1 40 of 42

110. Pershin, Y.V.; Di Ventra, M. Solving mazes with memristors: A massively parallel approach. Physical
Review E 2011, 84, 046703.

111. Pershin, Y.V.; Di Ventra, M. Self-organization and solution of shortest-path optimization problems with
memristive networks. Physical Review E 2013, 88, 013305.

112. Adlerman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994,
266, 1021–1024.

113. Adamatzky, A. Computation of shortest path in cellular automata. Mathematical and Computer Modelling
1996, 23, 105–113.

114. Prokopenko, M. Guided self-organization. HFSP J. 2009, 3, 287–289.
115. Williams, S.; et al.. A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc.

Nat. Acad. Sci. 2009, 106, 1699–1703.
116. Di Ventra, M.; Pershin, Y.V.; Chua, L.O. Circuit Elements With Memory: Memristors, Memcapacitors, and

Meminductors. Proceedings of the IEEE 2009, 97.
117. Traversa, F.L.; Ventra, M.D. Universal Memcomputing Machines. IEEE Transactions on Neural Networks and

Learning Systems 2015, 26, 2702–2715.
118. Nugent MA, M.T. AHaH Computing–From Metastable Switches to Attractors to Machine Learning. PLoS

ONE 2014, 9.
119. Hurley, P. A Concise Introduction to Logic, 12 ed.; Cengage Learning: Cambridge, UK, 2015.
120. Gale, E.; de Lacy Costello, B.; Adamatzky, A. Boolean Logic Gates from a Single Memristor via Low-Level

Sequential Logic. Unconventional Computation and Natural Computation; Mauri, G.; Dennunzio, A.;
Manzoni, L.; Porreca, A.E., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 79–89.

121. Traversa, F.L.; Di Ventra, M. Polynomial-time solution of prime factorization and NP-complete problems
with digital memcomputing machines. Chaos 2017, 27.

122. Traversa, F.L.; et al.. Evidence of an exponential speed-up in the solution of hard optimization problems,
[1710.09278].

123. Traversa, F.; Di Ventra, T. Memcomputing: Leveraging memory and physics to compute efficiently. Jour.
App. Phys. 2018, 123.

124. Sah, M.P.; Hyongsuk Kim.; Chua, L.O. Brains Are Made of Memristors. IEEE Circuits and Systems Magazine
2014, 14, 12–36.

125. Markin, V.S.; Volkov, A.G.; Chua, L. An analytical model of memristors in plants. Plant Signaling & Behavior
2014, 9, e972887.

126. Hodgkin, A.L.; Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the
giant axon of Loligo. The Journal of Physiology 1952, 116, 449–72.

127. Pershin, Y.V.; La Fontaine, S.; Di Ventra, M. Memristive model of amoeba’s learning. Phys. Rev. E 2010, 80.
128. Saigusa, T.; et al.. Amoebae Anticipate Periodic Events. Phys.Rev. Lett. 2008, 100.
129. Yang, J.J.; et al.. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nano. 2008, 3.
130. Pershin, Y.V.; Di Ventra, M. Experimental demonstration of associative memory with memristive neural

networks. Neural Networks 2010, 23, 881–886.
131. Tan, Z.H.; Yin, X.B.; Yang, R.; Mi, S.B.; Jia, C.L.; Guo, X. Pavlovian conditioning demonstrated with

neuromorphic memristive devices. Scientific Reports 2017, 7, 713.
132. Turcotte, D.L. Self-organized criticality. Reports on Progress in Physics 1999, 62, 1377–1429.
133. Jensen, H.J. Self-Organized Criticality; Cambridge University Press: Cambridge, 1998.
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